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Abstract

In this paper, we tackle the problem of emotion tagging of
multimedia data by modeling the dependencies among mul-
tiple emotions in both the feature and label spaces. These de-
pendencies, which carry crucial top-down and bottom-up ev-
idence for improving multimedia affective content analysis,
have not been thoroughly exploited yet. To this end, we pro-
pose two hierarchical models that independently and depen-
dently learn the shared features and global semantic relation-
ships among emotion labels to jointly tag multiple emotion
labels of multimedia data. Efficient learning and inference al-
gorithms of the proposed models are also developed. Exper-
iments on three benchmark emotion databases demonstrate
the superior performance of our methods to existing methods.

Introduction

We are surrounded by digital multimedia collections due to
the popularity of the Internet and the proliferation of user-
friendly equipment, such as smart phones. Such multime-
dia collections, including music, images, and videos, have
gradually become the most common means of communica-
tion, entertainment, and knowledge and information sharing.
Naturally, emotion tagging for multimedia data has attracted
increasing attention in recent years, since emotion is a key
factor in human communication and entertainment.

Automatic emotion annotation for multimedia data is a
challenging task due to the complexity and subjectivity of
human emotions, and the rich variety of multimedia content.
Current research into multimedia emotion tagging mainly
focuses on developing discriminative features and classi-
fiers. Various visual and audio features have been adopted.
Both static and dynamic classifiers are used for emotion an-
notation. An extensive review of emotion tagging of music,
videos and images can be found in (Yang and Chen 2012;
Joshi et al. 2011; Kim et al. 2010; Wang and Ji 2015;
Wang and Wang 2005; Dorai and Venkatesh 2001; Wang
and He 2008).

Most present research on multimedia emotion tagging as-
sumes there is only one emotional tag for a medium. How-
ever, several emotional tags can be assigned to the same
multimedia data. For examples, Figure 1(a) lists two shots
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of a video clip from the FilmStim database, both conveying
disgust and fear. Figure 1(b) shows two images that con-
vey happiness, peace, and tenderness. Some emotions often
appear together, while others do not. For instance, Figure
1(a) are still shots from a video about war, which may make
people fearful and disgusted, but rarely happy. On the con-
trary, Figure 1(b) describes two beautiful scenes which con-
vey happiness, peace, and tenderness, but not fear and dis-
gust. Therefore, emotion tagging should be formulated as a
multi-label classification problem, and successfully explor-
ing the dependency inherent in multiple emotions is the key
to improve emotion tagging.

(b)

a
Figure 1: Samp(le)s which induce mixed emotions. (a) Two
image frames from the FilmStim database induce fear and
disgust, but not happiness; (b) Two images from website in-
duce happiness, peace, and tenderness, but not fear and dis-
gust.

However, it is only recently that a few researchers real-
ized that the disjointedness of emotional labels is not valid
in emotion detection from music, images and videos. Li and
Ogihara (Li and Ogihara 2003) may be the first to formu-
late emotion detection from music as a multi-label classi-
fication problem. They decompose the problem into a set
of binary classification problems, and adopt a support vector
machine as the classifier for each binary classification. Their
method can be regarded as binary relevance (BR) multi-
label algorithm, which ignores the dependencies among la-
bels. Later, Trohidis et al. (Trohidis et al. 2011) compare
seven multi-label classification algorithms, i.e., binary rele-
vance, label powerset (LP), random k-label sets (RAKEL),
multi-label k-nearest neighbor (MLKNN), ranking by pair-
wise comparison (RPC), calibrated label ranking (CLR), and
multi-label back-propagation (BPMLL), for emotion detec-
tion from music. LP, RAKEL, RPC, and CLR explore la-
bel dependencies from target labels through detecting la-
bel combinations, such as a pairwise or subset label com-
binations in the training data. Thus, it is only feasible for
a few combinations, and it is hard to detect thousands of



possible combinations. In addition, such emotion combina-
tions only capture coexistent emotions. They cannot capture
emotions that are mutually exclusive of each other. BPMLL
and MLKNN explore label dependencies indirectly with the
help of features and hypotheses. They respectively extend
back-propagation and k-nearest neighbor to handle multi-
label data. With the modified hypothesis, they can model
the flexible label dependencies to some extent. However,
they do not explore the relations from target labels. All
these works demonstrate the potential of multi-label model-
ing for emotion detection from music. More recently, Wang
et al. (Wang, Wang, and Ji 2013) propose a framework of
multi-label multimedia emotion tagging for music as well
as images and videos. Specifically, they propose a Bayesian
network (BN) to automatically capture the label dependen-
cies directly from the target emotion labels, and combine
the captured emotion dependencies with their measurements
to achieve accurate multi-emotion tagging of multimedia
data. However, due to the first-order Markov assumption of
BN, this model can only capture the pairwise dependencies
among multiple emotions. Wang et al. (Wang et al. 2015)
further propose a three-layer restricted Boltzmann machine
model to capture the higher-order relationships among emo-
tion labels.

The above studies either address the dependencies among
multiple emotions from emotion labels directly, or address
them indirectly with the help of features and hypotheses. To
the best of our knowledge, no work models multiple emo-
tions’ dependencies in both feature and label spaces. Since
several emotions can be present in the same medium, the
dependencies inherent in target labels and in the shared fea-
tures among multiple emotions carry crucial top-down and
bottom-up evidence (respectively) for improving multime-
dia emotion tagging, and they have not been thoroughly ex-
ploited yet.

To mitigate the limitations of the above methods, we pro-
pose two methods to tackle the problem of multimedia emo-
tion tagging by exploiting the relationships of emotions from
both shared features and target labels. Two methods are pro-
posed to learn such relationships: independently and de-
pendently. For independent learning, a multi-task Restricted
Boltzmann Machine (RBM) classifier (Larochelle and Ben-
gio 2008) is adopted to detect multiple emotions simultane-
ously by exploiting the relationships embedded in features.
A three-layer RBM (Wang et al. 2015) is used to model
the high-order dependencies among emotions by parame-
ter learning. Finally, the outputs of the multi-task learning
algorithm are used as the inputs to the three-layer RBM to
obtain improved multiple emotion tagging. For dependent
learning, we propose a new four-layer RBM model to si-
multaneously model relationships among feature and label
spaces. Specifically, the bottom three layers capture the fea-
ture relationships, and the top two layers model high-order
label dependencies. Experimental results on three multime-
dia databases demonstrate that multi-task learning outper-
forms single-task learning, and the relationship model from
emotion labels further improves the performance of emo-
tion tagging. Furthermore, it is more effective to learn rela-
tionships in both feature and label spaces dependently rather
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than independently.

To the best of our knowledge, this paper is the first work
to assign multiple emotions to multimedia data by explor-
ing the emotional relationships at both feature and label lev-
els. By learning the shared features with a multi-task RBM
classifier and modeling the dependencies among emotion la-
bels with a hierarchy RBM model, the proposed approaches
can exploit both top-down and bottom-up relations among
emotions independently and dependently to improve multi-
ple emotions tagging for multimedia. Furthermore, the pro-
posed approaches also shed a light on the research of multi-
label classification, since little work of multi-label classifica-
tion performs shared feature learning and semantic label de-
pendency capturing simultaneously (Cherman, Monard, and
Metz 2011; Huang, Yu, and Zhou 2012; Wang et al. 2014).

Methods

‘We propose two hierarchical RBM models to capture depen-
dencies in both feature and label spaces. The first method
is shown in Figure 2(a), consisting of a multi-task RBM to
learn the shared features among emotion labels and obtain
label measurements, as well as a three-layer RBM to cap-
ture the high-order dependencies among multiple labels and
combine measurements with label dependencies. Thus, this
model learns the two kind of dependencies separately. Fig-
ure 2(b) shows the second model, which captures the de-
pendencies in feature and label spaces simultaneously. The
bottom three layer RBM can learn the shared features in a
bottom-up manner, and the top two-layers RBM captures
global relationships among labels from a top-down direc-
tion. By learning the weights between the four layers to-
gether, the proposed four-layer RBM captures the label de-
pendencies as well as feature dependencies simultaneously.
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Figure 2: Two pr)oposed methods. (a) Co(m)bining a multi-
task RBM with a three-layer RBM to capture dependencies
among features and labels independently. (b) Capturing de-
pendencies among features and labels dependently.

Capturing dependencies among features and labels
independently

Multi-Task RBM The multi-task RBM (Larochelle and
Bengio 2008), as shown in the bottom part of Figure 2(a), is
adopted to learn the shared features among different labels



and obtain measurements of multiple emotions simultane-
ously. h represents the hidden nodes, ¥y is predicted labels,
and x is the features which are continuous variables in our
work. W) connects the features to hidden nodes model-
ing the relationships among features and captures the com-
monalities among different labels. W® connects the hidden
nodes to labels capturing the variations among different la-
bels. The hidden layer h captures not only the dependencies
among features, more importantly, it represents the salient
information for the input features x. In other words, h learns
a feature representation of x, which serves as the input to a
multi-task classifier to estimate image labels, producing y.
The total energy of this model is defined as follows,

E(y,x,h;0) = th chy] ZZhW(2
N

ey

where © = {W(l),W(Q), a, b, c} represents the parame-
ters, {ax }, {b;} and {c; } are the biases of the inputs, hidden
nodes and target classes respectively, and oy, is the standard
deviation of the Gaussian noise for xy.

The joint distribution of the inputs and target labels
of RBM is calculated by marginalizing over all the hid-
den units as shown in Equation 2, where Z(O)
> hxy €TP(—E(Y,x,h; ©)) is the partition function.

Zh 6.1?])( (Y7X7h;®))
2
Given the training set D = {(x("), )}V, the param-

eters © are obtained by maximizing the log likelihood L
which is defined by Equation 3, where IV represents the total
number of training samples.

@ x: @)

3)
The gradient of L with respect to any parameters € ©
can be calculated using Equation 4,
0L(0©) OF oF
60 < 80 >p(y x,h;0) — < 60 > (¥Ix,h;©) (4)

where (-),, represents the expectation over distribution p.
The contrastive divergence algorithm (Larochelle and Ben-
gio 2008) is adopted to learn the parameters.

After parameter learning, we predict the label by choosing
the most probable state of y* under p(y|x; ©*) as shown in
Equation 5.

©* = argmax L(©) = argmax — Z log p(y
e i=1

y*=arg rn;axp(ﬂx; 0) 5)

where the posterior probability is defined as follows:

"I (14 W-“?wz w5

p(yx; ©) =
D g eV T (1 + ehitXr W

Ik+z W(z)y,*)

(0)
Since the computation cost of Equation 6 is exponential
to the number of emotion labels, Gibbs sampling is adopted.
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Three-Layer RBM We adopt a three-layer RBM model
(Wang et al. 2015) (shown in the top part of Figure 2(a))
to capture the high-order semantic relationships among la-
bels, and then infer the emotion labels by combining label
dependencies with label measurements. The bottom layer is
the measurements y obtained from the multi-task RBM. The
middle layer is the ground-truth y of emotion labels. The
hidden layer h captures the high-order dependencies among
the ground-truth labels y. Using the estimated y from the
multi-task RBM model, this three-layer RBM estimates the
truth (y), subject to the label dependencies encoded in h.

The energy function of this model is defined in Equation
7,

—bTy —c"h —hTWWy — yTWO)y
(7

where b, ¢ represents the biases of target labels y and hidden
units h, W®) measures the compatibility between measure-
ments and target classes, and w® captures the high-order
dependencies among labels.

The parameters of the three-layer RBM model can be
learned by maximizing the log conditional likelihood de-
fined in Equation 8.

E(y,y,h;0) =

©" = argmax L(©) = argmaxlog p(yly; ©)
e o

®)

The gradient of the log likelihood function L is described
in Equation 9.

aL(O)
99

A revised contrastive divergence algorithm is adopted to
learn the parameters (Wang et al. 2013). After parameter
learning, the emotion labels can be inferred by maximizing
the posterior probability p(y|y; ©) according to

oF or
= {Gg lntnylyo) — (5p hpmiys:e)

9)

y' =arg manp(YW; o) (10)

The Gibbs sampling method is adopted for inference. De-
tailed learning and inference algorithms can be found in
(Wang et al. 2015; 2013).

Capturing dependencies among features and labels
dependently

We propose a novel four-layer RBM to capture the label and
feature dependencies jointly as shown in Figure 2(b). It con-

sists of two hidden layers. The first hidden layer h cap-
tures the high-order dependencies among emotion labels y.

The second hidden layer h® models the relationships be-
tween input features x and different emotion labels y. w
connects the features to the hidden layer h®, modeling
the feature commonalities among multiple labels. W® con-
nects the hidden layer h® to labels, capturing the variations
among labels. W) connects labels to the hidden layer h®,

modeling the high-order dependency among the target la-
bels.



The total energy function of this model is defined in Equa-
tion 11,

E(y,x,h¥ h®;0) =

3" nPb; — Zyjcj -3 nVd,
7 7 t

B S S
Z Z h(Q)W(Q)yJ Z Z h(l)Wt(j’)yJ

where {ak}7 {b;}, {c;} and {d;} are the biases of the in-
puts, the hidden layer h®, target labels and the hidden layer

h respectively, and oy is the standard deviation of the
Gaussian noise for xj. The joint distribution of the inputs
and target classes is shown in Equation 12, where Z(O) is
the partition function.

Eh(l) Zh("’) exp( E(yax7 h(l)vh(z), @))
Z(0)

p(y,x;0) =
(12)

The proposed four-layer RBM model can be decom-
posed into two parts. The top two-layer RBM captures
the high-order dependencies among emotion labels through
the hidden layer h™). The bottom three-layer RBM con-
structs a better feature representation for emotion recogni-
tion through the latent units h(2), which connect features
to multiple labels. As a whole, the four-layer RBM model
captures the global semantic relationships among emotion
labels and the shared features simultaneously.

To learn parameters of the four-layer RBM model, we at-
tempt to maximize the log likelihood as shown in Equation
13.

0* = arggmx L(®) = arggmx log p(y, x; ©) (13)

To update the parameters, a stochastic gradient descent
method is applied. The gradient can be calculated using
Equation 14. We employ the contrastive divergence algo-
rithm to obtain the gradient, as shown in Algorithm 1.

OL©) OF OF
20 = 9 v n® yxe) ~ (5p ) n)yxe)
(14)

After parameter learning, the emotion labels y* of a test
sample can be inferred according to Equation 15.

y* = argmaz p(y|x; ©) (15)
y

where the posterior probability is defined as follows:

exp(e”y) [1,(1 + exp(aye)) [1,(1 + exp(By:))

p(ylx;©) = 5
y*exp(eTy*) [T, (L+exp(ayy)) [T; (1+ezp(By*;))
(16)
Wh = d RO 3) o= b
ere Oéyt = t + Zj t tj y], Byz - 7 +

> hEQ Wy Yi + 2k hz('Q)Wi(lcl)xk

)

Algorithm 1 Four-Layer RBM Learning by Contrastive Di-
vergence algorithm.

Input: Training data(x(?), y()) learning rate .
Output: Model parameters © = {W(l),W(2),W(3),a,b,c,d}.
repeat
for cach training instance (x(*), y(?)) do
% Positive Phase
y0 — y@ x0 — x(D)
A0 sigmoid(de + 3= Wt(f)yf)
A0 sigmoid(b; + Ej Wi(2) + > W, kl)a:(,z)
% Negative Phase
WD~ sigmoid(dy + > W(s)yJ)
R0 ~ sigmoid(b; + Z Wl(f) + >k W(kl)m[,i)
y' ~ sigmoid(c; + 3, WJ(?}LEQ)O +>, W;f)hil)g)
x o p(xh®?) ,
h + sigmoid(dy + 3 Wt(;)yjl-)
A sigmoid(b; + >, Wi(j2>y_]1. + > Wi(kl)ri)
9% Update
for 0 € © do do
0+ 0-MFHEGY,x°
end for

RO R0 gt 1 ROL )

end for
until Converges

The computational complexity of calculating the poste-
rior probability directly is exponential to the number of tar-
get labels. Therefore, for a small number of emotion labels,
we may directly calculate the posterior probability to obtain
the final class according to Equation 16. Otherwise, for a
large number of emotion labels, we use the Gibbs sampling
method. The detailed steps are presented in Algorithm 2.

Algorithm 2 Four-Layer RBM Inference by Gibbs Sam-
pling
Input:
test sample x,model parameters wm s w® s w® ,a,b,c,d.
Output: y*

method 1: Apply Equation 15 to find y* by maximizing the posterior probability.
method 2: Use Gibbs Sampling to find y*
repeat
for chain =1 — C dodo
randomly initialize y°
forr =0 — M dodo
W7~ sigmoid(dy + > Wt(?’) )
W7~ sigmoid(b + 3, Wyt + 30, W)
Yy~ sigmoid(c; + 3, W;f)hgmr +> W;?)hil)yr')
end for
end for
forj =1 — ndodo
collect the last K samples of y; from each chain
calculate p(y; |[x) based on the collected samples
end for
until Converges

Experiment
Experimental Conditions

As of now, there are a few multimedia databases which
contain multiple emotion labels. In our work, we employ



three data sets: the Music database (Trohidis et al. 2008),
the NVIE database (Wang et al. 2010) and the FilmStim
database (Schaefer et al. 2010).

The Music Emotion database consists of 593 songs which
can be classified into six emotion labels, i.e., amazement,
happiness, relaxation, quietness, sadness and anger. The
number of samples for each emotion are 173, 166, 264, 148,
168 and 189 respectively. Due to copyright issues, the mu-
sic clips of this database are not available. However, the
database provides 8 rhythmic features and 64 timbre fea-
tures of each sample. Detailed information can be find in
(Trohidis et al. 2008). In our work, all of these 72 features
are employed.

The NVIE video database contains 72 videos with 7 emo-
tion labels, i.e., happiness, anger, sadness, fear, disgust, sur-
prise and valance. These 72 videos were used as emotion
induced videos during the construction of the NVIE expres-
sion database (Wang et al. 2010). The number of samples
for these seven emotions are 28, 12, 17, 34, 29, 27 and 29
respectively. The constructors of this database do not pro-
vide features. We extract three visual features, i.e., light-
ing key, energy color and visual excitement, and 31 audio
features, including average energy, average energy intensity,
spectrum flux, Zero Crossing Rate (ZCR), standard devia-
tion of ZCR, 13 MFCCs, log energy of MFCCs and the stan-
dard deviations of the above 13 MFCCs.

The FilmStim database includes 64 videos with six emo-
tions (tenderness, fear, anger, joy, sadness and disgust).
There are 25, 36, 21, 25, 27 and 37 samples for these six
emotions, respectively. Since the database does not include
the features, we extracted the same visual and audio features
as those of the NVIE video database.

To validate the effectiveness of our proposed models in
capturing the relationships in both feature and label spaces,
four methods are used to recognize emotion labels from mul-
timedia data: the single-task RBM, which is similar to the
multi-task RBM described in the methods Section except
that it contains only one label for each model; the multi-task
RBM; our first proposed model; and our second proposed
model. Ten-fold cross validation is adopted. Both example-
based (i.e. accuracy, F1-measures and subset accuracy) and
label-based (i.e. micro and macro F1-measures) multi-label
evaluation measures are used. Detailed definitions of these
evaluation measures can be found in (Sorower 2010).

Experimental Results of Emotion Tagging

The experimental results on three multimedia databases are
summarized in Table 1. From this table, we can obtain the
following observations:

First, multi-task RBMs significantly outperform single-
task RBMs, since the results of multi-task are consistently
higher than single-task’s on three databases. Both Example-
based and label-based metrics are improved by using a
multi-task RBM to learn the shared features. This demon-
strates that a multi-task RBM can make recognition results
not only more accurate but also more balanced than a single-
task RBM does.

Secondly, on all databases, the experimental results of our
proposed two methods are better than those of multi-task
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Table 1: Results of our approach on three databases.
example-based label-based
Database Method
Acc. [ FL MicFl. | MacFl.
single-task(BR) 0.546 0.629 0.670 0.659
multi-task RBM 0.577 0.662 0.690 0.684
Music Our method 1 0.584 0.666 0.693 0.687
Our method 2 0.585 0.668 0.695 0.688
SVM(BR) 0.514 0.593 0.650 0.624
BN 0.552 0.629 0.660 -
Wang et al. 0.554 0.645 0.675 0.676
Andreas et al. 0.510 0.580 0.650 0.630
single-task(BR) 0.457 0.520 0.563 0.479
multi-task RBM 0.495 0.562 0.581 0.501
NVIE Our method 1 0.502 0.583 0.608 0.536
Our method 2 0.562 0.621 0.642 0.607
SVM(BR) 0.335 0.413 0.476 0.381
BN 0.427 0.488 0.487 -
Wang et al. 0.318 0.443 0.493 0.511
Andreas et al. 0.480 0.570 0.580 0.550
single-task(BR) 0.353 0.465 0.514 0.476
multi-task RBM 0.394 0.486 0.519 0.495
FilmStim Our method 1 0.422 0.521 0.548 0.535
Our method 2 0.437 0.528 0.568 0.551
SVM(BR) 0.286 0.370 0.429 0.294
BN 0.329 0.413 0.457 0.263
Wang et al. 0.382 0.526 0.555 0.528
Andreas et al. 0.440 0.530 0.570 0.540

“Acc.” refers to ““ accuracy,” “F1.” refers to “F1 score,” “MicF1

F1 score,” “MacF1.” refers to “macro F1 score.”

7 refers to “micro

Table 2: Examples of tagging results.

Database FilmStim Music
fear, anger, .
fear,anger, quietness, .
ground- sadness, o happiness,
. joy,disgust sadness .
truth disgust relaxation
fear,
) tenderness, . .
multi-task K sadness, relaxation, relaxation,
0] .
RBM 10y disgust quietness sadness
relaxation,
tenderness, fear, ) .
methodl . . quietness, | relaxation
joy,sadness disgust
sadness
fear, anger, fear, anger,
method2 sadness, sadness, quietness, | happiness,
disgust disgust sadness relaxation

RBMs in all the cases. This demonstrates the importance
of the semantic relationships among emotions for multiple
emotion tagging, and the power of our proposed two models
in capturing shared features and high-order label dependen-
cies.

Finally, comparing the first proposed method and the sec-
ond proposed method, we find our second method outper-
forms the first method in most cases. Since four-layer RBM
models the relationships in feature and label spaces depen-
dently, it may capture a more comprehensive breadth of re-
lationships than the first method.

The proposed two methods outperform not only single-
task RBMs, but also multi-task RBMs, since both meth-



ods successfully capture the dependencies among features
and emotion labels. Table 2 lists several samples from video
database and audio database to further demonstrate the su-
periority of our methods. For example, when a video evokes
complicated emotions, i.e., fear, sadness, anger, disgust, our
methods are superior to the multi-task RBM, since the re-
sults of our methods are on target while the multi-task RBM
is a poor match. Similarly, for a music evoking quietness
and sadness, the tagging results of our methods are almost
correct, especially method 2. This demonstrates the effec-
tiveness of our methods in capturing dependencies among
features and emotions. What’s more, we find that method
2 always performs better than method 1. The hidden layer

h® in the multi-task part in Figure 2(b) plays the same role
as the hidden layer h in the multi-task RBM in Figure 2(a).
However, their values are different after training, since train-
ing for Figure 2(b) is done jointly for all layers with inter-
actions among layers, while training for the top and bottom
parts of the model in Figure 2(a) are done separately without
any interaction between layers. Hence, method 2 can model
more comprehensive relationships than method 1.

Semantic Relationship Analysis

In this section, we further analyze the semantic relation-
ships among multiple emotions captured by the top hidden
units of our two methods, using the FilmStim database as
an example. As discussed in previous section, the seman-
tic relationships captured by the two methods are different,
since training for Figure 2(b) is done jointly for all layers
with interactions among layers, while training for the top
and bottom parts of the model in Figure 2(a) is done sepa-
rately without any interaction between layers. The semantic
pattern is measured by the weight between latent unit and
emotion label. Larger weights represent a higher probability
of presence, while smaller weights denote a higher proba-
bility of absence. For example, Figure 3(a) and Figure 3(b)
show two patterns captured by two methods in the FilmStim
database. Figure 3(a) demonstrates that tenderness, anger,
sadness and disgust may appear together, but not fear and
joy. Figure 3(b) shows that fear, anger, sadness and disgust
may appear simultaneously, but not joy. Through further an-
alyzing the global emotion relationships presenting in the
ground-truth labels on the FilmStim database with correla-
tion coefficients, we find that fear, anger, sadness and disgust
tend to co-occur, and these four emotions and joy are mutu-
ally exclusive, which is successfully captured by method?2.

Comparison with Related Work

There are only a few related works which address multiple
emotion tagging for multimedia data. Wang et al. (Wang et
al. 2015) adopted the same databases as ours. Therefore we
directly compare our work with theirs as shown in Table 1,
from which we find the following:

First, our approach using a BR(single-task RBM) outper-
forms Wang et al.’s SVM(feature-driven method), since all
four example-based and label-based evaluation metrics of
BR are much higher than SVM. Both the SVM in Wang et
al.’s work and the BR used in our work recognize each emo-
tion label independently, without considering relationships
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(a) (b)
Figure 3: Semantic relationships on FilmStim database cap-
tured by a top hidden-layer unit. (a) methodl (b) method2

among emotions. The single-task RBM recognizes emotions
from a new feature representation introduced by its hidden
units, while the feature-driven method recognizes emotions
from the visual-audio features directly. Therefore, the good
performance of the single-task RBM may demonstrate the
effectiveness of the hidden nodes of RBM for effective fea-
ture representation.

Secondly, the performance of the multi-task classifier is
better than that of Bayesian Network (BN). BN captures
pair-wise dependencies among emotion labels, while multi-
task RBM learns the commonalities and variations among
emotions based on features. These results may demonstrate
that feature dependencies are more powerful than pair-wise
label dependencies for multiple emotion tagging.

Thirdly, our two proposed methods are superior to Wang
et al.s (Wang et al. 2015) with both better example-based
and label-based evaluation measures. Since Wang et al. al-
ready demonstrate the superiority of their proposed meth-
ods to current multi-label classifiers, including BPMLL and
MLKNN. in their emotion tagging experiments, our pro-
posed methods outperform current multi-label classifiers for
multimedia emotion tagging.

In addition, we compare our methods to current multi-
task methods. We use multi-task SVM proposed by Andreas
et al. (Evgeniou and Pontil 2007) as examples. From Table
1, we find that our multi-task RBM achieves comparable re-
sults to multi-task SVM, and the proposed two methods out-
perform multi-task SVM in most cases. It further demon-
strates the importance to capture the dependencies among
both labels and features for emotion tagging.

Conclusion and further work

Although both feature dependencies and label dependencies
are crucial for emotion tagging of multimedia data, little
work addresses them simultaneously until now. In this pa-
per, we propose two hierarchical models to systematically
integrate the commonalities and variations across multiple
emotions from shared features and the high-order dependen-
cies from emotion labels for multimedia emotion tagging.
Experimental results on three benchmark databases demon-
strate the superiority of our proposed approaches to state-of-
the-art methods due to their power in capturing emotion re-
lationships from both features and labels. Furthermore, our
proposed models can easily be adapted to other applications
that involve multiple related outputs, such as facial action



unit recognition, semantic scene segmentation and image
annotation.

Acknowledgment

This work has been supported by the National Science
Foundation of China (Grant No. 61175037, 61228304,
61473270), and the project from Anhui Science and Tech-
nology Agency (1508085SMF223).

References

Cherman, E. A.; Monard, M. C.; and Metz, J. 2011. Multi-
label problem transformation methods: a case study. CLEI
Electronic Journal 14(1):4-4.

Dorai, C., and Venkatesh, S. 2001. Computational me-
dia aesthetics: Finding meaning beautiful. IEEE multimedia
8(4):10-12.

Evgeniou, A., and Pontil, M. 2007. Multi-task feature learn-
ing. Advances in neural information processing systems
19:41.

Huang, S.-J.; Yu, Y.; and Zhou, Z.-H. 2012. Multi-label
hypothesis reuse. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data
mining, KDD 12, 525-533. New York, NY, USA: ACM.
Joshi, D.; Datta, R.; Fedorovskaya, E.; Luong, Q.-T.; Wang,
J.Z.; Li, J.; and Luo, J. 2011. Aesthetics and emotions in
images. Signal Processing Magazine, IEEE 28(5):94-115.
Kim, Y. E.; Schmidt, E. M.; Migneco, R.; Morton, B. G.;
Richardson, P.; Scott, J.; Speck, J. A.; and Turnbull, D. 2010.
Music emotion recognition: A state of the art review. In
Proc. ISMIR, 255-266. Citeseer.

Larochelle, H., and Bengio, Y. 2008. Classification using
discriminative restricted boltzmann machines. In Proceed-
ings of the 25th international conference on Machine learn-

ing, 536-543. ACM.

Li, T., and Ogihara, M. 2003. Detecting emotion in music.
In Proceedings of the International Symposium on Music In-
formation Retrieval, 239C240.

Schaefer, A.; Nils, F.; Sanchez, X.; and Philippot, P. 2010.
Assessing the effectiveness of a large database of emotion-
eliciting films: A new tool for emotion researchers. Cogni-
tion & Emotion 24(7):1153-1172.

Sorower, M. S. 2010. A literature survey on algorithms for
multi-label learning. Oregon State University, Corvallis.
Trohidis, K.; Tsoumakas, G.; Kalliris, G.; and Vlahavas, I. P.
2008. Multi-label classification of music into emotions. In
ISMIR, volume 8, 325-330.

Trohidis, K.; Tsoumakas, G.; Kalliris, G.; and Vlahavas,
I. 2011. Multi-label classification of music by emotion.
EURASIP Journal on Audio, Speech, and Music Processing
4(doi:10.1186/1687-4722-2011-426793).

Wang, W., and He, Q. 2008. A survey on emotional semantic
image retrieval. In Image Processing, 2008. ICIP 2008. 15th
IEEFE International Conference on, 117-120. IEEE.

Wang, S., and Ji, Q. 2015. Video affective content analysis:

a survey of state of the art methods. Affective Computing,
IEEE Transactions on PP(99):1-1.

1032

Wang, S., and Wang, X. 2005. Emotion semantics image
retrieval: An brief overview. In ACII 2005, 490—497.

Wang, S.; Liu, Z.; Lv, S.; Lv, Y.; Wu, G.; Peng, P.; Chen, F,;
and Wang, X. 2010. A natural visible and infrared facial ex-
pression database for expression recognition and emotion in-
ference. IEEE Transactions on Multimedia 12(7):682—691.

Wang, Z.; Li, Y.; Wang, S.; and Ji, Q. 2013. Capturing
global semantic relationships for facial action unit recogni-
tion. In Computer Vision (ICCV), 2013 IEEE International
Conference on, 3304-3311. IEEE.

Wang, S.; Wang, J.; Wang, Z.; and Ji, Q. 2014. Enhancing
multi-label classification by modeling dependencies among
labels. Pattern Recognition 47(10):3405 — 3413.

Wang, S.; Wang, J.; Wang, Z.; and Ji, Q. 2015. Multiple
emotion tagging for multimedia data by exploiting high-
order dependencies among emotions. Multimedia, IEEE
Transactions on PP(99):1-1.

Wang, S.; Wang, Z.; and Ji, Q. 2013. Multiple emotional tag-
ging of multimedia data by exploiting dependencies among
emotions. Multimedia Tools and Applications 74(6):1863—
1883.

Yang, Y.-H., and Chen, H. H. 2012. Machine recognition of
music emotion: A review. ACM Transactions on Intelligent
Systems and Technology (TIST) 3(3):40.





