
A Theoretical Analysis of First Heuristics
of Crowdsourced Entity Resolution

Arya Mazumdar and Barna Saha
College of Information & Computer Sciences

University of Massachusetts Amherst
{arya,barna}@cs.umass.edu

Abstract

Entity resolution (ER) is the task of identifying all records
in a database that refer to the same underlying entity, and
are therefore duplicates of each other. Due to inherent am-
biguity of data representation and poor data quality, ER is
a challenging task for any automated process. As a remedy,
human-powered ER via crowdsourcing has become popular
in recent years. Using crowd to answer queries is costly and
time consuming. Furthermore, crowd-answers can often be
faulty. Therefore, crowd-based ER methods aim to minimize
human participation without sacrificing the quality and use a
computer generated similarity matrix actively. While, some of
these methods perform well in practice, no theoretical analysis
exists for them, and further their worst case performances do
not reflect the experimental findings. This creates a disparity in
the understanding of the popular heuristics for this problem. In
this paper, we make the first attempt to close this gap. We pro-
vide a thorough analysis of the prominent heuristic algorithms
for crowd-based ER. We justify experimental observations
with our analysis and information theoretic lower bounds.

1 Introduction
Entity resolution (ER, record linkage, deduplication, etc.)
seeks to identify which records in a data set refer to the
same underlying real-world entity (Fellegi and Sunter 1969;
Elmagarmid, Ipeirotis, and Verykios 2007; Getoor and
Machanavajjhala 2012; Larsen and Rubin 2001; Christen
2012). Our ability to represent information about real-world
entities in very diverse ways makes this a complicated prob-
lem. For example, collecting profiles of people and busi-
nesses, or specifications of products and services from web-
sites and social media sites can result in billions of records
that need to be resolved. These entities are identified in a wide
variety of ways, complicated further by language ambiguity,
poor data entry, missing values, changing attributes and for-
matting issues. ER is a fundamental task in data processing
with wide-array of applications. There is a huge literature on
ER techniques; many include machine learning algorithms,
such as decision trees, SVMs, ensembles of classifiers, condi-
tional random fields, unsupervised learning etc. (see (Getoor
and Machanavajjhala 2012) for a recent survey). Yet, ER re-
mains a demanding task for any automated strategy yielding
low accuracy.
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ER can be cast as a clustering problem. Consider a set of n
elements V that must be clustered into k disjoint parts Vi, i =
1, 2, . . . , k. The true underlying clusters Vi ∈ [n], i ∈ [1, k]
are unknown to us, and so is k. Each of these Vis represents
an entity. Each element v ∈ V has a set of attributes. A
similarity function is used to estimate the similarity of the
attribute sets of two nodes u and v. If u and v represent the
same entity, then an ideal similarity function will return 1, and
if they are different, then it will return 0. However, in practice,
it is impossible to find an ideal similarity function, or even
a function close to it. Often, some attribute values may be
missing or incorrect, and that leads to similarity values that
are noisy representation of the ideal similarity function. Any
automated process that uses such similarity function is thus
prone to make errors. To overcome this difficulty, a relatively
recent line of works propose to use human knowledge via
crowdsourcing to boost accuracy of ER (Davidson et al. 2014;
Firmani, Saha, and Srivastava 2016; Verroios and Garcia-
Molina 2015; Gruenheid et al. 2015; Wang et al. 2012; 2013;
Vesdapunt, Bellare, and Dalvi 2014; Yi et al. 2012; Whang,
Lofgren, and Garcia-Molina 2013). Human based on domain
knowledge can match and distinguish entities with complex
representations, where automated strategies fail.
Motivating example. Consider the following illustrative ex-
ample shown in Figure 1. The Walt Disney, commonly known
as Disney, is an American multinational media and enter-
tainment company that owns and licenses 14 theme parks
around the world. 1 Given the six places (r1) Disney World,
(r2) Walt Disney World Resort, (r3) Walt Disney Theme
Park, Orlando, (r4) Disneyland, (r5) Disneyland Park,
humans can determine using domain knowledge that these
correspond to two entities: r1, r2, r3 refer to one entity, and
r4, r5 refer to a second entity.

Answering queries by crowd could be time-consuming and
costly. Therefore, a crowd based ER strategy must attempt to
minimize the number of queries to the oracle while resolving
the clusters exactly. Having access to ideal crowd answers, a
good ordering of comparing record pairs is (r1, r2), (r2, r3),
(r4, r5), (r1, r5). After the first three pairs have been com-
pared, we can safely infer as “matching” the remaining pair
(r1, r3) leveraging transitive relations. After the last pair in
the ordering has been compared, we can safely infer as “non-

1https://en.wikipedia.org/wiki/The_Walt_Disney_Company
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Figure 1: Record pairs connected by green (resp. red) edges are “matching” (resp. “non-matching”) in the real world. The
numbers on the edges indicate the ordering of queries. While querying strategy of (a) only results in 4 queries, the querying
strategy of (b) results in 9 queries.

matching” all the remaining pairs (r1, r4), (r2, r4), (r2, r5),
(r3, r4), (r3, r5) in the database.

The work by Wang et al. (Wang et al. 2013) was among the
first few (Wang et al. 2012; Demartini, Difallah, and Cudré-
Mauroux 2012; Whang, Lofgren, and Garcia-Molina 2013)
to propose the notion of hybrid human-machine approach for
entity resolution. Moreover, it is the first paper to leverage
the transitive relationship among the entities to minimize the
number of queries which has since become a staple in every
follow-up work on this topic (Firmani, Saha, and Srivastava
2016; Verroios and Garcia-Molina 2015; Gruenheid et al.
2015; Vesdapunt, Bellare, and Dalvi 2014). Assuming there
is an oracle, an abstraction of a crowd-sourcing platform that
can correctly answer questions of the form “Do records u and
v refer to the same entity?”, they presented a new algorithm
for crowd-sourced ER. To minimize the number of queries to
the crowd oracle, Wang et al. utilizes the transitive relation
in which known match and non-match labels on some record
pairs can be used to automatically infer match or non-match
labels on other record pairs. In short, the heuristic algorithm
by Wang et al. does the following: it orders the tuples (record
pairs/edges) in nonincreasing order of similarity, and query
any edge according to that order whenever the right value
of that edge cannot be transitively deduced from the already
queried/inferred edges so far.

While the crowd-sourcing algorithm of Wang et al. works
reasonably well on real datasets, theoretical guarantees for
it was not provided. However, in (Vesdapunt, Bellare, and
Dalvi 2014), Vesdapunt et al. showed that in some instances
this algorithm can only give an Θ(n) approximation, that is
when an optimum algorithm may require c queries, Wang et
al.’s algorithm can require Θ(cn) queries.

Vesdapunt et al. proposed an algorithm that proceeds in
the following iterative manner. In each round, an element to
be clustered is compared with one representative of all the
existing clusters. The order of these comparisons is defined
by a descending order of the similarity measures. As soon
as a positive query result is found the element is assigned
to the corresponding cluster and the algorithm moves to the
next round with a new element. It is easy to see that in the
worst case the number of queries made by the algorithm is
nk, where n is the number of elements and k is the num-

ber of clusters. It also follows that this is at least an O(k)
approximation.

Note that (Wang et al. 2013; Vesdapunt, Bellare, and Dalvi
2014) consider the answers of queries are correct as an ideal
crowd abstraction - this can often be guaranteed via majority
voting. But it is unclear that how the quality of the similarity
measurements affects the total number of queries. Indeed, in
typical datasets, the performances of the algorithms of Wang
et al. and Vesdapunt et al. are quite similar, and they are much
better than their worst case guarantees that do not take into
account the existence of any meaningful similarity measures.
This means the presence of the similarity measures helps
reduce the query complexity significantly. Is there a way to
theoretically establish that and come up with guarantees that
match the experimental observations?

It is of paramount interest to characterize the query com-
plexity (number of questions asked to the crowd) of these
popular heuristics and come up with algorithms that minimize
such complexity. The query complexity is directly propor-
tional to the overall cost of a crowd-based algorithm, due
to the fact that crowd questions are time-consuming and in
many times involve compensations. Designing a strategy that
would minimize the query complexity can directly be seen
as alternatives to active learning problem with minimum
labeling requirements (Sarawagi and Bhamidipaty 2002;
Bellare et al. 2012). From the perspective of lower bounding
the query complexity, ER can be seen as a reinforcement
learning problem. Indeed, in each step of assigning a record
to one of the underlying entities, a query must be made wisely
so that under any adversarial configurations, the total number
of queries remain small.
Contributions. In this paper we assume the following model
for the similarity measurements. Let W = {wu,v}(u,v)∈V×V

denote the matrix obtained by pair-wise similarity computa-
tion, where wu,v is a random variable drawn from a proba-
bility distribution fg if u and v belong to the same cluster
and drawn from a probability distribution fr otherwise. The
subscripts of fr and fg are chosen to respectively signify
a “red edge” (or absence of a link) and a “green edge” (or
presence of a link). Note that, this model of similarity matrix
is by no means the only possible; however it captures the
essential flavor of the problem.
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Our main contribution in this paper is to provide a theoreti-
cal analysis of query complexities of the two aforementioned
heuristics from (Wang et al. 2013; Vesdapunt, Bellare, and
Dalvi 2014). Our analysis quantifies the effect of the presence
of similarity measures in these algorithms, establishes the
superiority between these algorithms under different criteria,
and derives the exact expression of query complexity under
some fundamental probability models.

Next, to establish the near-optimality or sub-optimality
of the above heuristics, we compare our results with an in-
formation theoretic lower bound recently proposed by us
(Mazumdar and Saha 2016). As a corollary to the results
of (Mazumdar and Saha 2016), it can be seen that the in-
formation theoretic lower bound depends on the Hellinger
divergence between fg and fr. More interestingly, the quality
of the similarity matrix can be characterized by the Hellinger
divergence between fg and fr as well.

Finally, we show that the experimental observations of
(Wang et al. 2013; Vesdapunt, Bellare, and Dalvi 2014) agree
with our theoretical analysis of their algorithms. Moreover,
we conduct a thorough experiment on the bibliographical
cora (McCallum 2004) dataset for ER and several synthetic
datasets to validate the theoretical findings further.

2 System model and techniques

2.1 Crowdsourced Entity Resolution Crowd-ER
Consider a set of elements V ≡ [n] which is a disjoint union
of k clusters Vi, i = 1, . . . , k, where k and the subsets Vi ⊆
[n] are unknown. The crowd (or the oracle) is presented with
an element-pair (u, v) ∈ V × V for a query, that results in a
binary answer denoting the event u, v belonging to the same
cluster. Note that, this perfect oracle model had been used in
the prominent previous works by Wang et al. and Vesdapunt
et al.(2013; 2014).

We can assume that with probability 0 < pi < 1, the
crowd gives a wrong answer to the ith query. However, with
resampling the ith query Ω(logn) times, that is by asking
the same ith query to Ω(log n) different users and by taking
the majority vote, we can drive the probability pi to nearly
0 and return to the model of perfect oracle. Note that we
have assumed independence among the resampled queries
over the index j, which can be justified since we are sam-
pling a growing (Ω(logn)) number of samples. Furthermore,
repetition of the same query to the crowd may not not lead
to reduction in the error probability, i.e., a persistent error.
Even in this scenario an element can be queried with multiple
elements from a same cluster to infer with certainty whether
the element belong to the cluster or not. These situations have
been covered in detail in our recent work (Mazumdar and
Saha 2016). Henceforth, in this paper, we only consider the
perfect oracle model. All our results hold for the faulty oracle
model described above with only an O(log n) blow-up in the
query complexity.

Consider W , an n× n similarity matrix, with the (u, v)th
entry wu,v a nonnegative random variable in [0, 1] drawn
from a probability density or mass function fg when u, v be-
long to the same cluster, and drawn from a probability density
or mass function fr otherwise. fg and fr are unknown.

The problem of Crowd-ER is to design a set of queries in
V × V , given V and W , such that from the answers to the
queries, it is possible to recover Vi, i = 1, 2, ..., k.

2.2 The two heuristic algorithms

The Edge ordering algorithm (Wang et al. 2013). In this
algorithm, we arrange the set V × V in non-increasing order
of similarity values wi,js. We then query sequentially ac-
cording to this order. Whenever possible we apply transitive
relation to infer edges. For example, if the queries (i, j) and
(j, l) both get positive answers then there must be an edge
(i, l), and we do not have to make the query (i, l). We stop
when all the edges are either queried, or inferred.

The Node ordering algorithm (Vesdapunt, Bellare, and
Dalvi 2014). In this algorithm, the empirical expected size
of the cluster containing element i, 1 ≤ i ≤ n, is first com-
puted as

∑
j wi,j . Then all the elements are ordered non-

increasingly according to the empirical expected sizes of the
clusters containing them. At any point in the execution, the
algorithm maintains at most k clusters. The algorithm selects
the next element and issues queries involving that element
and elements which are already clustered in non-increasing
order of their similarity, and apply transitivity for inference.
Therefore, the algorithm issues at most one query involving
the current node and an existing cluster. Trivially, this gives
an O(k)-approximation.

3 Information theoretic lower bound

Note that, in the absence of similarity matrix W , any optimal
(possibly randomized) algorithm must make Ω(nk) queries
to solve Crowd-ER. This is true because an input can always
be generated that makes Ω(n) vertices to be involved in Ω(k)
queries before they can be correctly assigned. However, when
we are allowed to use the similarity matrix, this bound can
be significantly reduced. Indeed, the following lower bound
follows as a corollary of the results of our previous work
(Mazumdar and Saha 2016).

Theorem 1. Given the number of clusters k and fg, fr,
any randomized algorithm that does not perform at least
Ω
(
min

{
k2

H2(fg,fr)
, nk

})
queries, will be unable to re-

turn the correct clustering with high probability, where
H2(fg, fr) ≡ 1

2

∫∞
−∞(

√
fg(x)−

√
fr(x))

2dx is the squared
Hellinger divergence between the probability measures fg
and fr.

The main idea of proving this lower bound already appears
in our recent work (Mazumdar and Saha 2016), and we give
a brief sketch of the proof below for the interested readers.
Strikingly, Hellinger divergence between fg and fr appears
to be the right distinguishing measure even for analyzing the
heuristic algorithms.

To show the lower bound we consider an input where one
of the clusters are fully formed and given to us. The remain-
ing k − 1 clusters each has size a =

⌊
1

8H2(fg,fr)

⌋
. We prove

the result through contradiction. Assume there exists a ran-
domized algorithm ALG that makes a total of o

(
k2

H(fg,fr)2

)
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queries and assigns all the remaining vertices to correct clus-
ters with high probability. However, that implies that the
average number of queries ALG makes to assign each of the
remaining elements to a cluster must be o(k).

Since there are k clusters, this actually guarantees the exis-
tence of an element that is not queried with the correct cluster
Vi it is from, and that completely relies on the W matrix
for the correct assignment. Now the probability distribution
(which is a product measure) of W , PW , can be one of two
different distributions, P ′

W and P ′′
W depending on whether

this vertex belong to Vi or not. Therefore these two distribu-
tions must be far apart in terms of total variation distance for
correct assignment.

However, the total variation distance between P ′
W and P ′′

W

‖P ′
W−P ′′

W ‖TV ≤ √
2H(P ′

W , P ′′
W ). But as both P ′

W , P ′′
W are

product measures that can differ in at most 2a random vari-
ables (recall the clusters are all of size a), we must have, using
the properties of the Hellinger divergence, H(P ′

W , P ′′
W ) ≤√

2aH(fg, fr)2 ≤ 1
2 . This means, ‖P ′

W − P ′′
W ‖TV ≤ 1√

2
,

i.e., the two distributions are close enough to be confused
with a positive probability - which leads to a contradiction.
Note that, in stead of recovery with positive probability, if
we want to ensure exact recovery of the clusters (i.e., with
probability 1) we must query each element at least once. This
leads to the following corollary.
Corollary 1. Any (possibly randomized) algorithm with the
knowledge of fg, fr, and the number of clusters k, must

perform at least Ω
(
n+ k2

H2(fg,fr)

)
queries, H(fg, fr) > 0,

to return the correct clustering exactly.

4 Main results: Analysis of the heuristics

We provide expressions for query complexities for both the
edge ordering and the node ordering algorithms. It turns out
that the following quantity plays a crucial role in the analysis
of both:

Lg,r(t) ≡
∫ 1

0

(∫ r

0

fg(y)dy
)t

fr(x)dx.

Theorem 2 (The Edge ordering). The query complexity for
Crowd-ER with the edge ordering algorithm is at most,

n+ min
1≤s≤n

[(k
2

)
s2 + n

k∑
i=1

|Vi|∑
�=s

�Lg,r

((�

2

))]
.

The proof of this theorem is provided in Section 5.
Theorem 3 (The Node ordering). The query complexity for
Crowd-ER with the node ordering algorithm is at most,

n+
k∑

i=1

|Vi|∑
s=1

min{k, (n− |Vi|)Lg,r(s)}.

The proof of this theorem is provided in Section 6.

4.1 Illustration: ε-biased Uniform Noise Model

We consider two distributions for fr and fg which are only
ε far in terms of total variation distance from the uniform

distribution. However, if we consider Hellinger distance, then
Dist-1 is closer to uniform distribution than Dist-2. These
two distributions will be used as representative distributions
to illustrate the potentials of the edge ordering and node
ordering algorithms. In both cases, substituting ε with 0,
we get uniform distribution which contains no information
regarding the similarities of the entries.

Dist-1. Consider the following probability density functions
for fr and fg , where x ∈ [0, 1], and 0 < ε < 1/2,

fr(x) =

{
(1 + ε) if x < 1

2

(1− ε) if x ≥ 1
2

fg(x) =

{
(1− ε) if x < 1

2

(1 + ε) if x ≥ 1
2
.

Note that
∫ 1

0
fr(x) dx =

∫ 1/2

0
(1+ ε) dx+

∫ 1

1/2
(1− ε) dx =

1. Similarly,
∫ 1

0
fg(x) dx = 1, that is they represent valid

probability density functions. We have, H2(fg, fr) = 1 −∫ 1

0

√
1− ε2dx = 1−√

1− ε2 ≈ ε2/2.

Dist-2. Now consider the following probability density func-
tions for fr and fg with 0 < ε < 1/2.

fr(x) =
1

1− ε
, 0 ≤ x ≤ 1− ε, fg(x) =

1

1− ε
, ε ≤ x ≤ 1.

Again,
∫ 1

0
fr(x) dx =

∫ 1−ε

0
1

(1−ε) dx = 1. Similarly,∫ 1

0
fg(x) dx =

∫ 1

ε
fg(x) dx = 1, that is they represent

valid probability density functions. We have, H2(fg, fr) =

1− ∫ 1−ε

ε
1

1−εdx = ε
1−ε ≈ ε.

We have the following results for these two distributions.
Proposition 1 (Lower bound). Any (possibly randomized)
algorithm for Crowd-ER, must make Ω(n + k2

ε2 ) queries
for Dist-1 and Ω(n+ k2

ε ) queries for Dist-2, to recover the
clusters exactly (with probability 1).

The proof of this theorem follows from Theorem 1, Corol-
lary 1, and by plugging in the Hellinger distances between
fg, fr in both cases.

The following set of results are corollaries of Theorem 2.
Proposition 2 (Uniform noise (no similarity informa-
tion)). Under the uniform noise model where fg, fr ∼
Unif [0, 1], the edge ordering algorithm has query complex-
ity O(nk log n

k ) for Crowd-ER.

Proof. Since fg = fr, the similarity matrix W amounts to
no information at all. We know that in this situation, one must
make O(nk) queries for the correct solution of Crowd-ER.

In this situation, a straight-forward calculation shows
that, Lg,r(t) = 1

t+1 . This means, ignoring the first n
term, from Theorem 2, the edge ordering algorithm makes
at most min1≤s≤n

[(
k
2

)
s2 + n

∑k
i=1

∑|Vi|
�=s �

2
�(�−1)+2

]
≤

min1≤s≤n

[
k2s2

2 + 2n
∑k

i=1

∑|Vi|
�=s

1
�−1

]
number of queries.

By bounding the harmonic series and using the concavity of
log, we have the number of queries made by the edge ordering
algorithm is at most min1≤s≤n

[
k2s2

2 + 2n
∑k

i=1 ln
|Vi|−1
s−2

]
≤ min1≤s≤n

[
k2s2

2 +2nk ln n−k
k(s−2)

]
= O(nk log n

k ), where

we have substituted s =
√

n/k.
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Proposition 3 (Dist-1). When fg, fr ∼ Dist-1, the edge or-
dering algorithm has query complexity O(nk(1− 2ε) log n

k )
for Crowd-ER.

Proof. The proof is identical to the above. For small ε, we
have Lg,r(t) ≈ 1−ε

(1+ε)(t+1) ≈ 1−2ε
t+1 (see, Section 8). The

algorithm queries at most O(nk(1− 2ε) log n
k ) edges.

Proposition 4 (Dist-2). When fg, fr ∼ Dist-2, the edge or-

dering algorithm has query complexity O
(
n+ k2 logn

ε

)
for

Crowd-ER.

Proof. For this case, we have Lg,r(t) ≤ e−ε(t+1)

t+1 (see, Sec-

tion 8). Choose s =
√

4 logn
ε + 1. Then using Theorem

2, n
∑k

i=1

∑|Vi|
�=s �Lg,r

((
�
2

)) ≤ n
∑k

i=1

∑|Vi|
�=s

2e
−ε(�2)
�−1 < 1.

Therefore, the number of queries is O
(
n+ k2 logn

ε

)
, match-

ing the lower bound within a log n factor.

For the Node-ordering algorithm, we have the following
result as a corollary of Theorem 3.
Proposition 5 (Node-Ordering). When fg, fr ∼ Dist-1, the
node ordering algorithm has query complexity O(nk(1−ε2))
for Crowd-ER. When fg, fr ∼ Dist-2, node ordering has

query complexity O
(
n+ k2 logn

ε

)
for Crowd-ER.

Proof. For Dist-1, Lg,r(s) ≈ 1−2ε
s+1 . Therefore, when s ≥

n
k (1 − ε), min {k, (n− |Vi|)Lg,r(s)} ≤ (1 − ε)k. Thus,
the total number of queries is O(nk(1 − ε) + εnk(1 −
ε)) = O(nk(1 − ε2)). For Dist-2, Lg,r(s) = exp(−εs)

s+1 .
Therefore, when s ≥ 2 logn

ε , min {k, (n− |Vi|)Lg,r(s)} ≤
1

n(s+1) . Thus the total number of expected queries is O(n+∑k
i=1

k logn
ε + |Vi| log |Vi|

n ) = O(n+ k2 logn
ε ).

Note that, there is no difference in the upper bounds given
between the Edge and Node ordering algorithms for Dist-2.
But Edge-ordering uses order log(n/k) factor more queries
than the optimal (O(nk)) for Dist-1. Dist-1 is closer to
uniform distribution by the Hellinger measure than Dist-2,
which shows that Hellinger distance is the right choice for
distance here. Assuming k = o(n), we get a drastic reduction
in query complexity by moving from Dist-1 to Dist-2.

5 Analysis of the Edge ordering algorithm:

proof of Theorem 2

Let R be a random variable with distribution fr and
G1, . . . , Gt be identical random variables with distribution
fg . Let R,G1, G2, . . . , Gt be all independent. Note that,

Pr(R ≥ max{G1, . . . , Gt})

=

∫ 1

0

(∫ r

0

fg(y)dy
)t

fr(x)dx = Lg,r(t). (1)

In the interest of clarity, let us call a pair (u, v) ∈ V ×V a
green edge iff u, v ∈ Vi for some i = 1, . . . , k, and otherwise
call the pair a red edge.

In the current graph, let there exist � nodes, called U ⊂ V ,
which all belong to the same cluster but no edge from the
induced graph on these � vertices have been queried yet. Then
there are

(
�
2

)
green edges within U , yet to be queried. On

the other hand, there are at most n� red edges with one end
point incident on the vertices in U . We now count the number
of red edges incident on U that the algorithm will query
before querying a green edge within U . We can account for
all the red edges queried by the algorithm by considering
each cluster at a time, and summing over the queried red
edges incident on it. In fact, by doing this, we double count
every red edge. Since the probability of querying a red edge
incident on U before querying any of the

(
�
2

)
green edges

incident on U is Lg,r(
(
�
2

)
, the expected number of queried

red edges incident on U before querying a green edge in U
is at most n�Lg,r(

(
�
2

)
).

Let s be a positive integer. Consider a cluster Vi : |Vi| ≥ s.
Suppose at some point of time, there are � components of
Vi remaining to be connected. Then, again there are at least(
�
2

)
green edges, querying any of which will decrease the

number of components by 1. Thus, the expected number
of red edges that are queried incident on nodes in Vi be-
fore there remain at most s components of Vi is at most
n
∑|Vi|

�=s �Lg,r(
(
�
2

)
). Therefore, the expected number of red

edges that are queried until only s components are left for
every cluster is n

∑k
i=1

∑|Vi|
�=s �Lg,r

((
�
2

))
.

Now the number of red edges across the clusters having
size at most s is at most

(
k
2

)
s2. Therefore, even if we query

all those edges, we get the total number of queried red edges
to be at most

(
k
2

)
s2 + n

∑k
i=1

∑|Vi|
�=s �Lg,r

((
�
2

))
.

The algorithm queries a total of n− k green edges, exactly
spanning every cluster. Thus the total number of queries is at
most n+

(
k
2

)
s2 + n

∑k
i=1

∑|Vi|
�=s �Lg,r

((
�
2

))
.

6 Analysis of the Node ordering algorithm:

proof of Theorem 3

The computed expected cluster size for each node can be
a highly biased estimator, and may not provide any useful
information. For example, the expected cluster size of a node
in Vi is ε

c |Vi| + ( 12 − ε
2c )n where c = 2 for Dist 1 and

c = 1 for Dist 2. Therefore, the node ordering considered by
(Vesdapunt, Bellare, and Dalvi 2014) can be arbitrary. Hence,
for the purpose of our analysis, we ignore this ordering based
on the expected size.

Consider the state of the algorithm where it needs to
insert a node v which truly belongs to cluster Vi. Sup-
pose the current size of Vi is s, that is Vi already con-
tains s nodes when v is considered. Consider another clus-
ter Vj , j �= i, and let its current size be s′. Let Ci

and Cj denote the current subclusters of Vi and Vj that
have been formed.Then, P (wv,u ≥ maxx∈Vi

wv,x) where
u ∈ Cj is at most Lg,r(s). Hence, P (∃u ∈ Cj , wv,u ≥
maxx∈Vi

wv,x) ≤ min {1, s′Lg,r(s)}. Thus the expected
number of queried red edges before v is correctly in-
serted in Vi is at most min {k, Lg,r(s)

∑
j∈[1,k],j �=i |Vj |} ≤
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min{k, (n − |Vi|)Lg,r(s)}. Hence the expected total num-
ber of queried red edges to grow the ith cluster is at most∑|Vi|

s=1 min{k, (n−|Vi|)Lg,r(s)}, and thus the expected total
number of queries, including green and red edges is bounded
by n+

∑k
i=1

∑|Vi|
s=1 min{k, (n− |Vi|)Lg,r(s)}.

7 Experimental Observations

A detailed comparison of the node ordering and edge order-
ing methods on multiple real datasets has been shown in
(Vesdapunt, Bellare, and Dalvi 2014, Figures 12,14). The
number of queries issued by the two methods are very close
on complete resolution.To validate further, we did the follow-
ing experiments.
Datasets. (i) We created multiple synthetic datasets each
containing 1200 nodes and 14 clusters with the following
size distribution: two clusters of size 200, four clusters of
size 100, eight clusters of size 50, two clusters each of size
30 and 20 and the rest of the clusters of size 10. The datasets
differed in the way similarity values are generated by varying
ε and sampling the values either from Dist-1 or Dist-2. The
similarity values are further discretized to take values from
the set {0, 0.1, 0.2, ..., 0.9, 1}.

(ii) We used the widely used cora (McCallum 2004)
dataset for ER. cora is a bibliography dataset, where each
record contains title, author, venue, date, and pages attributes.
There are 1878 nodes in total with 191 clusters, among which
124 are non-singletons. The largest cluster size is 236, and
the total number of pairs is 17, 64, 381. We used the similar-
ity function as in (Whang, Lofgren, and Garcia-Molina 2013;
Wang et al. 2013; Vesdapunt, Bellare, and Dalvi 2014;
Firmani, Saha, and Srivastava 2016).
Observation. The number of queries for the node-ordering
and edge-ordering algorithms are reported in Table 1 for
the synthetic datasets. Clearly, the number of queries asked
for Dist-2 is significantly less than that for Dist-1 at the
same value of ε. This confirms with our theoretical findings.
Interestingly, we observe that the number of queries asked by
the edge-ordering algorithm is consistently higher than the
node-ordering algorithm under Dist-1. This is also expected
from Propositions 3 and 5 due to a gap of log n

k in the number
of queries of the two algorithms. In a similar vein, we see

Node-Ordering Edge-Ordering Distribution ε
4475 4460 Dist-1 ε = 1

2
5207 6003 Dist-1 ε = 1

3
5883 7145 Dist-1 ε = 1

4
6121 7231 Dist-1 ε = 1

5
6879 8545 Dist-1 ε = 1

10
7398 9296 Dist-1 ε = 1

20

1506 1277 Dist-2 ε = 1
5

1986 1296 Dist-2 ε = 1
10

2760 1626 Dist-2 ε = 1
20

Table 1: Number of Queries for Dist-1 and Dist-2

the edge-ordering algorithm is more effective than the node-
ordering for Dist-2, possibly because of hidden constants in
the asymptotic analysis.

Figure 2(a) shows the similarity value distribution for
cora which is closer to Dist-2 than Dist-1. Figure 2(b)
shows the recall vs number of queries issued by the two
methods. The line marked with ‘+’ sign is the curve for the
ideal algorithm that will ask only the required “green” edges
first to grow all the clusters and then ask just one “red” edge
across every pair of clusters. Upon completion, the number of
queries issued by the edge ordering and node ordering meth-
ods are respectively 21,099 and 23,243 which are very close
to optimal. Interestingly, this confirms with our observation
on the However, they achieve above 0.996 recall in less than
4, 000 queries. This can also be explained by our analysis.
The remaining large number of queries are mainly spent on
growing small clusters, e.g. when cluster sizes are o(log n)–
they do not give much benefit on recall, but consume many
queries.

8 Appendix: Lg,r(t) for Dist-1, Dist-2

Proposition 6. For fg, fr ∼ Dist-1 and small ε, we have
Lg,r(t) ≈ (1−ε)

(1+ε)(t+1) .

Proof. We have,

Lg,r(t) =

∫ 1

r=0

(∫ r

x=0

fG(x) dx

)t

fR(r) dr
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=

∫ 1/2

r=0

(∫ r

x=0

fG(x) dx

)t

(1 + ε) dr

+

∫ 1

r=1/2

(∫ r

x=0

fG(x) dx

)t

(1− ε) dr

=

∫ 1/2

r=0

(∫ r

x=0

(1− ε) dx

)t

(1 + ε) dr +

∫ 1

r=1/2(∫ 1/2

x=0

(1− ε) dx+

∫ r

x=1/2

(1 + ε) dx

)t

(1− ε) dr

=
(1 + ε)(1− ε)t

2t+1(t+ 1)
+ (1− ε)

∫ 1

r=1/2

(r(1 + ε)− ε)
t
dr

Set z = r(1 + ε)− ε, then dz = (1 + ε)dr. We have

(1− ε)

∫ 1

r=1/2

(r(1 + ε)− ε)t dr =
(1− ε)

(1 + ε)

∫ 1

z=
(1−ε)

2

zt dz

=
(1− ε)

(1 + ε)(t+ 1)

(
1− (1− ε)t+1

2t+1

)
.

Therefore,

Lg,r(t)

=
(1 + ε)(1− ε)t

2t+1(t+ 1)
+

(1− ε)

(1 + ε)(t+ 1)

(
1− (1− ε)t+1

2t+1

)

=
(1− ε)

(1 + ε)(t+ 1)

(
1 + ε

(
1− ε

2

)t−1
)
.

Proposition 7. For fg, fr ∼ Dist-2 we have Lg,r(t) ≤
e−ε(t+1)

t+1 .

Proof. We have,

Lg,r(t) =

∫ 1−ε

r=ε

(∫ r

x=ε

fG(x) dx

)t
1

1− ε
dr

=

∫ 1−ε

r=ε

(∫ r

x=ε

1

1− ε
dx

)t
1

1− ε
dr

=
1

(1− ε)t+1

∫ 1−ε

r=ε

(r − ε)t dr =
1

t+ 1

(
1− 2ε

1− ε

)t+1

=
1

t+ 1

(
1− ε

1− ε

)t+1

≤ (1− ε)t+1

t+ 1
≤ e−ε(t+1)

t+ 1
.
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