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Abstract

Inferring the latent emotive content of a narrative requires
consideration of para-linguistic cues (e.g. pitch), linguistic
content (e.g. vocabulary) and the physiological state of the
narrator (e.g. heart-rate). In this study we utilized a combina-
tion of auditory, text, and physiological signals to predict the
mood (happy or sad) of 31 narrations from subjects engaged
in personal story-telling.
We extracted 386 audio and 222 physiological features (us-
ing the Samsung Simband) from the data. A subset of 4 au-
dio, 1 text, and 5 physiologic features were identified using
Sequential Forward Selection (SFS) for inclusion in a Neural
Network (NN). These features included subject movement,
cardiovascular activity, energy in speech, probability of voic-
ing, and linguistic sentiment (i.e. negative or positive). We
explored the effects of introducing our selected features at
various layers of the NN and found that the location of these
features in the network topology had a significant impact on
model performance.
To ensure the real-time utility of the model, classifica-
tion was performed over 5 second intervals. We evaluated
our model’s performance using leave-one-subject-out cross-
validation and compared the performance to 20 baseline mod-
els and a NN with all features included in the input layer.

Introduction

Human communication depends on a delicate interplay be-
tween the emotional intent of the speaker, and the linguis-
tic content of their message. While linguistic content is de-
livered in words, emotional intent is often communicated
though additional modalities including facial expressions,
spoken intonation, and body gestures. Importantly, the same
message can take on a plurality of meanings, depending on
the emotional intent of the speaker. The phrase ”Thanks a
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lot” may communicate gratitude, or anger, depending on the
tonality, pitch and intonation of the spoken delivery.

Given it’s importance for communication, the conse-
quences of misreading emotional intent can be severe, par-
ticularly in high-stakes social situations such as salary ne-
gotiations or job interviews. For those afflicted by chronic
social disabilities such as Asberger’s syndrome, the inabil-
ity to read subtle emotional ques can lead to a variety of
negative consequences, from social isolation to depression
(Müller, Schuler, and Yates 2008; Cameron and Robinson
2010). Machine-aided assessments of historic and real-time
interactions may help facilitate more effective communica-
tion for such individuals by allowing for long-term social
coaching and in-the-moment interventions.

In this paper, we present the first steps toward the real-
ization of such a system. We present a novel multi-modal
dataset containing audio, physiologic, and text transcriptions
from 31 narrative conversations. As far as we know, this
is the first experimental set-up to include individuals en-
gaged in natural dialogue with the particular combination
of signals we collected and processed: para-linguistic cues
from audio, linguistic features from text transcriptions (av-
erage postive/negative sentiment score), Electrocardiogram
(ECG), Photoplethysmogram (PPG), accelerometer, gyro-
scope, bio-impedance, electric tissue impedance, Galvanic
Skin Response (GSR), and skin temperature.

The emotional content of communication exists at multi-
ple levels of resolution. For instance, the overall nature of
a story could be positive but it may still contain sad mo-
ments. Hence, we present two analyses in this paper. In the
first analysis, we train a Neural Network (NN) to classify the
overall emotional nature of the subject’s historic narration.
In the second analysis, we train a NN to classify emotional
content, in real-time. We also show how the optimization of
network topology, and the placement of features within the
topology improves classification performance.

Literature Review

Cognitive scientists indicate that emotional states are
strongly associated with quantifiable physical correlates in-
cluding the movement of facial muscles, vocal acoustics,
peripheral nervous system activity, and language use (Bar-
rett, Lindquist, and Gendron 2007). The detection of a latent
emotional state by a machine agent is strongly influenced
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by both the number of physical correlates available (e.g. au-
dio alone, versus audio and visual), the context in which the
correlates are observed (e.g. enhanced heart rate during fear
versus excitement) (Barrett, Mesquita, and Gendron 2011),
as well as the social context in which the conversations take
place (e.g. a sports stadium versus a meeting room) (Rilliard
et al. 2009).

Importantly, the interactions between these physical cor-
relates also have unique associations with the latent emo-
tional states. For instance, a combination of high heart rate
and voicing is associated with excitement although neither
are independently discriminative. It follows that emotive es-
timation is aided by (1) access to multiple data modalities,
and (2) the utilization of techniques which can account for
the complex interactions between those modalities.

Existing data in the domain of emotion detection have
been collected using a variety of tasks including the pre-
sentation of images, video clips, and music. Data has also
been collected though problem solving tasks, facial expres-
sions exercises, acting, and scripted speech (Douglas-Cowie
et al. 2003; Calvo and D’Mello 2010). The highly controlled
nature of these studies enhances the ability of investigators
to identify features which relate to emotive state at the cost
of practical utility. That is, there is relatively little work on
emotive description of spontaneous human interactions in a
natural setting (Koolagudi and Rao 2012).

With respect to data analysis, existing studies have ap-
plied techniques ranging from regression and Analysis of
Variance (ANOVA) to Support Vector Machines (SVM),
Clustering and Hidden Markov Modeling (HMM). With
the recent interest in ’Deep’ learning, Neural Networks are
also increasingly utilized in emotion detection for speech
(Stuhlsatz et al. 2011; Li et al. 2013; Han, Yu, and Ta-
shev 2014), audio/video (Kahou et al. 2013; Wöllmer et al.
2010), audio/video/text (Wöllmer et al. 2013), and physio-
logic data (Haag et al. 2004; Wagner, Kim, and André 2005;
Walter et al. 2011; Katsis et al. 2008). Many of the surveyed
studies, however, utilize only a single modality of data (text,
audio, video, or physiologic) for the inference task. While
these studies succeed in enhancing knowledge, a real-world
implementation will require the consideration of multiple
data modalities, with techniques that account for multiple
levels of interaction between the modalities in real-time, just
as humans do (D’Mello and Kory 2012).

Methods

Data Collection

Subject Recruitment Twenty individuals from the Mas-
sachusetts Institute of Technology (MIT) were invited to
participate in this study. Prior to data collection, all partici-
pants were informed of the experimental protocol, the goals
of the study, and were told that they could opt-out of the
study at any time, for any reason. Participating subjects were
asked to provide both written and oral consent for the use
of their de-identified data. 50% of the invited individuals
agreed to participate in the study. The average age of the
10 participating individuals was 23. Four participants iden-
tified as male, and six participants identified as female. All

Data Quantity
Subjects 10 (4 male, 6 female)
Narratives 31 (15 happy, 16 sad)

Average Duration 2.2 mins
Total Duration 67 mins

5 Sec Segments 804

Features
Quantity

Total (selected)
Physiologic 222 (5)
Audio 386 (4)
Text 2 (1)

Table 1: Under the Data heading we display information on
the total number of subjects, narratives, and samples used in
the study. Under the Features heading we provide informa-
tion on the total number of features collected in each of the
modalities (physiologic, audio and text), and the proportion
of the features selected for inclusion in our model.

ten individuals listed English as their primary language.

Experimental Venue and Approach The experimental
venue was a 200 square foot temperature and light con-
trolled conference room on the MIT campus. Upon arrival
to the experimental venue, participants were outfitted with a
Samsung Simband, a wearable device which collects high-
resolution physiological measures. Audio data was recorded
on an Apple iPhone 5S.

Next, participants were provided with the following ex-
perimental prompt: ”In whatever order you prefer, tell us at
least one happy story, and at least one sad story.”. If sub-
jects asked for additional clarification about story content,
they were informed that there was ”no correct answer”, and
were encouraged to tell any story they subjectively found to
be happy or sad. A summary of the collected data is pre-
sented under the Data heading in Table 1.

Time-Series Segmentation

Collected data was time-aligned and segmented using 5 sec-
ond non-overlapping windows. Our window size was se-
lected such that the minimum number of spoken words ob-
served within any given segment was two or more. This cri-
teria was necessary to evaluate the effects of transcribed text
features. Smaller window sizes (e.g. 1 second) resulted in
segments which contained only partial words, making the
analysis infeasible. Importantly, we do not anticipate large
fluctuations in speaker emotional state within the 5 second
windows as (Schuller, Rigoll, and others 2006) reported that
the emotive content of speech is stable within windows sizes
as large as 8 seconds.

Each 5 second window of our data was manually tran-
scribed, and annotated for emotional content by a research
assistant. For emotional annotation, the research assistant
was asked to rate the emotive content of each 5 second
audio segment according to the four axis of a simpli-
fied Plutchiks emotion wheel: happy-sad, interested-bored,
admiration-loathing and angry-afraid (Plutchik 2001). The
coding scheme is illustrated in Table 2.
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Figure 1: Distribution of emotional content within 5 second
windows of collected happy and sad narrations. Negative
segments refer to those which were found to contain sad-
ness, loathing, anger, fear or boredom. Positive segments re-
fer to those which were found to contain happiness, interest,
or admiration. Neutral segments refer to those which were
neither positive nor negative.

The segment-level annotations were grouped into three
more general classes: positive, negative, and neutral. Neg-
ative segments refer to those containing sadness, loathing,
anger, fear or boredom. Positive segments refer to those con-
taining happiness, interest, or admiration. Neutral segments
refer to those which were neither positive nor negative. See
Figure 1 for a breakdown of our collected data by story type,
segment class, and segment value.

Coding -1 0 1

Happy-Sad Sad Neutral Happy
Interested-Bored Bored Neutral Interested
Admiration-Loathing Loathing Neutral Admiration
Angry-Afraid Afraid Neutral Angry

Table 2: The coding scheme used to assessing the emotional
content of 5 second segments of the collected audio.

Feature Extraction

Within each 5 second segment, a set of candidate features
for the model were extracted from the Simband sensor data

stream, as well as the recorded audio data. All features were
normalized to a zero-mean and unit variance representation.
All features with zero-variance, or those that were missing
in 1% or more of the total observations were excluded. The
total number of features in each of the modalities are sum-
marized under the Features heading in Table 1. We also pro-
vide additional detail on the extracted features below.

Physiologic Features Within each 5 second window we
extracted the mean, median, and variance of the 91 available
streams of Simband data (for a total of 222 Simband candi-
date features). Streams included Electrocardiogram, Photo-
plethysmogram, accelerometer, gyroscope, bio-impedence,
electric tissue impedance, Galvanic Skin Response, and
skin temperature. See the Supplementary Materials for an
overview of the Simband data streams.1

Audio Features Within each 5 second segment we also
extracted para-linguistic audio features. Para-linguistic fea-
tures were extracted based on the feature set presented at
the INTERSPEECH 2009 Emotion Challenge, and using
the openSMILE Toolkit (Schuller, Steidl, and Batliner 2009;
Eyben, Wöllmer, and Schuller 2010). Low level descrip-
tors were the RMS energy, Mel Frequency Cepstral Coeffi-
cients (MFCCs) 1-12, Pitch (F0), Zero Crossing Rate (ZCR),
and voicing probability. A total of 384 features defined as
functionals were derived from low level descriptions of the
speech signal. These functionals were the mean, standard
deviation, skewness, kurtosis, maximum value, minimum
value, range, absolute position of minimum/maximum val-
ues, linear regression coefficients slope/offset, and linear re-
gression Mean Squared Error (MSE).

Text Features Within each 5 second segment, linguis-
tic features were extracted to capture the emotive content
of words. More specifically, the audio was manually tran-
scribed and the average positive and negative sentiment of
all words in each 5 second window were calculated using
the SentiWordNet Lexicon (Esuli and Sebastiani 2006).

Feature Selection

We used the sequential forward selection algorithm to iden-
tify the subset of candidate features with the greatest impor-
tance for predicting the narrative class (happy or sad) in a
logistic regression model. The performance criteria of the
forward selection algorithm was improvement in classifica-
tion performance on a held out validation set. To ensure the
robustness of the identified features, the forward selection
algorithm was performed on ten folds of our dataset (90%
training, 10% validation) and a feature was marked for in-
clusion in our models only if it was selected in 5 or more of
the folds.

Experimental Approach

Using the selected features, we performed two analyses. In
the first analysis, we trained a Neural Network model to clas-
sify the overall nature of a narration, as reported directly by
the subject: happy or sad. In the second analysis, we trained

1http://people.csail.mit.edu/tuka/aaai-17-supp-materials.pdf
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Selected Features Signal Type β Odds Ratio [95% CI] p-value
Accelerometer Y-axis (mean) Physiologic -1.75 0.17 [0.11- 0.25] 1.82e-18
Accelerometer Z-axis (mean) Physiologic -2.28 0.10 [0.06 - 0.17] 1.22e-16
MFCC 3 Differential (min) Para-linguistic 0.63 1.88 [1.37 - 2.57] 7.26e-05
MFCC 12 (kurtosis) Para-linguistic -0.47 0.63 [0.44 - 0.89] 7.82e-03
Negative Sentiment Linguistic -0.50 0.61 [0.45 - 0.81] 5.15e-04
PPG Sensor #0 Physiologic 2.84 17.12 [7.36 - 39.8] 4.21e-11
PPG Sensor #1 Physiologic -2.38 0.093 [0.04 - 0.20] 2.58e-09
PPG Signal (mean) Physiologic -1.80 0.17 [0.08 - 0.36] 3.75e-06
RMS Energy (mean) Para-linguistic 1.82 6.17 [3.85 - 9.88] 1.17e-13
Voicing Probability (linear regression MSE) Para-linguistic 0.66 0.16 [1.41 - 2.65] 2.57e-05

Table 3: The ten features chosen by the Sequential Forward Selection Algorithm from the 610 candidate features, over 10 folds.
Features from all three modalities (physiologic, para-linguistic, and linguistic) were found to be significantly associated with
happy/sad narrations. β: Estimate of coefficients

a NN model to classify the segment-level emotional class an-
notated by the research assistant: positive, negative, or neu-
tral.

Neural Network Optimization

While the power of NNs as a classification tool is a well-
established, the performance of NNs are dependent on both
the initial settings of network weights, and the topology
of the network itself (number of hidden layers, and nodes
within those layers). To account for this dependence, we op-
timized both the network topology, and the location of our
selected features within the topology. More specifically, we
trained all possible configurations of a NN with a number
of hidden layers between 0 and 2 (where 0 hidden layers
corresponds to a logistic regression). We also explored all
possible configuration of the nodes across the hidden layers
such that the ratio of network weights to training points was
less than or equal to ten (Friedman, Hastie, and Tibshirani
2001). We also explored a random 10% of all 310 possible
locations of our selected features within the NN structure

For the segment-level classification task, we also explored
the effects of accounting for state-transition effects by es-
timating a state transition probability matrix (Markov as-
sumption), and adjusting the probabilistic outputs of our
model, given the prior state estimate.

Model Validation

To ensure the robustness of our approach, we compared
the optimized narrative-level NN to several other supervised
machine learning classifiers including: Linear and Quadratic
Discriminant Analysis, Decision Trees, Naive Bayes, k-
Nearest Neighbors, Support Vector Machines, Bagged Trees
and Boosted Trees. The optimized segment-level NN was
compared to a multinomial logistic regression baseline (Our
reasons for selecting this baseline are explained in the results
section).

All models were validated using leave-one-subject-out
cross-validation, where the models were trained on all but
one subject’s data segments, and then tested on the remain-
ing individual’s segments. We compared the performance of
our optimized NNs to the baseline approaches on the held-
out subject, in each fold. The performance of narrative-level

(A) NARRATIVE
AUC

(μ)
AUC

(σ)
Percentile
[25th 75th]

Quadratic Disc. 0.83 0.06 [0.79 0.89]
Gaussian SVM 0.86 0.07 [0.80 0.93]
Linear Disc. 0.90 0.07 [0.83 0.95]
Subspace Disc. Ens. 0.90 0.06 [0.85 0.95]
NN (0 hidden layers) 0.92 0.05 [0.88 0.95]

(B) SEGMENT
Acc. (%)

(μ)
Acc. (%)

(σ)
Percentile
[25th 75th]

MLR 40.8 7.36 [34.1 46.0]
NN (2L-6x3N) 45.3 8.10 [38.5 49.0]

+ Feature Opt. 47.3 8.72 [39.9 55.1]

Table 4: A comparison of the NN model to several base-
line approaches for (A) narrative-level classification and
(B) segment-level classification. KNN: k-Nearest Neigh-
bors. SVM: Support Vector Machine. Disc: Discriminant
Analysis. Ens: Ensemble. MLR: Multinomial Logistic Re-
gression. NN: Neural Network. Opt: Optimized.

models was compared using the Area Under the Receiver
Operating Curve (AUC), because we wanted to present the
performance of the model across all potential misclassifi-
cation costs. The performance of the segment-level models
was compared using Accuracy given that the overall inci-
dence of positive, negative, and neutral moments was near
balanced (262 positive, 257 negative, 285 neutral).

Results

The cross-validated forward selection algorithm identified
10 features for inclusion in the NN model. The selected fea-
tures spanned all three modalities; Simband physiologic fea-
tures (mean accelerometer and mean PPG signal) as well as
audio para-linguistic (MFCC 2 differential, MFCC 12, RMS
energy, and voicing probability) and linguistic (negative sen-
timent) features.

Narrative-Level

In Table 4(A), we present the results of best performing
NN alongside the 20 baseline approaches for the narrative-
level classification. After optimization, the narrative-level
NN converged to a logistic regression model with a mean
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Figure 2: (A) A heatmap of segment-level NN accuracy for a variety of topological settings. Hotter colors correspond to higher
accuracy. (B) A depiction of the segment-level NN after optimization of feature location within the NN topology. Lower level
features such as the accelerometer signal was placed in lower levels of the network while more abstract features, such as negative
text sentiment, was placed higher in the network.

Figure 3: Real-time estimation of the emotional content in 30 seconds of collected data, using our optimized NN. The color
of the text at the top of the plot reflects the ground truth labels generated by the research assistant (blue for negative, red for
positive, black for neutral). The predictions of the network (y-axis) reflect the underlying emotional state of the narrator.

model AUC of 0.92 (0.02 better than the next best perform-
ing model). The selected features, model coefficients, odds
ratio and p-values of the logistic regression model are illus-
trated in Table 3. All selected features exhibited a statisti-
cally significant association (p < 0.001) with the outcome.

The coefficients of the logistic regression indicate that in-
creased movement (Accelerometery), and cardiovascular ac-
tivity (PPG Signal) are associated with negative narratives.
We also observed that differing postures (As reflected by the
PPG sensor number) are associated with different emotional
states.

The MFCC 12 feature is a measure of static background

audio noise which arises when speakers fall silent. That is,
when there is less speaking, it is indicative of a more nega-
tive narratives. This is also reflected in the voicing probabil-
ity feature, which captures if the subject was speaking and
was associated with a positive narratives.

We may interpret the MFCC 3 feature as an indication
of minimum voice energy changes. That is, fluctuations in
low frequency energy content are associated with happy nar-
ratives. This is reflected more generally by the RMS En-
ergy feature, which indicates that higher energy is associ-
ated with positive narratives. Lastly, we observe that nega-
tively charged linguistic content is associated with negative
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narratives.

Segment-Level

In Table 4(B), we present the results of the best performing
NN for the segment-level classification. Given that logistic
regression was the best performing model in the narrative-
level classification, multinomial logistic regression was se-
lected as the baseline for this component of our analysis.

As shown in Figure 2A, the optimal topology was a two
hidden-layer network with six nodes in the first layer and
three nodes in the second layer resulting in an accuracy of
45.3 %, a 4.5% absolute increase over the Multinomial Lo-
gistic Regression (40.8 % accuracy). As shown in Figure 2B,
the optimal connection of the features was distributed across
the different layers of the network. The optimal connection
of the RMS Energy (mean), Voicing Probability (linear re-
gression MSE), Negative sentiment, PPG Sensor #1, and Ac-
celerometer Y-axis (mean) was to the output layer. The opti-
mal connection of the MFCC 3 Differential (min), and PPG
sensor #0 features was to the second hidden layer. The opti-
mal connection of Accelerometer Z-axis (mean), PPG Sig-
nal (mean), and MFCC12 (kurtosis) was to the first hidden
layer.

The mean accuracy of the feature optimized NN, was
47.3%, exhibiting a 7.5% absolute, and 17.9% relative im-
provement to the baseline approach. We found that modu-
lation of network prediction using the state transition prob-
abilities decrease classification performance, indicating that
emotional content is stable within the 5 second segments.

In Figure 3, we illustrate the performance of our opti-
mized NN on a 30 second segment of an actual subject’s
data. The color of the text at the top of the plot reflects the
annotations from the research assistant (blue is negative, red
is positive, black is neutral), while the amplitude of the sig-
nal reflects our model’s real-time emotion estimate. The fig-
ure demonstrates the ability of our model to perform real-
time classification during natural conversation.

Discussion
In this work, we collected a set of non-invasive audio and
physiologic signals on subjects engaged in minimally struc-
tured narrations and performed two analyses. In the first
analysis, we trained an optimized NN to classify the over-
all nature of a narration, as reported directly by the subject:
happy or sad. In the second analysis, we trained an opti-
mized NN to classify segment-level emotional class: posi-
tive,negative or neutral.

The novelty of this work lies in both the multi-modal data
collected, and the methodological approach utilized for the
classification of the emotional state. Unlike prior efforts in
this area (Zeng et al. 2009; El Ayadi, Kamel, and Karray
2011), participants in the study were not asked to artificially
act-out particular emotive states. Instead, participants were
asked to narrate a story of their choosing, that was happy or
sad in their subjective opinion. To our knowledge, this type
of data is unique in the existing literature. Hence, the models
we developed in this study may be more representative of the
emotive content one may expect to see during natural human
interaction.

There were several features such as those related to ECG
that were not marked for inclusion using our feature selec-
tion approach. This result is likely due to our feature ex-
traction paradigm and not the informational content in the
signals themselves.

The mean AUC of our narrative-level NN was 0.92. This
result provides evidence that real-time emotional classifica-
tion of natural conversation is possible with high fidelity.
The convergence of our narrative-level NN to a logistic re-
gression model also indicates that the features which dis-
criminate between happy or sad narrations are easily inter-
preted and consistent across patients.

While the accuracy of our segment-level classification
was 17.9% above chance, and 7.5% better than the baseline
approach, there is clearly room for improvement. One rea-
son for the relatively modest performance of the segment-
level model may be the small size of our data-set, which
limits the ability of any modeling approach to identify the
generalized associations between our selected features and
the segment-level emotions. Indeed, we take these results as
strong motivation for the collection of larger datasets.

Beyond emotion detection, this work demonstrates how
to enhance the performance of NNs by optimization of net-
work topology, and the location of features within the net-
work structure. We observed that introducing features into
particular layers improved the performance of the NN. Inter-
estingly, lower-level features such as PPG and accelerometer
signals were placed lower in the network structure, while
higher level features such as negative sentiment of tran-
scribed audio were placed in a higher level of the network
structure.

Additional work on the ultimate utility and usability of
an emotion detection algorithm is also needed to understand
the value of real-time emotion detection. Additional exper-
iments may include discretely sending text message notifi-
cations on the status of the interaction to one of the partici-
pants, and monitoring changes in emotive trajectory associ-
ated with the intervention. When used in combination, our
models could serve as a starting point for a real-time emo-
tion system, which provides historic and real-time assess-
ments of interactions (See Figure 4), allowing for long-term
coaching and in-the-moment interventions.
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