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Abstract

Submodular function maximization has numerous applica-
tions in machine learning and artificial intelligence. Many
real applications require multiple submodular objective func-
tions to be maximized, and which function is regarded as im-
portant by a user is not known in advance. In such cases, it is
desirable to have a small family of representative solutions
that would satisfy any user’s preference. A traditional ap-
proach for solving such a problem is to enumerate the Pareto
optimal solutions. However, owing to the massive number of
Pareto optimal solutions (possibly exponentially many), it is
difficult for a user to select a solution. In this paper, we pro-
pose two efficient methods for finding a small family of rep-
resentative solutions, based on the notion of regret ratio. The
first method outputs a family of fixed size with a non-trivial
regret ratio. The second method enables us to choose the size
of the output family, and in the biobjective case, it has a prov-
able trade-off between the size and the regret ratio. Using real
and synthetic data, we empirically demonstrate that our meth-
ods achieve a small regret ratio.

Introduction

Submodular function maximization has numerous applica-
tions in machine learning and artificial intelligence, such
as budget allocation (Soma et al. 2014), document sum-
marization (Lin and Bilmes 2010; 2011), maximum en-
tropy sampling (Ko, Lee, and Queyranne 1995), online ser-
vice privacy (Krause and Horvitz 2008), and sensor place-
ment (Krause, Singh, and Guestrin 2008). Many efficient al-
gorithms have been developed to solve these problems by
maximizing a single submodular function.

However, in real applications, we often face multiple con-
flicting criteria. For example, in data summarization, we are
to select a subset of a data set that maximizes two crite-
ria: coverage and diversity. That is, we are to find a subset
that explains the entire data well, and at the same time, ele-
ments in the subset are different to each other. Further, in the
budget allocation problem, we are to buy ads to maximize
the expected number of people influenced by ads, while we
also need to minimize the cost of buying ads. These prob-
lems prompt us to consider maximizing multiple submodu-
lar functions.
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In contrast to maximizing a single submodular func-
tion, maximizing multiple submodular functions is not well
understood. The difficulty in multi-objective optimization
arises from the fact that there may be no single solution
that maximizes all the objective functions simultaneously.
Hence, preferable solutions can vary from one user to an-
other, depending on which objective function is more im-
portant to the user. Moreover, a user often cannot describe
his/her own preference explicitly but can only compare two
solutions based on his/her implicit preference. In such cases,
a natural goal is to precompute a family of “representative”
solutions so that a user with any preference can find an (al-
most) optimal set in the family.

A standard approach for finding such a family is to enu-
merate the Pareto optimal solutions. However, this approach
has two drawbacks: (i) The number of Pareto optimal solu-
tions is often massive, and enumerating all of them does not
enable a user to select a solution. (ii) No efficient algorithm
for computing the Pareto optimal solutions is known when
the objective functions are submodular.

Our contributions

In this paper, we tackle the above-mentioned problem using
the concept of regret ratio, introduced in (Nanongkai et al.
2010). Here, we assume that the preference of a user can
be expressed as a convex combination of the objective func-
tions. Then, intuitively speaking, the regret ratio of a family
of solutions is the (normalized) loss caused by choosing a
solution from the family instead of considering all feasible
solutions. The advantage of introducing such a concept and
optimizing it is that we can control the size of the family.

In this paper, we formalize the concept of regret ratio for
multi-objective submodular function maximization. Then,
to find a family of solutions with a small regret ratio, we
propose two methods, namely the coordinate-wise maxi-
mum method and the polytope method. The coordinate-
wise maximum method outputs a family of fixed size with
a non-trivial regret ratio. The polytope method enables us
to choose the size of the output family, and in the biobjec-
tive case, it has a provable trade-off between the size and
the regret ratio. Both methods can handle monotone and
non-monotone submodular functions under any constraint
as long as there is an approximation algorithm for the cor-
responding problem on a single submodular function. In ad-
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dition, we show that the trade-off attained by the polytope
method cannot be improved significantly by presenting a
lower bound instance. Finally, we experimentally demon-
strate the superiority of our methods on a data summariza-
tion problem and the budget allocation problem.

Related Work

The notion of regret ratio was originally introduced for
obtaining a subset of representative points from a point
set (Nanongkai et al. 2010). Several notions of represen-
tative sets have been proposed, including k-representative
skyline queries (Lin et al. 2007; Tao et al. 2009), top-k
dominating queries (Yiu and Mamoulis 2009), and ε-skyline
queries (Xia, Zhang, and Tao 2008). In comparison to these
notions, regret ratio has the following desirable properties:
(i) scale invariance, i.e., even if we multiply the values of
some coordinate by a positive constant, the regret ratio of
a set remains unchanged; (ii) stability, i.e., adding a point
that is unimportant, in the sense that it is not optimal for
any preference, does not change the regret ratio of a set;
(iii) parameter-freeness, i.e., only the number of points to
be selected is required. These features strongly motivate us
to compute a family of solutions with a small regret ratio in
the multi-criteria setting.

We note that for point sets, there is an algorithm with a
provable trade-off between the size of the output set and its
regret ratio (Nanongkai et al. 2010). However, this algorithm
cannot be directly applied to our submodular setting because
it checks all the points, which takes exponential time in our
setting.

In a similar problem, the robust submodular function
maximization problem (Krause et al. 2008), multiple mono-
tone submodular functions f1, . . . , fd : 2E → R+ and an
integer k are given; the goal is to find a set S ⊆ E of size
at most k that maximizes min{f1(S), . . . , fd(S)}. In our
problem, we consider a (unknown) convex combination of
f1, . . . , fd and output a family of sets instead of a single set.

The linear submodular bandit problem (Yue and Guestrin
2011; Krause, Roper, and Golovin 2011) also considers con-
vex combinations of submodular objective functions. In this
problem, convex coefficients are drawn from some unknown
distribution and one can learn the distribution with sampling
and optimization. On the other hand, our setting is adver-
sarial in the sense that we must consider all possible convex
combinations.

Preliminaries

For an integer k, let [k] denote the set {1, 2, . . . , k}. We de-
note the set of nonnegative reals by R+. Let E be a finite
ground set. A function f : 2E → R is said to be submodular
if

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

for every X,Y ⊆ E. It is well known that submodularity is
equivalent to the diminishing return property: f(X ∪{e})−
f(X) ≥ f(Y ∪ {e}) − f(Y ) for every X ⊆ Y � E and
e ∈ E \ Y .

For functions f1, . . . , fd : 2E → R and a vector a ∈ Rd,
we define a function fa(X) :=

∑d
i=1 a(i)fi(X). Note that,

if f1, . . . , fd are submodular and a ∈ Rd
+, then fa is also

submodular.

Regret-minimizing family

Let C ⊆ 2E be a family of sets, which we regard as a
constraint on solutions. Let S ⊆ C be a subfamily of C
and f : 2E → R+ be a function. We define the regret of
S with respect to f under the constraint C as rf,C(S) :=
maxX∈C f(X) − maxX∈S f(X). Then, we define the re-
gret ratio of S with respect to f under C as

rrf,C(S) = rf,C(S)
maxX∈C f(X)

= 1− maxX∈S f(X)

maxX∈C f(X)
.

Note that rrf,C ∈ [0, 1] and that rrf,C(S) represents the nor-
malized loss caused by choosing a solution from S instead
of C. Then, the (maximum) regret ratio of S with respect to
functions f1, . . . , fd : 2E → R+ is defined as

rrf1,...,fd,C(S) = max
a∈R

d
+

rrfa,C(S).

Intuitively speaking, a ∈ Rd
+ represents a preference of a

user on the functions f1, . . . , fd, and rrf1,...,fd,C(S) is the
worst regret ratio over all the preferences. We often omit
the subscripts of f1, . . . , fd when they are clear from the
context.

We study the following problem in this paper:
Definition 1 (Regret ratio minimization in multi-objec-
tive submodular function maximization). Given submodular
functions f1, . . . , fd : 2E → R+, C ⊆ 2E , and k ∈ N, find
S ⊆ C with |S| ≤ k that minimizes the maximum regret
ratio rrf1,...,fd,C(S).

If a is fixed, finding X∗ ∈ C that maximizes fa(X) is
called submodular function maximization, which is an NP-
hard problem in general. However, for various constraint
families C, one can find an approximate solution efficiently.
If one can find an α-approximate solution X∗, the corre-
sponding regret ratio is 1− fa(X

∗)
maxX∈C f(X) ≤ 1− α.

Geometric Interpretation

The multi-objective submodular function maximization has
a nice geometric interpretation. Let us consider a function
f(X) := [f1(X) . . . fd(X)]� ∈ Rd

+. Note that fa(X) =

a�f(X). For S ⊆ C, we define Cf (S) := conv{f(X) :
X ∈ S}. We associate S ⊆ C with a polytope

P (S) := {x ∈ Rd
+ : ∃y ∈ Cf (S) s.t. x ≤ y},

where x ≤ y means x(i) ≤ y(i) (i ∈ [d]).
Lemma 2 ((Peng and Wong 2014, Lemma 1)).
rrf1,...,fd,C(S) ≤ 1− α if and only if P (C) ⊆ α−1P (S).

The above characterization establishes that the maximum
regret ratio is scale-invariant, i.e., even if we replace fi with
βfi for some β > 0, the minimum regret ratio is preserved.
The following lemma is just a restatement of the above
lemma, but is useful for the analysis of our algorithms. A
frontier face is a face of P (S) consisting of Pareto optimal
points.
Lemma 3. rrf1,...,fd,C(S) = maxa rrfa,C(S), where a runs
over the nonnegative normal vectors of all frontier faces of
P (S).
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Algorithm 1 Coordinate-wise maximum method

Input: Submodular functions f1, . . . , fd : 2E → R+, a
constraint C ⊆ 2E , and an approximation algorithm Ai

for max
X∈C

fi(X) (i ∈ [d]).

1: for i ∈ [d] do
2: Xi ← a solution obtained by applying Ai to fi.
3: return Scoord := {X1, . . . , Xd}.

Algorithms

In this section, we present two algorithms. Both algorithms
require approximation algorithms for maximizing submod-
ular functions. Let α be the minimum approximation ratio
of these approximation algorithms. The first algorithm, the
coordinate-wise maximum method, always outputs a family
of d solutions with regret ratio 1 − α/d. The second algo-
rithm, the polytope method, has a provable guarantee only
when d = 2. However, it has a trade-off between the regret
ratio and the size of the output, and the regret ratio converges
to 1− α as the output size increases.

Coordinate-wise maximum method

Besides functions f1, . . . , fd : 2E → R+ and a constraint
C ⊆ 2E , the coordinate-wise maximum method requires an
approximation algorithm Ai for maxX∈C fi(X) (i ∈ [d]).
Then, it simply computes an approximate solution Xi for
maxX∈C fi(X) by using Ai for each i ∈ [d], and subse-
quently outputs Scoord := {X1, . . . , Xd}. See Algorithm 1
for further details.

Lemma 4. Let α be the minimum approximation ratio of
Ai’s. Then, we have rrC(Scoord) ≤ 1− α

d .

Proof. For any a ∈ Rd
+, we have

max
i∈[d]

fa(Xi) ≥ 1

d

∑
i∈[d]

a(i)fi(Xi)

≥ α

d

∑
i∈[d]

a(i)max
X∈C

fi(X)

≥ α

d
max
X∈C

∑
i∈[d]

a(i)fi(X)

=
α

d
max
X∈C

fa(X).

Therefore, we have

rrC(Scoord) = max
a∈R

d
+

⎡
⎣1−

max
i∈[d]

fa(X)

max
X∈C

fa(X)

⎤
⎦ ≤ 1− α

d
.

We have the following:

Theorem 5. Suppose that Ai is an α-approximation algo-
rithm for maxX∈C fi(X) with time complexity Ti(|E|) for
i ∈ [d]. Then, Algorithm 1 outputs a family of d solutions
with regret ratio at most 1− α/d in O(d+

∑
i∈[d] Ti(|E|))

time.

Algorithm 2 Polytope method

Input: Submodular functions f1, . . . , fd : 2E → R+, a
constraint C ⊆ 2E , an integer k ∈ N, and an approx-
imation algorithm A for max

X∈C
fa(X) (a ∈ Rd

+).

1: for i ∈ [d] do
2: Xi ← a solution obtained by applying A to fi.
3: S ← {X1, . . . , Xd}, P ← P (S).
4: while |S| < k do
5: for each frontier face F of P do
6: Find a nonnegative normal vector a of F .
7: X ← a set obtained by applying A to fa.
8: Add X to S.
9: if |S| = k then return S.

10: P ← P (S).
11: return S.

Proof. The regret ratio is immediate from Lemma 4. The
time complexity follows as we run the algorithm Ai for i ∈
[d] and the output set Scoord has size d.

Polytope method

Our second algorithm is based on the geometric character-
ization of the regret ratio. The algorithm first runs Algo-
rithm 1 to obtain a polytope P (S). For each frontier face F
of P (S), we compute a nonnegative normal vector a of F .
Note that one can always find a nonnegative normal vector
a from the definition of P (S). Then, we run an approxima-
tion algorithm for maxX∈C fa(X) to obtain an approximate
solution X , and add X to S. A pseudocode description is
presented in Algorithm 2.

To explain the intuitive concept underlying this algorithm,
let us consider the case of d = 2. An illustration of the al-
gorithm is shown in Figure 1. In the figure, we identify a
solution X with a point f(X). The algorithm tries to reduce
the area of the region that may contain points not included by
P (S), which is shown as the shaded region in Figure 1. In-
tuitively, the shaded region can be shrunk by taking a normal
vector of the face and adding a point maximizing fa(X).

Before analyzing the regret ratio of Algorithm 2, we ana-
lyze its time complexity:

Theorem 6. Suppose A is an approximation algorithm
with time complexity T (|E|). Then, Algorithm 2 runs in
O(k log k + k�d/2� + (d+ k)T (|E|)) time.

Proof. Through the algorithm, the number of invocations of
A is O(d+ k).

The process of maintaining the faces is essentially equiva-
lent to the dynamic update of a convex hull in d-dimensional
space. As we end with adding k points, we can maintain the
faces in O(k log k + k�d/2�) time by using the algorithm
by (Clarkson and Shor 1989).

Summing up these time complexities, we get the desired
result.
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A

B C

P (S)

(a) Beginning of algorithm

A

B

Q

C

A′

B′

h�

P (S)

(b) After the first loop

P (S)

α−1P (S)

(c) Approximate case

Figure 1: Investigation of faces by Polytope Algorithm. The x-axis and y-axis represent the values of f1 and f2, respectively,
and a solution X is identified with a point f(X). (a) The Coordinate-wise maximum method yields points A and B. Then
we know that other Pareto points must be below of C. The initial uncovered region is �ABC. (b) Next, the algorithm picks
a normal vector of face AB and finds point Q. Then we know that other Pareto points are also below of line B′A′, which is
a line passing through Q and parallel to face AB. Now the uncovered region shrinks into �A′AQ and �B′BQ. (c) For the
approximate case, one can run a similar argument, but the definition of the uncovered region is changed.

Analysis for the exact case First, we analyze Algo-
rithm 2 when d = 2, and we can find exact solutions for
maxX∈C fa(X). Indeed, our algorithm is closely related
to the Chord algorithm for approximating convex curves
(see (Daskalakis, Diakonikolas, and Yannakakis 2010) and
the references therein).

Theorem 7. Assume that d = 2 and that we can find exact
solutions for maxX∈C fa(X). After Algorithm 2 investigates
all the faces of P i times, the maximum regret ratio rrC(S)
is at most

√
2 · 2−i.

For the proof, we analyze the area of the region that may
contain points not included by P (S). We refer to this re-
gion as the uncovered region. For example, in Figure 1, the
uncovered regions are represented by the shaded regions. In-
tuitively, in each iteration, the areas of the uncovered regions
shrink. Indeed, the areas shrink exponentially.

Lemma 8 ((Daskalakis, Diakonikolas, and Yannakakis
2010, Lemma 3.11), restated in our context.). Suppose that
Algorithm 2 processes face AB. Let T = �ABC be the
part of the uncovered region corresponding to face AB. De-
note Q = f(X), where X is a solution found in Line 7.
Let T1 = �AA′Q and T2 = �BB′Q be the parts of the
new covered region corresponding to faces AQ and BQ, re-
spectively. Then, we have S(T1) + S(T2) ≤ S(T )/4, where
S(T ) denotes the area of T .

Proof of Theorem 7. Since the regret ratio is scale-invariant,
we can assume that maxX∈C f1(X) = maxX∈C f2(X) =√
2. Then, the distance from the origin to any face of P (S)

is at least 1, and the area of the initial uncovered region is
at most 1. By Lemma 8, after Algorithm 2 processes all the
faces of P , the areas of the uncovered regions shrink by a
factor of 1/4. Let us focus on a single triangle � in the un-
covered region, and let h� be the maximum distance from
the face to a point in the uncovered region (see Figure 1b).
Since� is an obtuse triangle, we have S(�) ≥ h2

�/2. Then,

max� h2
� ≤ 2

∑
� S(�) = 2S(uncovered region) ≤

2 · 4−i. Thus, max� h� ≤
√
2 · 2−i. By Lemma 3,

rrC(S) = max
�

h�
dist(�,0) + h�

≤ max
�

h�
1 + h�

≤ max
�

h�

≤
√
2 · 2−i,

where the first inequality follows from the fact that the dis-
tance from the origin to any triangle is at least 1.

Corollary 9. After Algorithm 2 adds k solutions to S ,
rrC(S) is at most

√
2 · 2−�log2(k−1)� = O(1/k).

Proof. One can check that after Algorithm 2 examines all
the faces i times, the number of faces in P (S) is at most
2i+1. Thus, we have k ≤ 2i+1, which yields i ≤ log2(k−
1)�.
Analysis for the approximate case Let us analyze the
case where we have only an α-approximation algorithm for
maxX∈C fa(X). In this case, the best one can hope for is
that P (C) ⊆ α−1P (S), i.e., any Pareto optimal point is
within the α-multiplicative factor.
Theorem 10. Assume that d = 2 and that we can find
α-approximate solutions for maxX∈C fa(X). After Algo-
rithm 2 investigates all the faces of P i times, the maximum
regret ratio rrC(S) is at most 1− α+

√
2 · 2−i.

Proof. The proof idea is showing that P (C) ⊆ (α −
ε)−1P (S), where ε decreases exponentially in i. Let us call
the area of the region that may contain points not included
by α−1P (S) the uncovered region (see Figure 1c). It suf-
fices to show the theorem for the case in which the ap-
proximation algorithm for maxX∈C fa(X) always returns
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α-approximate solutions. To see this, suppose that we ob-
tain a β-approximate solution (β > α) for some normal
vector a of a face of P (S). Adding this approximate so-
lution to S reduces the uncovered area more than adding an
α-approximate solution. Thus, the analysis reduces to that of
the exact case and the theorem follows from Theorem 7.

The above argument heavily relies on Lemma 8, which is
shown only for the two-dimensional case. In higher dimen-
sion, the uncovered region becomes complicated; therefore
the analysis becomes more difficult. We leave the analysis in
higher dimension for future work.

Having said that, we believe that our analysis of the biob-
jective case is useful because the biobjective case has many
important applications as stated in the introduction.

Lower Bound

In this section, we show that the trade-off achieved by the
polytope method (see Corollary 9) cannot be improved sig-
nificantly even in the two-dimensional case. More specifi-
cally, we show the following:

Theorem 11. For any k, there exist n, f1, f2 : 2E → R+

with |E| = n, and C ⊆ 2E such that an arbitrary subfamily
S ⊆ C has a maximum regret ratio Ω( 1

k2 ).

Proof. Our construction is inspired by (Nanongkai et al.
2010, Theorem 4). Let f1(X) := cos(π|X|

2n ) and f2(X) :=

sin(π|X|
2n ). Note that f1 and f2 are submodular because

sin(πx2 ) and cos(πx2 ) are concave for x ∈ [0, 1]. We de-
fine C := 2E , i.e., we do not impose constraints. Let us take
an arbitrary S ⊆ 2E with |S| ≤ k. Without loss of gen-
erality, we can assume that two arbitrary distinct elements
have different cardinalities (otherwise, we delete some ele-
ment from S without losing the regret ratio). We sort the k
elements in S such that |X1| < |X2| < · · · < |Xk|. Fur-
ther, we define X0 := ∅ and Xk+1 = E. Let φi := π|Xi|

2n
(i = 0, . . . , k + 1) and define θi = φi − φi−1 (i =
1, . . . , k + 1). Since θ1 + · · · + θk+1 = π

2 , there exists j
such that θj ≥ π

2(k+1) . Define β := θj . By taking n large

enough, we can find X ⊆ E such that π|X|
2n = φj +

β
2 =: γ.

Let us consider a = [cos γ, sin γ]�. One can check that
maxX∈2E fa(X) = 1 and maxX∈S fa(X) = fa(Xj) =

cos γ cosφj + sin γ sinφj = cos(β2 ). Therefore, the regret

ratio is 1− cos(β2 ) = Ω(β
2

4 ) = Ω( 1
k2 ).

We note that our proof is information theoretic and that it
does not rely on any assumption on computational complex-
ity such as P �= NP.

Experiments

In this section, we experimentally demonstrate that our
methods reduce the regret ratio effectively. We conducted
experiments on a Linux server with an Intel Xeon E5-
2690 (2.90 GHz) processor and 256 GB of main memory.
All the algorithms were implemented in C# and run using
Mono 4.2.3. We compared the following algorithms:
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Figure 2: Regret ratio on movie summarization

• Coordinate (Algorithm 1).

• Polytope (Algorithm 2).

• Random: Given an approximation algorithm A for
maxX∈C fa(X), we pick k random directions a1, . . . ,ak

and output the family {X1, . . . , Xk} of solutions, where
Xi is the output of A for fai

.

We conducted experiments on a personalized recommenda-
tion problem and the budget allocation problem, which are
described below in more detail. To estimate the regret ratio,
we use Lemma 3, i.e., for each nonnegative normal vector
a, we compute an approximate solution for maxX∈C fa(X)
and use it to compute an approximation to rrfa,C(S), and
then we take their maximum.

Movie summarization

Let E be a set of movies, and suppose that we want to
summarize them by making several lists of representative
movies. When making such lists, we need to consider two
conflicting criteria, that is, coverage and diversity. Here, the
coverage of a list S ⊆ E of movies is regarded as high if,
for any movie i, there exist movies in S that are similar to i.
The diversity of a list S is regarded as high if no two movies
in S are similar. To define similarity between movies, we
exploit users’ ratings on the movies. That is, we represent
each movie i by a vector vi consisting of the users’ ratings.
Then, we measure the similarity si,j between movies i and j
by the inner product v�

i vj . (Mirzasoleiman et al. 2016) pro-
posed the following function f : 2E → R+ for measuring
the quality of a list of movies:

f(S) =
∑
i∈E

∑
j∈S

si,j − λ
∑
i∈S

∑
j∈S

si,j ,

where 0 ≤ λ ≤ 1. Here, the first and second terms repre-
sent the coverage and diversity, respectively, of S. Note that,
if si,j’s are {0, 1}-valued and λ = 1, then the function f
corresponds to a cut function.
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Figure 3: Regret ratio on budget allocation

Instead of maximizing f and outputting a single list, we
consider computing a family of lists with a small regret ra-
tio. To this end, we separate f into two objective functions
f1, f2 : 2E → R+ defined as follows:

f1(S) =
∑
i∈E

∑
j∈S

si,j ,

f2(S) = λ
∑
i∈E

∑
j∈E

si,j − λ
∑
i∈S

∑
j∈S

si,j .

Here, the term λ
∑

i∈E

∑
j∈E si,j is introduced into f2 in

order to make it nonnegative. It is easy to see that f1 is
monotone submodular and f2 is nonmonotone submodular.

In our experiment, we used the MovieLens 100K dataset,
consisting of 100,000 ratings from 943 users on 1,682
movies (Grouplens 1998) and set λ = 0.1 as indicated
in (Mirzasoleiman et al. 2016). We did not impose any con-
straint, i.e., C = 2E . As f2 is a non-monotone function, we
adopted the double greedy method (Buchbinder et al. 2012)
as an approximation algorithm for maxX∈C fa(X), whose
approximation ratio is 1/2.

Figure 2 shows how the regret ratio on f1 and f2 decreases
for each method by increasing the size k of the output family
(Coordinate outputs a family of size at most 2 for any k).
We can observe that the regret ratio of Random stagnates
around 0.2, which means that it is not sufficient to get lists of
representative movies. Theorem 5 implies that Coordinate
gives a regret ratio at most 1 − (1/2)/2 ≈ 0.75. Although
the empirical performance is better, the obtained regret ratio
of around 0.2 is still high. The regret ratio of Polytope de-
creases drastically as k increases. Even when k is as small
as 20, the regret ratio is already around 0.001, which shows
the superiority of Polytope over other methods. Although
Corollary 9 states that the regret ratio decreases as O(1/k),
the empirical performance is even better.

Budget allocation

The budget allocation problem (Alon, Gamzu, and Tennen-
holtz 2012) models a marketing process that allocates a

given budget among media channels, such as TV, newspa-
pers, and the Web, in order to maximize the impact on cus-
tomers.

We created a synthetic instance of the budget allocation
problem as in (Soma et al. 2014). The instance can be repre-
sented as a pair of a bipartite graph (L,R;E). Here, L is a
set of 500 vertices and R is a set of 5,000 vertices. We regard
a vertex in L as an ad source, and a vertex in R as a person.
We then fix the degrees of vertices in L such that their distri-
bution obeys the power law with γ := 2.5; i.e., the fraction
of ad sources with out-degree d is proportional to d−γ . For a
vertex u ∈ L of the supposed degree d, we choose d vertices
in R uniformly at random and add edges to them.

Now, we construct two submodular functions f1, f2 :
2L → R+. The function f1 is defined as

f1(S) =
∑
v∈R

(
1− 0.99|Γ(v)∩S|

)
,

where Γ(v) ⊆ L is the set of vertices connected to v.
Consider the situation in which, by exploiting an ad source
u ∈ L, for each person v ∈ R connected to u, we have a
chance of influencing v with probability 0.01. The function
f1 can then be regarded as the expected number of people
influenced by the chosen ad sources; hence, we want to max-
imize f1. It is known that f1 is monotone submodular (Soma
et al. 2014). We define f2 : 2L → R as

f2(S) = |L| − |S|,
which is the number of remaining ad sources. We want to
maximize f2 because it represents the saved cost. Note that
f2 is a non-monotone linear (and hence submodular) func-
tion.

In our experiment, we did not impose any constraint, i.e.,
C = 2L. As f2 is a non-monotone function, we adopted the
double greedy method (Buchbinder et al. 2012) again for the
approximation algorithm.

Figure 3 shows how the regret ratio decreases using each
method. The performance of each method is similar to that
for the movie summarization task. Again, we can observe
the superiority of Polytope.

Conclusions
In this work, we presented the coordinate-wise maximum
method and polytope method for minimizing regret ratio
in multi-objective submodular function maximization. Both
methods have provable guarantees and we also showed that
the trade-off attained by the polytope method in the biobjec-
tive case cannot be improved significantly. Further, we con-
firmed that the polytope method outperforms other methods
through experiments conducted on a movie summarization
problem and the budget allocation problem. Providing a the-
oretical guarantee of our method in the multi-objective set-
ting is an interesting future work.
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