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Abstract

One of the key advantages of visual analytics is its capability
to leverage both humans’s visual perception and the power
of computing. A big obstacle in integrating machine learning
with visual analytics is its high computing cost. To tackle this
problem, this paper presents PIVE (Per-Iteration Visualization
Environment) that supports real-time interactive visualization
with machine learning. By immediately visualizing the inter-
mediate results from algorithm iterations, PIVE enables users
to quickly grasp insights and interact with the intermediate
output, which then affects subsequent algorithm iterations. In
addition, we propose a widely-applicable interaction method-
ology that allows efficient incorporation of user feedback into
virtually any iterative computational method without introduc-
ing additional computational cost. We demonstrate the appli-
cation of PIVE for various dimension reduction algorithms
such as multidimensional scaling and t-SNE and clustering
and topic modeling algorithms such as k-means and latent
Dirichlet allocation.

1 Introduction

The innate ability of humans to quickly acquire insights
through visualization has been a key factor in the growth
in visual analytics (Keim 2002; Thomas and Cook 2005).
To leverage humans’ visual perception in data analytics, an
increasing amount of effort has been made to utilize various
computational methods in visual analytics (Buja, Cook, and
Swayne 1996; Seo and Shneiderman 2002). However, the
significant amount of computing time required to run these
methods has been a critical hurdle against the effective inte-
gration of machine learning in visual analytics. Even worse,
as machine learning becomes more advanced and capable,
they often require more computations, making it virtually im-
possible to perform real-time interactive visualizations with
them. Therefore, even the state-of-the-art in visual analytics
adopts only a few standard techniques and does not prop-
erly leverage the advantages of advanced machine learning
methods.

However, several important aspects have been largely over-
looked in previous studies. Specifically, this paper focuses on
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the following aspects: (1) humans’ perceptual precision and
(2) the iterative behavior of machine learning. First, we notice
that visual perception does not require highly precise outputs
from machine learning methods. For example, when perceiv-
ing the value of π, most people think of its approximate value,
e.g., 3.14, and knowing it more accurately, e.g., 3.1415926,
does not make much difference in practice. Second, modern
machine learning methods usually obtain the solution via
iterative processes. Their important characteristic is that a
major improvement of the solution typically occurs in early
iterations while only minor changes occur in the later itera-
tions. It indicates that the approximate, low-precision outputs
can be obtained much earlier before the full iterations finish.
Motivated by these two crucial observations, we postulate
that, in visual analytics, there is no need for users to wait
utill the algorithms are completely finished and get the final
precise result.

In response, we propose a novel approach called PIVE
(Per-Iteration Visualization Environment), which visualizes
the intermediate results from algorithm iterations as soon
as they become available, achieving an efficient real-time
interactive visualization with machine learning. Unlike many
previous approaches that treat a machine learning method as
a black box, PIVE breaks it down to an iteration level and
tightly integrates them with visual analytics so that a user can
check and interact with the visualization of machine learning
outputs. To avoid any delays in this process, PIVE parallelizes
computation and visualization via multi-threading.

With PIVE, a user can efficiently perform multiple interac-
tions with machine learning in real time since it drastically
reduces the turn-around time of a single interaction from full
iterations to a few. The main idea of our interaction methodol-
ogy is to allow a user to interact with the intermediate output,
which then affects subsequent algorithm iterations. Since
such a methodology does not require any major algorithmic
modifications nor computational overhead, a user can effi-
ciently perform multiple interactions with machine learning
in real time.

2 Related Work

Efficient Interactive Visualization Numerous studies fo-
cused on the efficient interactive visualization of large-
scale data. A straightforward approach is to use sampled
data (Fisher et al. 2012; Ellis and Dix 2006). Another type of

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1001



Per-iteration
routine Visualization

Interaction

Thread 1 Thread 2

Input data

(b) The PIVE workflow(a) The standard workflow

Input data

Interaction

Visualization
Per-iteration

routine

Per-iteration
routine

Per-iteration
routine

Machine learning method

Figure 1: Comparison of the standard and PIVE workflows. In (a), a machine learning method is treated as a black box, which
gives the output only after its iterations finish. In contrast, PIVE (b) splits a machine learning method into iterations, visualizing
and interacting with intermediate results during iterations.

popular approaches relied upon multi-threading techniques
to separate data processing and computation from visualiza-
tion and rendering (Ma 2009; Yu et al. 2010; Tu et al. 2006;
Piringer et al. 2009). However, none of these approaches
have exploited the nature of the iterative processes in most
machine learning methods, which makes a clear distinction
of PIVE.

User Interaction with Machine Learning There have
been significant efforts to provide a general framework to
visualize machine learning results (Johnston 2001; Thearling
et al. 2001) and to improve the interactivity with them (Mul-
der, van Wijk, and van Liere 1999). Several studies added
interaction capabilities to dimension reduction (Williams
and Munzner 2004; Brown et al. 2012; Kim et al. 2016;
Kwon et al. 2017), clustering (Seo and Shneiderman 2002;
Lee et al. 2012; Schreck et al. 2009), classification (Bosch
et al. 2013; van den Elzen and van Wijk 2011), and topic
modeling (Choo et al. 2013a; Kuang, Choo, and Park 2015).
However, most of them do not efficiently support their in-
teractions at an iteration level. In this sense, PIVE, which
leverages the iteration-wise behavior of machine learning,
potentially bears a great impact in achieving this goal.

Progressive Visual Analytics Similar to our work, the
concept of progressive visual analytics, which generates
meaningful partial results of an algorithm and interacts with
it, was recently introduced (Stolper, Perer, and Gotz 2014;
Mülbacher et al. 2014). PIVE realizes the idea to tightly inte-
grate machine learning with visual analytics at an iteration
level by customizing various well-known machine learning
methods in established visual analytics systems.

3 Per-Iteration Visualization Environment

In this work, we focus on iterative methods, which refine
approximate solutions over iterations. As summarized in Al-
gorithm 1, given a set of data items X and parameter vector
α, at t-th iteration, iterative methods refine previous solution
Y t−1 into Y t. The iterations continue until a stopping crite-
rion is satisfied, say, at t = T . We note that the intermediate
output Y t has the same form throughout the iterations as the
final output Y T , and PIVE directly utilizes an intermediate
output Y t for real-time interactive visualization.

Algorithm 1 Iterative methods

1: Input: X = {x1, · · · , xn} and parameter α
2: Output: Y = {y1, · · · , yn}
3: t ← 0
4: Initialize Y t = {yt1, · · · , ytn}
5: repeat
6: t ← t+ 1
7: /* Per-iteration routine */
8: for i ← 1, · · · , n do
9: yti ← f(

{
X, Y 0, · · · , Y t−1

}
, α)

10: Y t ← {yt1, · · · , ytn}
11: until a stopping criterion is satisfied
12: T ← t /* Final iteration index */
13: Y ← Y T /* Final output */

3.1 Overall Workflow

In Fig. 1(a), a machine learning method is run, and it gives
outputs to a visualization module only after finishing its it-
erations. Subsequently, each user interaction goes through
another entire set of iterations. On the contrary, PIVE imme-
diately delivers intermediate results from algorithm iterations
to the visualization module, as shown in Fig. 1(b). Accord-
ingly, users can immediately initiate their interactions with
machine learning, which then affects its subsequent iterations.
In this manner, user interactions are performed at an iteration
level, which is the key to support real-time user interactions.

3.2 Interaction Methodology

The basic types of interactions with machine learning in-
cludes changing its parameters and selecting/removing data
subsets of interest. PIVE allows users to immediately check
the effect of parameter changes in real time.

In addition, we consider more sophisticated interactions
that allow users to manipulate the intermediate output by
replacing part of them with user-specified values. Depending
on whether a user wants to fix these new values over the sub-
sequent iterations, we categorize our interaction methodology
into soft and hard replacements.

As summarized in Algorithm 2, the main difference be-
tween the soft and hard replacements is that the latter skips
the updating step for user-selected data items and uses the re-
placed outputs throughout the iterations. Unlike the filtering
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Algorithm 2 Soft and hard replacement interactions

1: Input: an iteration index t at which a user interac-
tion was performed, interacted data item indices I =
{i1, · · · , il}, their new values {ỹi1 , · · · , ỹil}, and a
new parameter α̃

2: α ← α̃
3: for i ← i1, · · · , il do
4: yti ← ỹi
5: if Hard replacement then
6: Replace the per-iteration routine in Algorithm 1 as

follows:
7: /* Per-iteration routine*/
8: for i ← 1, · · · , n do
9: if i /∈ I then

10: yti ← f(
{
X, Y 0, · · · , Y t−1

}
, α)

11: else
12: yti ← yt−1

i
13: Continue from the iteration index t+ 1 until a stopping

criterion is satisfied in Algorithm 1

interaction, these replaced and fixed outputs stillaffect the
updated outputs for the rest of the data items. In this sense,
the hard replacement interaction converts the original ma-
chine learning method into a constrained or semi-supervised
method. In addition, this interaction has an advantage of
saving computational time in the subsequent iterations by
skipping the updating steps for the fixed data items. This
can be useful when a user wants to focus the computational
resource on the remaining data items.

On the other hand, a soft replacement interaction replaces
the outputs of selected data items at a particular iteration, but
the later iterations continue updating them just as they update
the rest of the data items. In this respect, soft replacement
interactions can be viewed as user-driven re-initialization of
the algorithm. This can be useful in finding a better local opti-
mum for non-convex problems or finding a good initialization
in a user’s own manner.

3.3 Further Considerations

Stability and Convergence1 PIVE poses a challenge as
the difficulty in deciding when to start interactions with ma-
chine learning. First, a visual stability issue exists. Because
PIVE continuously updates the visualization, if intermediate
outputs change significantly and frequently, the correspond-
ing visualizations become inconsistent, thus preventing a user
from analyzing and interacting with them. The second issue
is whether intermediate outputs from machine learning are
close enough to the final solution for users to start analyzing
and interacting with them. To help determine whether the
intermediate result is sufficiently stable and close to the final
solution, we provide users with separate charts showing the
corresponding measures as well as visual encoding within
existing visualizations.

1We define ‘stability’ and ‘convergence’ as visual stability and
visual convergence throughout this paper.

Computational Overhead Since PIVE has to repetitively
process intermediate outputs, additional computations are
incurred. We use a multi-threading approach to handle them.
We separate the entire process into two concurrent pro-
cesses/threads (blue ellipses in Fig. 1(b)). The computational
thread deals with the computations within algorithm itera-
tions while the visualization thread works on post-processing
and rendering. These two threads communicate via a message
queue (Fig. 1(b)). Since modern commodity computers are
usually equipped with a multi-core CPU, these two threads
can be executed in parallel without much performance loss
compared to the standard approach.

4 Applications to Machine Learning

In this section, we present the applications of PIVE to several
dimension reduction and clustering methods. For demonstra-
tion, we altered existing visual analytics systems.

For the two dimension reduction methods, we have im-
proved FodavaTestbed visual analytics system (Choo et al.
2013b),2 which supports various dimension reduction meth-
ods in high-dimensional data analysis. For k-means clus-
tering, we have customized a well-known visual analytics
system for document analysis, Jigsaw (Stasko, Görg, and
Liu 2008).3 Finally, for latent Dirichlet allocation, we have
modified an interactive document clustering system called
iVisClustering (Lee et al. 2012).

4.1 Dimension Reduction

Given n data items, X = {x1, · · · , xn} ∈ R
m×n, di-

mension reduction generates their 2D coordinates, Y =
{y1, · · · , yn} ∈ R

2×n that will be used in a scatter plot.

Multidimensional Scaling (MDS) MDS (Cox and Cox
2000) attempts to preserve the distances/relationships of data
items in a lower-dimensional space. MDS solves

min
y1, ..., yn

∑

1≤i≤n

∑

1≤j≤n

(
dxij − dyij

)2
, (1)

where dxij and dyij are the given pairwise distances between
the i-th and j-th data items in the original m-dimensional
and the reduced 2-dimensional spaces, respectively.

t-Distributed Stochastic Neighbor Embedding (t-SNE)
t-SNE (van der Maaten and Hinton 2008) tries to minimize
the difference between pairwise probability distribution P x

over X and P yover Y by solving

min
y1, ..., yn

KL(P x‖P y) = min
y1, ..., yn

∑

1≤i≤n

∑

1≤j≤n

pxij log
pxij
pyij

,

(2)
where KL(P x‖P y) is the Kullback-Leibler (KL) divergence
between P x and P y .

2http://fodava.gatech.edu/fodava-testbed-software
3http://www.cc.gatech.edu/gvu/ii/jigsaw/
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User Interaction Capabilities Typically, the dimension
reduction outputs are visualized in a scatter plot. Other than
basic interactions such as changing parameters and select-
ing/filtering data items, a natural user interaction is to move
data points on a scatter plot. We achieve this “point-moving”
interaction by utilizing the soft and hard replacement interac-
tions described in Algorithm 2. That is, once a user selects
and moves l points to new positions in a scatter plot, their cur-
rent intermediate output

{
yti1 , · · · , ytil

}
gets updated as their

new positions{ỹi1 , · · · , ỹil} (line 4 in Algorithm 2). As dis-
cussed in Section 3.2, the soft replacement interaction can be
thought of as restarting the dimension reduction method with
new initial points. On the other hand, the hard replacement
interaction skips the updating step for the user-selected data
items, while their fixed coordinates still affect the rest of the
data items in later iterations. For instance, those data items
with close relationships to the fixed data items may be pulled
towards them while those with remote relationships may be
pushed away from them. These interactions can reveal inter-
esting knowledge about high-dimensional data relationships
without additional computations.

Stability and Convergence To show the stability of in-
termediate outputs, we propose a quantitative measure at
iteration t as an average number of the k nearest neighbor
changes from the previous iteration t− 1, i.e.,

S1
DR (t) =

1

nk

∑

1≤i≤n

∣∣Nk

(
yti
)−Nk

(
yt−1
i

)∣∣ , (3)

where Nk (y
t
i) is the set of the k nearest neighbor data items

of yti at the iteration t. We also compute an average num-
ber of the original k nearest neighbors preserved in a low-
dimensional space as

S2
DR (t) =

1

nk

∑

1≤i≤n

∣∣Nk

(
yti
) ∩Nk (xi)

∣∣ , (4)

where Nk (xi) is the set of the original k nearest neighbor
data items of xi. A lower value of Eq. (3) indicates a more
stable visualization, and a higher value of Eq. (4) indicates a
better preservation of given neighborhood relationships.

Second, we visually encode the actual changes of data
items during iterations in a scatter plot by drawing the poly-
line showing the trajectory of each data point over the past
few iterations. We also draw a transparent circle whose ra-
dius is equal to the total length of the polyline, i.e., the total
amount of coordinate changes of the data item, at the same
position of the data item. This visual encoding tells us which
data points are more stable/unstable than the others. See
Figs. 3 and 6 for an example.

4.2 Clustering

Given n data items, X = {x1, · · · , xn} ∈ R
m×n, and the

number of clusters c, a clustering method generates their
cluster indices, Y = {y1, · · · , yn} ∈ R

1×n, where yi ∈
{1, · · · , c}.

k-means k-means repeats (1) minimizing the sum of
squared distances between data items and their corresponding
cluster centroids and (2) updating cluster assignments.

Latent Dirichlet Allocation (LDA) LDA (Blei, Ng, and
Jordan 2003) computes two outputs: the distribution of each
topic over words and the distribution of each document over
topics. From a clustering viewpoint, the former corresponds
to a cluster representative vector μj for topic cluster j, and
the latter corresponds to a soft-clustering coefficient, which
is used to determine yi by taking the topic index with the
maximum value. LDA updates these two sets of outputs
alternately, similar to k-means iterations.

Nonnegative Matrix Factorization (NMF) NMF (Lee
and Seung 1999) has been successfully utilized in document
clustering and topic modeling (Kuang and Park 2013). NMF
approximates a nonnegative matrix X as the product of two
low-rank nonnegative matrices W and H , which can be inter-
preted as cluster representatives and membership coefficients,
respectively, in the clustering context. One can compute yi
as the largest element index in the i-th column of H . NMF
iteratively updates W and H .

User Interaction Capabilities A straightforward interac-
tion is to change cluster assignments of user-selected items.
By utilizing the cluster-level interactions, we support cluster
splitting and merging in both soft and hard replacement in-
teractions. When merging clusters, the data items in the two
clusters to be merged are assigned the same cluster indices.
Accordingly, we dynamically reduce c by one. When split-
ting a cluster, we randomly select a subset of data items in
the cluster and assign their new cluster indices as c+ 1, and
increase c by one. After these steps, the subsequent iterations
are performed.

Stability and Convergence For convergence measure, we
use the relative number of cluster membership changes at a
given iteration t with respect to the previous iteration, i.e.,

SCL (t) =
1

n

∑

1≤i≤n

I
(
yti �= yt−1

i

)
. (5)

By monitoring this measure over iterations, a user can check
the stability of the clustering result.

To directly visualize the cluster membership changes, we
draw the line connecting the previous cluster label to the
current position of a particular data item in the visualization.
A large number of lines indicates that the clustering result is
going through significant changes. See Figs. 7 and 8 for an
example. Additionally, in document clustering, we color-code
each keyword in a cluster summary depending on whether
the keyword has an increasing (red-colored) or decreasing
(blue-colored) importance in the corresponding cluster. See
Fig. 10 for an example. In this manner, a user can have a clear
understanding of the topic changes over iterations.

5 Experiments
In this section, we present the analyses on the iteration-wise
behaviors of machine learning methods as well as various
user interaction scenarios in PIVE.

5.1 Iteration-wise Behavior and Visualization

Fig. 2 shows the iteration-wise behavior of MDS along with
its computing times. Both our stability/convergence mea-
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(a) Convergence and accuracy (b) MDS criterion values in
Eq. (1)

(c) Computing time

Figure 2: Iteration-wise behavior of MDS for 500 handwritten digit data represented in 16 dimensions.

(a) Iteration 10 (b) Iteration 15
nn

(c) Iteration 30 (d) Iteration 93 (final)

Figure 3: MDS scatter plots for 500 handwritten digit data represented in 16 dimensions.

sures and the MDS criterion value become stable within
20 iterations out of 93 in total, indicating that a small
number of iterations suffices visual analytics applications
(Figs. 2(a)(b)). This trend can also be found via our visual sta-
bility/convergence encoding schemes (Section 4.1). That is,
as indicated by large circles and long polylines in Fig. 3(a),
the major visual changes occur in early iterations. On the
other hand, the result at around the 30th iteration (Fig. 3(c))
is virtually the same as the final one at the 93rd iteration
(Fig. 3(d)). Throughout the entire iterations, each iteration
takes roughly the same computing time as seen in Fig. 2(c).
Therefore, instead of performing a large number of MDS iter-
ations, PIVE quickly provides a user with a sufficiently good
visualization. This becomes critical in large-scale data where
each iteration requires a lot of time. A similar argument ap-
plies to t-SNE. From our measures shown in Figs. 4(a)(b), a
stable result can be found as early as at the 130th iteration
out of 1,000 in total.

In clustering, Figs. 5(a)(b) presents the iteration-wise be-
havior of k-means. As seen in Fig. 5(a), significant changes
from early iterations diminish quickly as iterations proceed.
Nonetheless, the computing time per iteration remains al-
most the same (Fig. 5(b)). Finally, LDA shows a different
behavior from the above-discussed methods in Figs. 5(c)(d).
Although the cluster membership changes between iterations
generally decrease and the intermediate solutions get close
to the final solutions (Fig. 5(c)), the cluster memberships
change significantly even after a large number of iterations,
e.g., 1,200 iterations. In iVisClustering, we confirm that the
top keywords of each topic remain relatively unchanged af-
ter several hundreds of iterations, but the randomness of the
sampling-based algorithm may prevent LDA from generating
consistent outputs for stable visualizations.

5.2 User Interaction Scenarios4

We now show interaction scenarios discussed in Section 4.

Moving Data Points in t-SNE Fig. 6 shows a sequence of
multiple point-moving interactions in t-SNE (Section 4.1) for
spoken letter data with 26 classes corresponding to individual
alphabet letters. After significant visualization changes, e.g.,
Fig. 6(a), a sufficiently stable visualization (Fig. 6(b)) still
contains many overlapping clusters. Therefore, we move the
points representing the letter ‘c’ (red arrow in Fig. 6(b)) away
from the overlapping clusters. As a result, the letter cluster ‘z’
(blue arrow in Fig. 6(c)) is separated out accordingly, which
gives an insight that the letters ‘c’ and ‘z’ are pronounced
similarly. Second, we move some data points in the letter
cluster ‘w’ (red arrow in Fig. 6(d)), but the neighboring letters
‘m’ and ‘n’ (blue arrow in Fig. 6(e)) are not pulled towards the
moved points. It indicates that the letter ‘w’ does not actually
sound similar to ‘m’ and ‘n’ although the initial visualization
did not show this. Next, we move the letter ‘q’ (red arrow
in Fig. 6(e)) out of the cluttered region. In response, the
letter ‘u’ (blue arrow in Fig. 6(f)) is also separated from the
overlapping clusters and pulled towards the moved cluster
‘q’. This makes sense because these two letters ‘q’ and ‘u’
sound similar but quite different from the other previously
overlapping letters, ‘b’, ‘d’, ‘e’, ‘g’, ‘p’, ‘t’, and ‘v’, all of
which are pronounced with the ‘–ee’ sound at the end. Finally,
we increase separations between the two letters ‘l’ and ‘o’,
which sound quite different, by moving parts of them away
from each other (red arrow in Fig. 6(g)). Now, their separation
becomes clearer in the visualization (blue arrow in Fig. 6(h)).

4A demo video is at http://tiny.cc/aaai17pive.
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(a) Convergence and accuracy (b) t-SNE criterion values in Eq. (2) (c) Computing time

Figure 4: Iteration-wise behavior of t-SNE for 1,558 spoken letter data represented in 618 dimensions.

(a) Convergence and accuracy (b) Computing time (c) Convergence and accuracy (d) Computing time

Figure 5: Iteration-wise behavior of (a-b) k-means for CHI papers from 1999-2010 and (c-d) LDA for 20 newsgroups data.

Freezing and Splitting/Merging Clusters in k-means
Using k-means that we customized in Jigsaw (Stasko, Görg,
and Liu 2008), we first demonstrate an interaction of fix-
ing/freezing cluster assignments for selected data items via
hard replacement (Section 4.2). Fig. 7 shows this interaction
on the CHI conference papers published between 1999 and
2010. At early iterations, the cluster membership changes are
significant (Fig. 7(a)), but the clustering results become much
stable after a few iterations, e.g., the sixth iteration out of 26
in total (Fig. 7(b)). At this point, we choose three stable clus-
ters that have clear meaning (green rectangles in Fig. 7(b))
and fix the cluster indices of data items in these clusters,
which amount to 32% of the total data items. The final solu-
tion due to this interaction (Fig. 7(c)) does not differ much
from that without this interaction (Fig. 7(d)). Further analysis
shows that less than 10% of the final cluster memberships
differ between the two cases, as seen from the increasing
blue line reaching 90% accuracy with respect to the final
solution without the interaction in Fig. 9(a). The computing
time taken for the subsequent iterations drops significantly as
shown by the blue line in Fig. 9(b). Next, we merge multiple
small, semantically related clusters and split large, unclear
clusters, as shown in Fig. 8. In the sixth iteration (Fig. 8(a)),
we merge two similar clusters (green rectangles) and split an
unclear cluster (purple rectangles). The subsequent iterations
(Figs. 8(b)(c)) form a properly merged cluster ‘task, perfor-
mance, models’, and a new cluster ‘mobile, phone, device’ is
unveiled from the cluster split, which would not have been
found without this interaction (Fig. 7(d)).

Filtering Noisy Documents to Improve Topics in LDA
An available interaction with LDA in iVisClustering is to

filter those documents with no strong relationships to any
particular topics. After filtering, the remaining documents
are used to re-run LDA to generate a clearer set of topics.
With PIVE, given several mixed topics (black rectangles in
Fig. 10(b)), we performed this interaction at around the 300th
iteration out of 1,000 in total. Such an interaction success-
fully improves topic quality at around the 700th iteration
(Fig. 10(c)), which, without PIVE, would have taken two full
sets of 1,000 iterations of LDA.

6 Discussions

Broad Applicability Our soft and hard replacement inter-
action methods have fundamental differences from most of
the existing interaction methods, e.g., previous point-moving
interactions in dimension reduction (Endert et al. 2011;
Brown et al. 2012). In particular, our methods do not require
any major algorithmic modifications unlike other existing
methods. In this respect, ours have a great potential to con-
vert almost any iterative machine learning methods to its
interactive version, which would greatly increase their util-
ity in visual analytics. Furthermore, our replacement-based
methodology directly interprets a user interaction in the same
form as an algorithm output, e.g., low-dimensional coor-
dinates in dimension reduction and cluster assignments in
clustering. Thus, our methods do not involve any ambiguous
inference of such user interactions to a model parameter, e.g.,
new Bayesian prior parameter values (Endert et al. 2011) and
new linear combination coefficients in a weighted Euclidean
distance model (Brown et al. 2012).

Furthermore, PIVE can significantly benefit various ma-
chine learning and data mining tasks including classification,
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(a) Iteration 17 (b) Iteration 100 after moving (c) Iteration 130 (d) Iteration 180 after moving

(e) Iteration 235 after moving (f) Iteration 475 (g) Iteration 574 after moving (h) Iteration 999 (final)

Figure 6: Point-moving interactions with t-SNE for 1,558 spoken letter data represented. in 618 dimensions

(a) Iteration 2 (b) Iteration 6 (c) Iteration 25 (final) after freezing
clusters

(d) Iteration 26 (final) without in-
teractions

Figure 7: Cluster freezing interactions with k-means in Jigsaw. (b) At iteration 6, the green-colored clusters are fixed. The final
result with/out this interaction is (c)/(d), respectively. The CHI papers published from 1999-2010 were used.

regression, anomaly detection, and association rule mining. In
classification and regression, the training process performed
in support vector machines, decision trees, and deep neural
network can significantly benefit from PIVE via interactively
changing parameters, removing noisy features, and correct-
ing misclassified data items for better prediction performance.
Similarly, in anomaly detection and association rule mining,
PIVE can also help users steer the algorithm in real time to
obtain the results in their own manner.

Degree of Influence The simplicity of PIVE bears a poten-
tial limitation that the interaction effect reaches only locally.
In the above-mentioned existing work, even if a user interac-
tion was performed in a small portion of data, newly adjusted
model parameters affect the entire data. On the contrary, this
rarely happens when using our methods since our user in-
teractions influence only closely-related data instances and
clusters. As a result, a user may have to frequently perform
multiple interactions until a satisfactory result is obtained.
Even so, PIVE mitigates this drawback by allowing a user
to fluidly perform multiple interactions and to easily steer
the algorithm output through multiple local changes. This

important aspect makes our PIVE-based interactions truly
compelling in many scenarios.

Optimal Frequency of Visualization Update Currently,
the update frequency of visualizing iteration-wise results
is mainly dependent on the speed of algorithm iterations.
However, such a frequency may be too fast to keep track
of or too slow to spend one’s time on. In addition, if the
total computing time of an algorithm is short, users may
prefer waiting for the entire algorithm iterations to visualizing
every intermediate result per iteration. Therefore, it would be
important to consider the optimal frequency of visualization
update. To handle this issue, one can update the visualization
after multiple iterations are performed if each iteration is too
fast. If each iteration takes much time, one can further split
one iteration into individual data level to provide a faster
visualization update. For instance, when visualizing k-means
results, each iteration updates the entire set of data items
in terms of their cluster indices, which may take long time
to finish. In this case, PIVE may update the visualization
at the level of an individual (or multiple) data item(s), and
accordingly, interactions can be effectively performed during
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(a) Iteration 6 (b) Iteration 7 (c) Iteration 26 (final) after split/merge

Figure 8: Split and merging interactions with k-means. From (a) to (b), the green clusters are merged and the purple cluster is
split at the sixth iteration. The final result is in (c). The CHI papers published from 1999-2010 were used.

(a) Convergence and accuracy (b) Computing time

Figure 9: Iteration-wise behaviors of k-means with and with-
out the cluster freezing interaction in Fig. 7(b). The black
vertical lines represent the interaction time.

the visualization update with an optimal frequency.

7 Conclusions

We present PIVE (Per-Iteration Visualization Environment),
a novel framework that supports real-time interactions with
machine learning. PIVE visualizes intermediate results dur-
ing algorithm iterations and allows a user to perform inter-
actions via soft and hard replacement in real time. We also
discussed various issues of PIVE and their solutions in terms
of stability and convergence as well as computational over-
heads.

We plan to apply this idea to expand the visual analytic
capabilities using machine learning in various manner (Kim
et al. 2017).
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