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Abstract

We describe an exact branch-and-bound algorithm for the
maximum weight clique problem (MWC), called WLMC,
that is especially suited for large vertex-weighted graphs.
WLMC incorporates two original contributions: a prepro-
cessing to derive an initial vertex ordering and to reduce the
size of the graph, and incremental vertex-weight splitting to
reduce the number of branches in the search space. Experi-
ments on representative large graphs from real-world appli-
cations show that WLMC greatly outperforms relevant ex-
act and heuristic MWC algorithms, and refute the prevailing
hypothesis that exact MWC algorithms are less adequate for
large graphs than heuristic algorithms.

Introduction

A clique C in an undirected graph G = (V,E), where V
is the set of vertices and E is the set of edges, is a sub-
set of V such that all its vertices are connected. The size of
C is its cardinality. The Maximum Clique Problem (MC) is
to find a clique of maximum size in G, denoted by ω(G).
An important generalization of MC is the Maximum Weight
Clique Problem (MWC), in which the graph has a weight
function w that assigns a positive integer called weight to
each vertex, and the weight of a clique C, denoted by w(C),
is defined to be the total weight of the vertices in C. MWC
is to find a clique of maximum weight in G = (V,E,w),
denoted by ωv(G).

MWC is NP-Hard and has practical applications in differ-
ent domains such as protein structure prediction (Mascia et
al. 2010), coding theory (Zhian et al. 2013), combinatorial
auctions (Wu and Hao 2015; Fang, Li, and Xu 2016) and
computer vision (Ma and Latecki 2012; Zhang, Javed, and
Shah 2014).

The main objective of this paper is to develop an exact
and highly competitive MWC algorithm for large graphs.
The focus on large graphs is motivated by the fact that they
are ubiquitous: computer networks, social networks, mobile
call networks, biological networks, citation networks, and
the World Wide Web, to name a few. These networks typ-
ically have very low density, a huge number of vertices,
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and common statistical properties such as small-world prop-
erty, power-law degree distributions, and clustering (New-
man 2003). Finding cliques is very relevant in this context.
For example, a clique might be a functional group in biolog-
ical networks, and identify a community in social networks.

There exist a few exact MC algorithms for large graphs.
The best performing ones are PMC (Rossi et al. 2013),
BBMCSP (San Segundo, Alvaro, and Pardalos 2016) and
LMC (Jiang, Li, and Manyà 2016), based on the branch-
and-bound (BnB) scheme. Nevertheless, their graph prepro-
cessing, upper bound (UB) computation and branching strat-
egy are not suitable for MWC. Very few exact and heuristic
MWC algorithms have been proposed, compared with the
number of available MC algorithms. This is partially due to
the fact that MWC is more complicated than MC and some
successful MC techniques are not applicable or ineffective
for MWC because of the vertex weights (Cai and Lin 2016).

To our knowledge, the two most efficient heuristic MWC
algorithms for large graphs are based on local search:
LSCC+BMS (Wang, Cai, and Yin 2016), and Fast-
WClq (Cai and Lin 2016). Most exact MWC algorithms im-
plement the BnB scheme and differ in their UB computa-
tion and branching strategy. The most relevant ones are Cli-
quer (Ostergard 2001; 2002), Kumlander’s algorithm (Kum-
lander 2004; 2008), VCTable (Shimizu et al. 2012), OT-
Clique (Shimizu et al. 2013), and MWCLQ (Fang, Li, and
Xu 2016). MWC can also be solved exactly via its reduction
to MinSAT (Li et al. 2012).

Unfortunately, all exact MWC algorithms in our knowl-
edge exhibit poor performance on large graphs, and because
of this we have developed an exact BnB MWC algorithm for
large graphs, called WLMC (short for Weighted Large Max-
imum Clique), that incorporates two important contributions
of the paper: a preprocessing to derive an initial vertex or-
dering and to reduce the size of the graph by removing ver-
tices not belonging to any optimal solution, and incremental
vertex-weight splitting to reduce the number of branches in
the search space.

We have also conducted experiments using real-world
graphs that show that WLMC greatly outperforms relevant
exact and heuristic algorithms on large graphs. This is an-
other important contribution of the paper: the performance
of WLMC refutes the prevailing hypothesis that exact MWC
algorithms, despite proving optimality, are less adequate for
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large graphs than heuristic algorithms.
The paper is organized as follows: Section 2 describes

WLMC and the techniques it implements. Section 3 ana-
lyzes the empirical results. Section 4 gives the conclusions.

WLMC: A New Exact MWC Algorithm

WLMC contains two main components: an efficient pre-
processing procedure Initialize to derive an initial vertex
ordering and to reduce the size of the graph, and a BnB
algorithm SearchMaxWClique that implements incremental
vertex-weight splitting to reduce the number of branches in
the search space. We first describe the two components and
then algorithm WLMC.

The Efficient Preprocessing Procedure Initialize
Initialize has as input a graph G = (V,E,w) and a lower
bound lb of ωv(G). It returns an initial vertex ordering O0,
an initial clique C0, and a reduced graph G′ of G. The
pseudo-code of Initialize is shown in Algorithm 1.

Initialize works on a copy H = (U,E,w) of G to com-
pute an initial vertex ordering O0: v1 < v2 < · · · < v|V |
of G, in which v1 is the vertex with the smallest degree in
H , v2 is the vertex with the smallest degree in H after v1 is
removed, and so on. This ordering is used for MC in (Car-
raghan and Pardalos 1990) and is showed to be also effec-
tive for solving MC on large graphs in (Jiang, Li, and Manyà
2016). The intuition behind the ordering is that the greater
vertices have more chance to form larger cliques. After re-
moving v1, v2, . . . , vi−1 from H , if the vertex vi with the
smallest degree deg(vi) is adjacent to all the other vertices
in H (line 6), H becomes a clique C0, because the degree
of other vertices of H is necessarily equal to deg(vi) in this
case. The vertices in C0 can be ordered arbitrarily (line 8).
After C0 is obtained, lb is updated to w(C0) if w(C0) > lb,
and all the vertices v such that the total weight of v and its
neighbors in G, say w∗(v), is not greater than lb are removed
from G to derive the reduced graph G′, because they cannot
belong to any clique of weight greater than lb. Finally, Ini-
tialize returns C0, O0 and G′.

The number of neighbors of a vertex is in O(|V |). Com-
puting the degree of all the vertices can be done in O(|V |2)
or O(|E|) time (|E| is in O(|V |2) in the worst case). Search-
ing for the vertex with the smallest degree needs O(|V |)
time. So, the time complexity of Initialize is O(|V |2) in
the worst case. Note that Initialize does not use the notion
of k-core, which is effective for solving MC on large graphs
in (Jiang, Li, and Manyà 2016), but is ineffective for MWC.

The Procedure SearchMaxWClique
Given a graph G = (V,E,w), the best clique Cmax so far
and an ordering O over V , the BnB procedure SearchMaxW-
Clique searches recursively for a clique of weight greater
than w(Cmax), combined with the growing clique C. In the
sequel, Γ(v) denotes the set of vertices that are adjacent to
v, G[P ] denotes the subgraph of G induced by the subset
of vertices P (P ⊆ V ), and wmax(P ) (w(P )) denotes the
biggest (total) weight of the vertices in P .

Algorithm 1: Initialize(G, lb)
Input: G = (V,E,w), a lower bound lb of ωv(G)
Output: an initial clique C0, an initial vertex ordering

O0, and a reduced graph G′ of G
1 begin
2 U ← V ;
3 compute the degree deg(v) for each vertex v in U ;
4 for i:= 1 to |V | do
5 vi ← the vertex v with the smallest deg(v) in U ;
6 if deg(vi) = |U | − 1 then
7 /* vi is adjacent to all other vertices in U */
8 order U arbitrarily as {vi, vi+1, . . . , v|V |};
9 C0 ← U ; break;

10 U ← U \ {vi};
11 for each neighbor v of vi in U do
12 deg(v) ← deg(v)− 1;

13 if w(C0) > lb then lb← w(C0);
14 let w∗(v) denote the total weight of v and its

neighbors in G;
15 G′ ← G after removing vertices v s.t. w∗(v) ≤ lb;
16 O0 ← v1 < v2 < · · · < v|V |;
17 return (C0, O0, G′);

Algorithm 2 shows the pseudo-code of SearchMaxW-
Clique. If the set of vertices V is non-empty, it calls function
GetBranches to partition V into two sets A and B in such a
way that the maximum weight of a clique in G[A] is not
greater than w(Cmax) − w(C), and B = {b1, b2, . . . , b|B|}
is the returned set of branching vertices. If B is empty, the
search is pruned and the current best clique Cmax is re-
turned. Otherwise, it recursively searches for a maximum
weight clique in G[Γ(bi) ∩ ({bi+1, bi+2, . . . , b|B|} ∪A)], to
be added in C ∪{bi}, for i = |B|, . . . , 1. Note that the algo-
rithm iterates over B in the inverse ordering of O, because O
is computed by the procedure Initialize and greater vertices
w.r.t. O have more chance to form larger cliques.

Algorithm 3 describes function GetBranches(G, t,O),
where t is an integer representing a weight and O is an or-
dering over the vertices of G. GetBranches works in two
phases. In the first phase (lines 2–11), it computes a set of
independent sets (ISs) Π = {D1, D2, . . . , D|Π|} by sequen-
tially inserting vertices of G, starting from the greatest w.r.t.
O, into these ISs, provided that

∑|Π|
j=1 wmax(Dj) ≤ t. Let

A = V (Π) = D1 ∪ · · · ∪ D|Π| be the set of vertices oc-
curring in Π. Observe that any clique CA of G[V (Π)] con-
tains at most one vertex from each IS Di, 1 ≤ i ≤ |Π|. So,
w(CA) ≤

∑|Π|
j=1 wmax(Dj) ≤ t.

The vertices of G that cannot be inserted into any IS, be-
cause then

∑|Π|
j=1 wmax(Dj) > t, form the set of branch-

ing vertices B. As a result, we have B and an IS partition
Π = {D1, D2, . . . , D|Π|} of A = V \B.
Example 1. Let G = (V,E,w) be the graph of Fig-
ure 1, where vwi

i denotes vertex vi with weight wi = w(vi),
and let O: v1<v2<· · ·<v6 be the vertex ordering. As-
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Algorithm 2: SearchMaxWClique(G, Cmax, C, O)
Input: G = (V,E,w), the best clique Cmax so far, the

current growing clique C, a vertex ordering O
Output: Clique C if w(C)>w(Cmax); otherwise Cmax

1 begin
2 if |V | = 0 then return C;
3 B ← GetBranches(G, w(Cmax)− w(C), O);
4 if B = ∅ then return Cmax;
5 A ← V \B;
6 Let B={b1, b2, . . . , b|B|}, b1<b2<· · ·<b|B| w.r.t. O;
7 for i := |B| to 1 do
8 P ← Γ(bi) ∩ ({bi+1, bi+2, . . . , b|B|} ∪A);
9 if w(C ∪ {bi}) + w(P ) > w(Cmax) then

10 C ′ ← SearchMaxWClique(G[P ], Cmax,
11 C∪{bi}, O);
12 if w(C ′) > w(Cmax) then Cmax ← C ′;

13 return Cmax;

Algorithm 3: GetBranches(G, t, O)
Input: G = (V,E,w), an integer t and an ordering O
Output: a set B of branching vertices

1 begin
2 B ← ∅; Π ← ∅; /* Π will be a set of ISs*/
3 while V is non-empty do
4 v ← the greatest vertex of V w.r.t. O;
5 V ← V \ {v};
6 if ∃D ∈ Π s.t. Γ(v) ∩D = ∅ and
7

∑|Π|
j=1 wmax(Dj) ≤ t after adding v into D

8 then D ← D ∪ {v};
9 else if

∑|Π|
j=1 wmax(Dj) + w(v) ≤ t then

10 create a new IS D = {v}, Π← Π ∪ {D};
11 else B ← B ∪ {v};

12 ub0 ← ∑|Π|
j=1 wmax(Dj);

13 Let B={b1, b2, . . . , b|B|}, b1<b2<· · ·<b|B| w.r.t. O;
14 for i := |B| to 1 do
15 (ub, Π′) ← UP&Split(G, Π ∪ {{bi}},
16 ub0 + w(bi), t);
17 if ub ≤ t then
18 ub0 ← ub, Π ← Π′, B ← B \ {bi};

19 return B;

sume that the best clique weight so far is w(Cmax) = 6,
and we call GetBranches(G, 6, O). During the first phase,
GetBranches inserts the vertices v16 , v

4
5 , v

1
4 , v

2
3 , v

3
2 into two

ISs: D1 = {v16 , v45 , v32} and D2 = {v14 , v23}. After-
wards, v31 has adjacent vertices in both D1 and D2, and
GetBranches cannot create a new IS D3 = {v31} because
then

∑3
j=1 wmax(Dj) > 6. Hence, the first phase gives

A = {v16 , v45 , v14 , v23 , v32} and B = {v31}.
The second phase of GetBranches (lines 12–18) tries to

remove each vertex bi ∈ B from B and insert it into A.

v
3

1

v
3

2 v
2

3

v
1

4 v
4

5

v
1

6

Figure 1: A graph with ωv(G)=6

Recall that Π = {D1, D2, . . . , D|Π|} and A = V (Π). In
order to insert bi into A, we have to show that G[A ∪ {bi}]
does not contain any clique of weight greater than t. Since
any clique in G[A ∪ {bi}] is formed by at most one vertex
from each IS of Π and possibly by bi, an upper bound of
its weight is

∑|Π|
j=1 wmax(Dj) + w(bi). This upper bound

is very conservative because it is tight only if the clique
is formed by the most weighted vertex of every IS of Π
and by bi. However, a set of q ISs often cannot form a
clique containing q vertices, and such a set is said to be
conflicting (Li and Quan 2010). The main task of the second
phase of GetBranches is to improve this upper bound by
identifying as many conflicting subsets of ISs as possible,
inspired by the MaxSAT reasoning in (Li and Quan 2010;
Fang, Li, and Xu 2016). If the improved upper bound is not
greater than t, bi is removed from B and is added to A.

Example 2. Let us illustrate how to identify a conflicting
subset of ISs to improve an upper bound by continuing with
the graph G of Figure 1. In the first phase, GetBranches
gives Π = {D1, D2}, D1 = {v16 , v45 , v32}, D2 = {v14 , v23},
B = {v31} and t = 6 (cf. Example 1). Our objective here
is to show that the vertices in Π ∪ {{v31}} cannot form any
clique of weight greater than 6.

The initial upper bound for Π ∪ {{v31}} is wmax(D1) +
wmax(D2) + w(v31) = 9. If v31 is in a clique CG of G, then
v14 , v45 and v16 cannot be in CG because they are not adjacent
to v31 . So, we remove v14 from D2, and v45 and v16 from D1.
Since D1 becomes unit, its unique vertex v32 is added to CG,
which removes v23 from D2 because v23 is not adjacent to v32 ,
and D2 becomes empty. This reasoning shows that if v31 is in
a clique CG and D1 contains a vertex in CG, then D2 cannot
contain any vertex in CG. So, D1, D2 and D3 are conflict-
ing, because one of these ISs cannot contain any vertex in
CG. Since min(wmax(D1), wmax(D2), wmax(D3)) = 2,
the initial upper bound is improved from 9 to 9− 2 = 7.

Observe that the improved upper bound is tight only if CG

contains the most weighted vertices v45 and v31 , which is im-
possible because v45 and v31 are not adjacent in G. A further
improvement of the upper bound can be obtained by splitting
all the weights greater than 2 in D1, D2 and {v31}. The split-
ting gives a set of ISs Π1 = {{v16 , v25 , v22}, {v14 , v23}, {v21}},
in which the maximum weight in each IS is 2, and a set of
ISs ΠR = {{v25 , v12}, {v11}} consisting of the weights split
from Π. Note that the splitting of Π is equivalent to split-
ting G into the two graphs G1 and GR of Figure 2, where
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the vertices with weight 0 in GR are added to facilitate the
understanding. Any clique CG in G is also a clique CG1

in G1 and a clique CGR
in GR. It holds that w(CG) =

w(CG1
) + w(CGR

), because the weight of any vertex v in
G is equal to the sum of weights of v in G1 and GR. Let
UBG1

(UBGR
) denote an upper bound of the weight of CG1

(CGR
). It holds that w(CG) ≤ UBG1

+ UBGR
. In other

words, UBG1
+ UBGR

is an upper bound of ωv(G).
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Figure 2: Graphs G1 (left) and GR (right) obtained by split-
ting the graph G of Figure 1

Since Π1 partitions G1 and is conflicting, for any clique in
G1, there is an IS of Π1 such that the clique does not contain
any vertex from the IS. So, UBG1

= 2 + 2 + 2− 2 = 4.
ΠR = {{v11}, {v25 , v12}} partitions GR after removing all

the vertices with weight 0. If v11 is in a clique, then the most
weighted vertex v25 in {v25 , v12} cannot be in the clique, be-
cause v11 and v25 are not adjacent. Consequently, {v25 , v12}
can be split into {v15} and {v15 , v12}, so that {v11} and {v15}
are conflicting, suggesting us to split GR into the graphs
G2 and G3 of Figure 3, where G2 can be partitioned into
Π2 = {{v11}, {v15}} and G3 can be partitioned into Π3 =
{{v15 , v12}}, after removing all the vertices with weight 0.
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Figure 3: Graphs G2 (left) and G3 (right) obtained by split-
ting the graph GR of Figure 2

Any clique CGR
in GR is also a clique CG2

in G2 and a clique CG3 in G3. It holds that
w(CGR

) = w(CG2) + w(CG3). Let UBG2 (UBG3 )
denote an upper bound of ωv(G2) (ωv(G3)). Then
UBG2

+ UBG3
is an upper bound of ωv(GR).

So, w(CG) ≤ UBG1
+ UBG2

+ UBG3
. Clearly,

UBG2
= UBG3

= 1. So w(CG) ≤ 4+ 1+ 1 = 6, meaning
that v31 can be removed from B and added to A.

An IS containing exactly one vertex is a unit IS, and so
Π ∪ {{bi}} contains at least one unit IS. Example 2 illus-
trates how to propagate the unit IS {bi}: repeatedly select

a unit IS {v} and remove all the vertices non-adjacent to v
from the other ISs, possibly resulting in new unit ISs, until
an empty IS is produced or there is no more unit IS. If an
empty IS S0 is produced, we retrace the unit IS propagation
to identify all ISs responsible to produce the empty IS, ob-
taining a conflicting subset of ISs {S0, S1, S2, . . . , Sr}. Let
δ = min(wmax(S0), . . . , wmax(Sr)), we split each weight
greater than δ in Sj , 0 ≤ j ≤ r, to obtain S′j and S′′j so that
wmax(S

′
j) = δ and wmax(S

′′
j ) = wmax(Sj) − δ. For in-

stance, in Example 2, with δ = 2, the IS {v16 , v45 , v32} is split
into S′ = {v16 , v25 , v22} and S′′ = {v25 , v12} by splitting all the
weights w greater than δ into δ and w− δ and by keeping all
the weights smaller than or equal to δ in S′. Consequently,
we obtain a conflicting subset of ISs {S′0, S′1, S′2, . . . , S′r}, in
which wmax(S

′
j) = δ for each j, 0 ≤ j ≤ r, and a subset of

ISs {S′′0 , S′′1 , S′′2 , . . . , S′′r } from which further conflicts can
be detected. The set of conflicting ISs {S′0, S′1, S′2, . . . , S′r}
allows to improve the upper bound by δ, because at least one
IS cannot contribute any of its vertices to form a clique.

In some cases, unit IS propagation does not result in an
empty IS, but removes the most weighted vertices from
an IS. A set of conflicting ISs can also be identified
in these cases. For example, let S0 = {v71 , v42 , v33 , v14}.
Assume that unit IS propagation involving the ISs S1,
S2 and S3 removes v71 and v42 from S0, and we have
min(wmax(S1), wmax(S2), wmax(S3)) = 2. We split
S0 into S′0 = {v21 , v12} and S′′0 = {v51 , v32 , v33 , v14},
and Sj into S′j and S′′j so that wmax(S

′
j) = 2 and

wmax(S
′′
j ) = wmax(Sj) − 2 for each j, where 1 ≤ j ≤ 3.

Clearly, {S′0, S′1, S′2, S′3} is a set of conflicting ISs in which
wmax(S

′
j) = 2 for each j, where 0 ≤ j ≤ 3. The weight

of v1 and v2 in S′0 and S′′0 is determined as follows. Their
weight in S′′0 should be at least 3 so that v1 and v2 re-
main to be the most weighted vertices in S′′0 to ensure
wmax(S0) = wmax(S

′
0) + wmax(S

′′
0 ). The weight of v1 in

S′0 is then min(7− 3, wmax(S1), wmax(S2), wmax(S3)) =
2, and the weight of v2 in S′0 is then min(4 −
3, wmax(S1), wmax(S2), wmax(S3)) = 1.

Generally speaking, let S0 = {uw1
1 , . . . , uwk

k , . . . , u
w|S0|
|S0| }

be an IS in which the k most weighted vertices uw1
1 , . . . , uwk

k
are removed by unit IS propagation involving the ISs
S1, S2, . . . , Sr. Without loss of generality, assume that
w1 ≥ · · · ≥ wk ≥ wk+1 ≥ · · · ≥ w|S0|. Let δ =
min(w1 − wk+1, wmax(S1), . . . , wmax(Sr)) and let w′′j =
wj − min(δ, wj − wk+1) for 1 ≤ j ≤ k. We split S0 into
S′0 = {umin(δ,w1−wk+1)

1 , . . . , u
min(δ,wk−wk+1)
k } and S′′0 =

{uw′′
1

1 , . . . , u
w′′

k

k , u
wk+1

k+1 , . . . , u
w|S0|
|S0| }, and Sj into S′j and S′′j

so that wmax(S
′
j) = δ and wmax(S

′′
j ) = wmax(Sj)− δ for

each j, where 1 ≤ j ≤ r.
It holds that: (1) min(δ, w1 − wk+1) ≥ min(δ, w2 −

wk+1) ≥ · · · ≥ min(δ, wk − wk+1) in S′0; (2) w′′1 ≥
w′′2 ≥ · · · ≥ w′′k ≥ wk+1 ≥ · · · ≥ w|S0| in S′′0 . To
see (2), note that, for any numbers x1, x2 and x3, we
have x1 + min(x2, x3) = min(x1 + x2, x1 + x3), and
x1 − min(x2, x1) ≥ 0. So, for 1 ≤ j < k, w′′j − w′′j+1 =
wj−min(δ, wj−wk+1)−wj+1+min(δ, wj+1−wk+1) =
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wj−wj+1+min(δ, wj+1−wk+1)−min(δ, wj−wk+1) =
min(wj−wj+1+δ, wj−wk+1)−min(δ, wj−wk+1) ≥ 0;
furthermore, w′′k − wk+1 = wk − min(δ, wk − wk+1) −
wk+1 = wk − wk+1 −min(δ, wk − wk+1) ≥ 0.

From (1) and (2), we easily see that wmax(S
′
0) +

wmax(S
′′
0 ) = min(δ, w1 − wk+1) + w′′1 = min(δ, w1 −

wk+1) + w1 −min(δ, w1 − wk+1) = w1 = wmax(S0).
Therefore, if unit IS propagation involving the ISs

S1, S2, . . . , Sr removes the most weighted vertices of an
IS S0, we can split the weights to obtain a conflicting
subset of ISs {S′0, S′1, S′2, . . . , S′r}, and a subset of ISs
{S′′0 , S′′1 , S′′2 , . . . , S′′r } from which further conflicts can be
detected.

Algorithm 4 implements the function UP&Split which
performs unit IS propagation in a set of ISs Π ∪
{{bi}}. Every time an empty IS is produced or the
most weighted vertices of an IS are removed, it calls
the function split(S, δ) to split each involved IS S into
two ISs S′ and S′′ as follows. Let S = {uw1

1 , . . . , u
w|S|
|S| }

with w1 ≥ · · · ≥ wk ≥ δ ≥ wk+1 ≥ · · · ≥ w|S|, split(S, δ)
returns S′ = {uδ

1, . . . , u
δ
k, u

wk+1

k+1 , . . . , u
w|S|
|S| } and S′′ =

{uw1−δ
1 , . . . , uwk−δ

k }. In other words, each weight wi

greater than δ is split into δ and wi − δ, and each weight wi

not greater than δ remains in S′. Observe that wmax(S) =
wmax(S

′) + wmax(S
′′). As a result, Algorithm 4 obtains

a subset of conflicting ISs and continues applying unit IS
propagation to other ISs. Note that the sum of the maximum
weights of the ISs is not changed by the splittings.

Finally, Algorithm 4 transforms Π∪{{bi}} into Π1∪Π2∪
. . .∪Πp, where each Πj = {Sj1, Sj2, . . . , Sj|Πj |}, 1 ≤ j ≤
p, is a subset of ISs formed by some vertices occurring in
Π ∪ {{bi}}, and each Πj has an associated weight function
wj . The transformation fulfills the following conditions:

1. For each Πj , 1 ≤ j ≤ p, Sjk ∩ Sjk′ = ∅ if k �= k′.

2. For each vertex v ∈ V (Π ∪ {{bi}}), the set of vertices
occurring in Π ∪ {{bi}}, w(v) =

∑p
j=1 w

j(v), where
w is the weight function of G, wj is the weight function
associated with Πj , and wj(v) = 0 if v �∈ V (Πj).

3.
∑|Π|

j=1 wmax(Dj) + w(bi) =
∑p

j=1

∑|Πj |
k=1 w

j
max(Sjk).

4. For each j, 1 ≤ j < p, Πj is a set of conflicting ISs, and
wj

max(Sj1) = wj
max(Sj2) = · · · = wj

max(Sj|Πj |).

Let C be a maximum weight clique of G[V (Π∪{{bi}})],
and let UBj be an upper bound of the weight of C us-
ing the weight function wj . Since w(C) =

∑p
j=1 w

j(C)

(Condition 2) and wj(C) ≤ UBj , it holds that w(C) ≤∑p
j=1 UBj . By Condition 4, UBj ≤ (|Πj | − 1) ×

wj
max(Sj1) for each j < p. Hence, w(C) ≤ ∑p−1

j=1(|Πj | −
1)×wj

max(Sj1)+
∑|Πp|

k=1 w
p
max(Spk) =

∑|Π|
j=1 wmax(Dj)+

w(bi)−
∑p−1

j=1 w
j
max(Sj1) by Condition 3, which is the im-

proved upper bound ub of w(C) returned by UP&Split to-
gether with Π1 ∪Π2 ∪ . . . ∪Πp.

If ub ≤ t, bi is removed from B and is added to A. Then,
the reasoning on bi−1 is performed using Πp ∪ {{bi−1}}.

Algorithm 4: UP&Split(G, Π, ub, t)
Input: G = (V,E,w), Π = {D1, D2, . . . , D|Π|} is a

set of ISs, ub and t are positive integer
Output: the improved ub and transformed Π

1 begin
2 Δ ← ∅;
3 while there is a non-marked unit IS {v} in Π do
4 remove vertices non-adjacent to v from their IS;
5 if there is a non-marked empty IS S0 then
6 restore all the removed vertices into their IS;
7 Let S1, S2, . . . , Sr be the ISs responsible of

removing all the vertices of S0;
8 δ ← min(wmax(S0), . . . , wmax(Sr));
9 for each IS Sj in {S0, S1, S2, . . . , Sr} do

10 (S′j , S
′′
j ) ← split(Sj , δ);

11 Δ ← Δ ∪ {S′0, S′1, . . . , S′r};
12 Π ← (Π \ {S0, . . . , Sr}) ∪ {S′′0 , . . . , S′′r };
13 ub ← ub− δ;

14 else if there is a non-marked IS S0 in which the
k most weighted vertices are removed then

15 Let S0 = {uw1
1 , . . . , uwk

k , . . . , u
w|S0|
|S0| } with

w1 ≥ · · · ≥ wk ≥ wk+1 ≥ · · · ≥ w|S0|;
16 Let uw1

1 , . . . , uwk

k be the k most weighted
vertices removed from S0;

17 β ← w1 − wk+1;
18 restore all the removed vertices into their IS;
19 Let S1, S2, . . . , Sr be the ISs responsible of

removing uw1
1 , . . . , uwk

k from S0;
20 δ ← min(β,wmax(S1), . . . , wmax(Sr));
21 γ ← wk+1;
22 S′0 ← {umin(δ,w1−γ)

1 , . . . , u
min(δ,wk−γ)
k };

23 Let w′′j be wj −min(δ, wj − γ) (1≤j≤k);

24 S′′0 ← {uw′′
1

1 , . . . , u
w′′

k

k , u
wk+1

k+1 , . . . , u
w|S0|
|S0| };

25 for each IS Sj in {S1, S2, . . . , Sr} do
26 (S′j , S

′′
j ) ← split(Sj , δ);

27 Δ ← Δ ∪ {S′0, S′1, . . . , S′r};
28 Π ← (Π \ {S0, . . . , Sr}) ∪ {S′′0 , . . . , S′′r };
29 ub ← ub− δ;
30 if ub ≤ t then
31 mark all ISs in Δ; break;

32 restore all the removed vertices into their IS;
33 return (ub,Δ ∪Π);

Note that Π1 ∪Π2 ∪ . . .∪Πp−1 is not used for reasoning on
bi−1 in this case, because this set is formed by all the con-
flicting subsets of ISs used to remove bi and are marked as
such. If ub > t, bi is not removed from B, Π is not trans-
formed, and Π ∪ {{bi−1}} is used for reasoning on bi−1.

GetBranches performs IS splitting incrementally. It first
performs IS splitting in Π∪{{b|B|}}, obtaining an improved
upper bound ub and a set Π′ of ISs; If ub ≤ t, it performs IS
splitting in Π′ ∪ {{b|B|−1}}, and so on. The approach here
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is different from the BnB MWC algorithm MWCLQ (Fang,
Li, and Xu 2016). MWCLQ, at every search tree node, en-
codes G = (V,E,w) to a so-called LW-MaxSAT instance φ
and performs MaxSAT reasoning to split the soft clauses in
φ using two sophisticated inference rules called δ-rule and
(k, δ)-rule, to compute an upper bound of wv(G). MaxSAT
reasoning in MWCLQ is not incremental and is not used
for reducing the set of branching vertices, because it en-
codes the whole G into φ and considers simultaneously all
the clauses of φ. If the computed upper bound of wv(G) is
not better than the weight of the best clique found so far,
the effort spent in MaxSAT reasoning is useless. However,
GetBranches does not encode G to MaxSAT and begins IS
splitting from a part of G, which is particularly effective on
large graphs, because B is generally significantly reduced,
even if wv(G) is greater than the weight of the best clique
found so far.

Algorithm 5: WLMC(G), a BnB algorithm for MWC
Input: G = (V,E,w)
Output: a maximum weight clique Cmax of G

1 begin
2 (C0, O0, G′) ← Initialize(G, 0);
3 Cmax ← C0, V ′ ← the vertex set of G′;
4 order V ′ w.r.t. the initial ordering O0;
5 for i:= |V ′| to 1 do
6 P ← Γ(vi)∩{vi+1,vi+2,. . .,v|V ′|};
7 if w(P ) + w(vi) > w(Cmax) then
8 (C ′0, O′0, G′′) ←
9 Initialize(G[P ], w(Cmax)− w(vi));

10 if w(C ′0) + w(vi) > w(Cmax) then
11 Cmax ← C ′0∪{vi};
12 C ′ ← SearchMaxWClique(G′′, Cmax,
13 {vi}, O′0);
14 if w(C ′) > w(Cmax) then Cmax ← C ′;

15 return Cmax;

Algorithm WLMC

Algorithm 5 describes WLMC. It combines the proce-
dures Initialize and SearchMaxWClique. Roughly speaking,
WLMC calls Initialize to preprocess both the input G and
the first-level subgraphs in the search tree, and then calls
SearchMaxWClique to recursively search for a maximum
weight clique in the reduced subgraphs.

WLMC first calls Initialize(G, 0) (the initial lb of
ωv(G) is 0) to derive an initial clique C0, an initial or-
dering O0 and a reduced subgraph G′, and instantiates
Cmax with the initial clique C0. Then, WLMC unrolls
the first level subgraphs induced by the set of candidates
Γ(vi)∩{vi+1, . . ., v|V ′|}, denoted by P , for i = |V ′| to 1
respecting the initial vertex ordering O0. If w(P )+w(vi) is
not greater than w(Cmax), then a clique of weight greater
than w(Cmax) cannot be found in G[P ] and the search in
G[P ] is pruned. Otherwise, WLMC calls Initialize(G[P ],
w(Cmax)-w(vi)) to compute an initial clique C ′0 of G[P ], a

vertex ordering O′0 and a reduced subgraph G′′ of G[P ]. Fi-
nally, SearchWMaxClique is called to recursively search for
a clique C ′ containing vi, of weight greater than w(Cmax),
in the subgraph G′′, and updates Cmax with C ′ if w(C ′) is
greater than w(Cmax).

Since G is large, the first level subgraphs may still con-
tain a lot of vertices. With a growing lower bound w(Cmax)
of ωv(G), the first level subgraphs can be further reduced,
which is useful to speed up the search in SearchWMax-
Clique. Moreover, re-ordering the vertices in the subgraphs
near the root of the search tree was showed to be very effec-
tive in BnB MC algorithms (Konc and Janezic 2007). This is
the rationale behind also applying Initialize to the first-level
subgraphs.

Empirical Investigation

We empirically evaluated WLMC and compared it with
some of the most competitive exact and heuristic MWC al-
gorithms (also called solvers). WLMC was implemented in
C and compiled using GNU gcc -O3. Its source code is avail-
able at http://home.mis.u-picardie.fr/˜cli/EnglishPage.html.
Experiments were performed on an AMD Opteron CPU
2435@2.6GHz under Linux with 32GB memory.

In the experiments, we compared the following solvers:
Cliquer: It is an exact solver for both MC and MWC (Os-

tergard 2001; 2002). We used its latest version
(http://users.tkk.fi/pat/cliquer.html), released in 2010.

MWCLQ: It is one of the best exact MWC solvers, which
applies a MaxSAT reasoning variant to compute a tighter
UB of ωv(G) at each search tree node (Fang, Li, and Xu
2016) to reduce the search space.

LSCC+BMS: It is a very recent heuristic MWC solver,
which uses a heuristic, called Best from Multiple Selec-
tion (BMS), to improve the performance in large sparse
graphs (Wang, Cai, and Yin 2016).

FastWClq: It is a yet more recent heuristic MWC solver,
which interleaves between clique construction and graph
reduction, and can prove the optimality of its solutions in
some cases (Cai and Lin 2016).
The source code of the last three solvers was provided by

their authors, and compiled using their Makefiles.
In the first experiments, we considered 187 real-world

graphs from the Network Data Repository (Rossi and Nes-
reen 2015), available at http://networkrepository.com, in-
cluding the 86 and 90 graphs used to evaluate LSCC+BMS
and FastWClq in (Wang, Cai, and Yin 2016; Cai and Lin
2016). Weights were assigned to vertices as in (Cai and Lin
2016). For WLMC, LSCC+BMS and FastWClq, Table 1
shows their best solutions and runtimes in seconds (includ-
ing the preprocessing and search times, not including the
time for reading the input graphs). For heuristic solvers, 10
independent runs with different seeds were performed for
each graph, each run finding a solution sol that is the best
in this run. The mean time (avgt.) to reach sol over the 10
runs, as well as the best quality sol (best) over the 10 runs, is
showed. The cutoff time was set to 1000s, except for 6 hard
graphs whose limit was 5 hours.
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For lack of space, we exclude 135 graphs that are solved
by WLMC within 3s and report results for the remaining 52
graphs, whose number of vertices ranges from 8K to 59M.
The best times are in bold (for heuristic solvers, times are
not in bold if the best weight found is not the optimum).

WLMC finds and proves the optimum for all the
graphs. Among the 52 instances reported in Table 1, Fast-
WClq proves the optimum for 8 instances. Nevertheless,
LSCC+BMS and FastWClq do not find the optimum on 31
and 21 instances, respectively. For friendster, whose opti-
mum is 5511, the best solution is 2885 for both heuristic
solvers; and for soc-sinaweibo, whose optimum is 4759, the
best solutions of LSCC+BMS and FastWClq are 3555 and
1424, respectively. For the 6 hardest instances, LSCC+BMS
and FastWClq do not find any optimum in 5h.

In terms of runtimes, WLMC needs less time on 44 in-
stances. For soc-dogster, WLMC needs 8.03s, which is 41
and 72 times faster than LSCC+BMS (332.9s) and Fast-
WClq (585.3s), and for dbpedia-link, WLMC needs 54.97s,
which is 8 and 15 times faster than LSCC+BMS (442.7s)
and FastWClq (839.3s). Moreover, the heuristic solvers fail
to find the optimum of these graphs. In general, WLMC is
faster than LSCC+BMS and FastWClq. These results indi-
cate that WLMC is an extremely competitive exact solver.

We also compared WLMC with two exact solvers: Cli-
quer and MWCLQ. While WLMC solved all the 187 graphs,
MWCLQ did not find any optimum for the graphs in Ta-
ble 1 and Cliquer only found 5 optimums (rec-dating, rec-
libimseti-dir, rec-movielens, scc twitter-copen, sc-TSOPF-
RS-b2383-c1) for the graphs in Table 1. Although Cliquer
and MWCLQ are efficient on small and medium graphs,
they are not suitable for large graphs.

We evaluated the impact of preprocessing the first level
subgraphs and of incremental vertex-weight splitting in
WLMC by comparing it with the following variants:

WLMC\prep1: It is WLMC without preprocessing the
first level subgraphs. Line 8 in Algorithm 5, which calls
the procedure Initialize, is removed.

WLMC\UP&Split: It is WLMC without incremental
vertex-weight splitting. UP&Split is removed from Get-
Branches (Algorithm 3).

Table 2 shows the search tree size and the search time
of WLMC, WLMC\prep1 and WLMC\UP&Split on the
graphs of Table 1 with solving times beyond 40s, and using
the same cutoff times. With preprocessing and incremental
vertex-weight splitting, the search tree size of WLMC is al-
most always the smallest. The search time of WLMC is com-
parable with that of WLMC\prep1 and WLMC\UP&Split
on easy graphs. However, WLMC is substantially faster than
WLMC\prep1 and WLMC\UP&Split on hard graphs. In
particular, both WLMC\prep1 and WLMC\UP&Split fail
to solve the 6 hard graphs within the cutoff times. In addi-
tion, WLMC is 13 and 18 times faster than WLMC\prep1
and WLMC\UP&Split, respectively, for soc-flickr-und.

Table 3 shows the effect of the procedure Initialize. For
each graph G of Table 2, Table 3 reports ωv(G), the weight
of the initial clique C0 found by Initialize at the root of the
search tree (line 2 of Algorithm 5), the ratio rt of the number

Table 1: Comparison of WLMC with two heuristic algo-
rithms LSCC+BMS and FastWClq. The optimum and best
times are in bold. ’-’ means that LSCC+BMS or FastWClq
did not find the displayed solution in all runs.

Instance WLMC LSCC+BMS FastWClq
#cutoff=1000s ωv(G) time best avgt. best avgt.
aff-flickr-user-groups 1720 9.23 1720 10.95 1640 371.1
aff-orkut-user2groups 971 764.7 965- 373.0 831 445.4
bn-human-BNU 1 00
25865 session 2-bg

19189 204.6 13604- 571.7 19189 105.7

channel-500x100
x100-b050

796 13.47 796 3.75 796 1.04

dbpedia-link 5062 54.97 4396- 442.7 4156- 839.3
delaunay n22 796 3.36 793- 172.9 796 3.42
delaunay n23 798 5.24 794- 481.9 798 6.71
delaunay n24 797 11.86 790- 461.5 797 12.95
friendster 5511 13.02 2885- 437.8 2885 134.6
hugebubbles-00020 400 9.87 400- 83.62 400 10.37
hugetrace-00010 400 4.75 399 18.42 400 5.42
hugetrace-00020 400 7.72 400- 160.0 400 7.19

inf-europe osm 646 13.24 594- 280.4 646 15.12
inf-germany osm 597 4.44 579- 550.0 597 3.65

inf-road-usa 766 11.51 597- 423.9 766 14.73
rec-dating 1699 37.42 1699 1.50 1459 612.7
rec-epinions 1054 10.37 1054 20.59 1028 594.4
rec-libimseti-dir 1938 32.17 1938 3.26 1768 415.5
rec-movielens 3777 63.57 3777 10.64 3288- 740.4
rgg n 2 23 s0 2407 10.61 2192- 574.2 2407 16.60
rgg n 2 24 s0 2514 23.75 2177- 373.5 2514 64.84
scc twitter-copen 58699 95.89 58699 2.50 58699 0.43

sc-rel9 572 3.43 572- 122.4 572 21.35
sc-TSOPF-RS
-b2383-c1

960 55.46 960- 513.9 960- 897.2

soc-BlogCatalog 4803 6.13 4803- 325.5 4803 170.1
soc-buzznet 2981 3.90 2981 31.21 2981 98.67
soc-digg 5303 10.23 5283- 549.6 5303 113.8
soc-dogster 4418 8.03 4356- 332.9 4404- 585.3
socfb-A-anon 2872 9.99 2872- 400.2 2872 57.75
socfb-B-anon 2662 9.30 2620- 324.7 2662 112.9
socfb-uci-uni 1045 27.30 995- 642.1 1045 110.0
soc-flickr 7083 8.94 7050- 298.7 7083 38.94
soc-flickr-und 10127 329.8 9935- 311.0 10115 921.3
soc-livejournal 21368 3.25 17375- 532.7 21368 14.28
soc-livejournal-
user-groups

1054 133.1 1054- 440.6 878- 849.5

soc-ljournal-2008 40432 14.96 37363- 368.6 40432 75.40
soc-orkut-dir 6147 95.34 6084- 629.5 6147 133.5
soc-orkut 5452 100.2 5452- 524.6 5452 120.4
soc-pokec 3191 7.19 3191- 592.8 3191 8.02
soc-sinaweibo 4759 90.57 3555- 469.2 1424- 703.5
soc-twitter-higgs 8039 6.81 8039- 305.2 5383 276.2
tech-ip 668 17.47 668- 573.8 123 1.03
web-baidu-baike 3814 7.73 2651- 486.8 3814 101.9
web-wikipedia-growth 4741 22.69 4741- 449.9 4741 269.0
web-wikipedia link it 89947 190.3 89947- 322.3 2202 115.3
wikipedia link en 4624 14.77 1856- 488.8 4624 195.5
#cutoff=5h for the following 6 hard instances
aff-digg 3836 1288 3776- 5371 3353- 11882
bio-human-gene1 134713 15686 134292- 9314 134362- 7273
bio-human-gene2 135310 13226 135152- 9018 135059- 1768
bio-mouse-gene 59952 13787 59921- 7112 59855- 2930
bn-human-BNU 1 0
025865 session 1-bg

20598 2237 19539 2845 20214- 8441

twitter mpi 13524 4117 12939- 7162 12145- 16218

of vertices in the reduced graph G′ to the number of vertices
in the original graph, and the mean ratio rt′ of the number
of vertices in the reduced graphs G′′ of the first level (line 8
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Table 2: Search tree sizes in thousands and search times in
seconds of WLMC, WLMC\prep1 and WLMC\UP&Split.

Instance
WLMC

WLMC
\prep1

WLMC
\UP&Split

tree time tree time tree time
aff-digg 20459 1288 26868 1670 156682 1520
aff-orkut-user2groups 3458 764.7 3446 596.8 3470 859.6
bio-human-gene1 2601 15686 - - - -
bio-human-gene2 2817 13226 - - - -
bio-mouse-gene 5722 13787 - - - -
bn-human-BNU 1
0025865 session 1-bg

786.1 2237 - - - -

bn-human-BNU 1
0025865 session 2-bg

421.0 204.6 - - - -

dbpedia-link 617.1 54.97 622.7 43.36 656.5 60.54
rec-movielens 427.2 63.57 635.2 58.12 1752 54.27

sc-TSOPF-RS-b2383-c1 237.7 55.46 163.1 56.66 245.3 32.77

scc twitter-copen 217.2 95.89 240.9 107.8 217.2 42.41

soc-flickr-und 741.1 329.8 5570 4274 212938 5970
soc-livejournal-
user-groups

2344 133.1 2355 99.20 2594 110.5

soc-orkut 613.2 100.2 631.6 66.83 741.0 89.38
soc-orkut-dir 538.9 95.34 608.5 77.63 773.2 88.15
soc-sinaweibo 667.4 90.57 711.2 94.08 710.2 99.22
twitter mpi 4133 4117 - - - -
web-wikipedia link it 203.4 190.3 203.4 195.8 203.4 98.58

Table 3: The effect of preprocessing: C0 is the initial clique
found at the root, rt is the ratio of the number of vertices
in the reduced G′ at the root to the number of vertices in
the original G, and rt′ is the mean ratio of the number of
vertices in the reduced G′′ at the first level to the number of
vertices in G[P ].

Instance ωv(G) w(C0) rt rt′

aff-digg 3836 2721 0.168 0.380
aff-orkut-user2groups 971 213 0.849 0.019
bio-human-gene1 134713 131692 0.283 0.949
bio-human-gene2 135310 132080 0.353 0.953
bio-mouse-gene 59952 44472 0.403 0.573
bn-human-BNU 1 00
25865 session 1-bg

20598 16749 0.074 0.517

bn-human-BNU 1 00
25865 session 2-bg

19189 8411 0.054 0.463

dbpedia-link 5062 1152 0.186 0.022
rec-movielens 3777 2167 0.949 0.381
sc-TSOPF-RS-b2383-c1 960 415 0.994 0.010
scc twitter-copen 58699 57995 0.090 0.918
soc-flickr-und 10127 6698 0.040 0.292
soc-livejournal-user-groups 1054 489 0.413 0.038
soc-orkut 5452 1898 0.756 0.071
soc-orkut-dir 6147 1170 0.862 0.079
soc-sinaweibo 4759 834 0.126 0.026
twitter mpi 13524 9101 0.033 0.192
web-wikipedia link it 89947 89539 0.003 0.987

of Algorithm 5) to the number of vertices in G[P ]. We can
see that the quality of C0 is good for several graphs and that
these graphs are significantly reduced at the root and the first
level of the search tree by the procedure Initialize.

We conducted additional experiments and compared the
quality of the solution found by WLMC, MWCLQ, Cliquer,

LSCC+BMS and FastWClq for large DIMACS graphs1

within 3600 seconds. These graphs have more than 1000
vertices. The original graphs are not weighted. We assign
weights to their vertices as in (Cai and Lin 2016). Table 4
shows the results. LSCC+BMS generally finds better solu-
tions than the other algorithms. WLMC is comparable to
MWCLQ and FastWClq, because WLMC finds better so-
lution than FastWClq and MWCLQ for five and six graphs
respectively, while FastWclq and MWCLQ find better solu-
tions than WLMC for six and four graphs respectively. Nev-
ertheless, while LSCC+BMS and FastWClq find an optimal
solution for six graphs, WLMC finds and proves an optimal
solution for seven graphs.

Table 4: Solution quality for DIMACS graphs with more
than 1000 vertices within 3600 seconds. Optimums marked
with ’*’.

Instance WLMC MWCLQ Cliquer LSCC+BMS FastWClq
C1000.9 7341 8471 1165 9072 8552
C2000.5 2466 2466 2466 2466 2449
C2000.9 7862 10034 529 10333 9516
C4000.5 2438 2698 1233 2792 2542
DSJC1000 5 2186* 2186* 2186* 2186* 2186*

MANN a45 34265* 34133 1276 34183 34121
MANN a81 111139 111033 195 111094 110481
hamming10-2 50512* 50512* 50512* 50512* 50512*

hamming10-4 4812 4614 735 5129 4990
keller6 4760 6316 511 7360 5772
p hat1000-1 1514* 1514* 1514* 1514* 1514*

p hat1000-2 5777* 5777* 5612 5777* 5777*

p hat1000-3 8086 7588 2417 8111 7967
p hat1500-1 1619* 1619* 1619* 1619* 1619*

p hat1500-2 7360 7104 2897 7360 7355
p hat1500-3 9846 8449 1497 10278 9875
san1000 1716* 1716* 929 1716* 1716*

An important application of MWC is to solve the winner
determination problem (WDP) in combinatorial auctions,
because WDP can naturally be formulated as MWC (Fang,
Li, and Xu 2016). We compared WLMC with MWCLQ, Cli-
quer, LSCC+BMS and FastWClq on the WDP benchmark
provided in (Lau and Goh 2002), which has been widely
used to test WDP algorithms (Fang, Li, and Xu 2016). The
benchmark contains 500 instances with up to 1500 items and
1500 bids, and can be divided into 5 groups by the item num-
ber and the bid number. Each group contains 100 instances
labeled as REL–m–n, where m is the number of items and n
is the number of bids. When formulated as MWC, the graphs
contain up to 1500 vertices with density from 0.06 to 0.33.

Table 5 shows the average performance of the five MWC
solvers for the five groups of the WDP instances. WLMC
and MWCLQ are the only solvers able to quickly find and
prove the optimal solution of all the instances. The two
heuristic algorithms LSCC+BMS and FastWClq cannot find
any optimal solution for some graphs within the cutoff time.

1available at http://cs.hbg.psu.edu/txn131/clique.html
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Table 5: Mean runtimes in seconds for five groups of WDP
instances, ’#’ stands for the number of instances for which
an optimal solution is found by a solver within 500 seconds.

Group
WLMC MWCLQ Cliquer

LSCC
+BMS

Fast
WClq

# time # time # time # time # time
REL-500-1000 100 117 100 97.1 20 377 88 101 0 -
REL-1000-1000 100 2.81 100 2.44 100 5.58 100 4.62 77 103
REL-1000-500 100 0.11 100 0.12 100 0.11 100 0.23 100 2.08
REL-1000-1500 100 2.26 100 2.48 100 4.46 100 8.25 78 130
REL-1500-1500 100 3.24 100 3.71 100 5.14 100 5.00 83 108

Conclusions

We proposed WLMC, a new exact MWC algorithm that is
very effective on large graphs because it combines an ef-
ficient preprocessing and incremental vertex-weight split-
ting in a BnB scheme. WLMC greatly outperforms relevant
heuristic and exact solvers on practical instances, and the
reported results refute the prevailing hypothesis that exact
algorithms are less adequate for large graphs.
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