
Probably Approximately Efficient
Combinatorial Auctions via Machine Learning

Gianluca Brero
Department of Informatics

University of Zurich
brero@ifi.uzh.ch

Benjamin Lubin
Information Systems Department

Boston University School of Management
blubin@bu.edu

Sven Seuken
Department of Informatics

University of Zurich
seuken@ifi.uzh.ch

Abstract

A well-known problem in combinatorial auctions (CAs) is
that the value space grows exponentially in the number of
goods, which often puts a large burden on the bidders and
on the auctioneer. In this paper, we introduce a new design
paradigm for CAs based on machine learning (ML). Bidders
report their values (bids) to a proxy agent by answering a
small number of value queries. The proxy agent then uses
an ML algorithm to generalize from those bids to the whole
value space, and the efficient allocation is computed based on
the generalized valuations. We introduce the concept of prob-
ably approximate efficiency (PAE) to measure the efficiency
of the new ML-based auctions, and we formally show how
the generelizability of an ML algorithm relates to the effi-
ciency loss incurred by the corresponding ML-based auction.
To instantiate our paradigm, we use support vector regres-
sion (SVR) as our ML algorithm, which enables us to keep
the winner determination problem of the CA tractable. Dif-
ferent parameters of the SVR algorithm allow us to trade off
the expressiveness, economic efficiency, and computational
efficiency of the CA. Finally, we demonstrate experimentally
that, even with a small number of bids, our ML-based auc-
tions are highly efficient with high probability.

1 Introduction

Combinatorial auctions (CAs) allow bidders to submit bids
on bundles of items. They have found widespread applica-
tions in practice, for example for the procurement of indus-
trial goods (Sandholm 2013), for selling TV-ad slots (Goet-
zendorf et al. 2015), and in government spectrum auctions
(Cramton 2013). A motivation for allowing bidders to bid
on bundles, instead of just on individual items, is that this
avoids the “exposure problem” and can increase efficiency.

1.1 Preference Elicitation in CAs

Unfortunately, a major challenge when conducting CAs in
practice is the fact that the bundle space grows exponen-
tially in the number of items, which makes it impossible
for the bidders to report their full value function for even
medium-sized problems. The AI community has studied this
problem from multiple angles, recognizing that careful pref-
erence elicitation is a formidable challenge in CAs. For ex-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ample, Afriat (1967) and Lahaie (2010a) studied how to de-
rive value functions that rationalize observations where bid-
ders communicate their favorite bundles at given prices. La-
haie and Parkes (2004) proposed an elicitation algorithm us-
ing demand and value queries based on learning algorithms.
However, this algorithm may require a very large amount
of communication between the mechanism and the bidders
(exponential in the number of items).

Blumrosen and Nisan (2009) showed that elicitation
algorithms based on demand queries achieve the best
possible approximation of the optimal allocation under
polynomially-sized communication. However, in the worst
case, these approximations can still be bad. Furthermore, all
of these approaches based on demand queries do not con-
sider the computational burden that demand queries impose
on bidders (Blumrosen and Nisan 2009). Along the same
lines, Scheffel, Ziegler, and Bichler (2012) showed that the
price feedback provided by demand queries may provide a
cognitive challenge for bidders, and may not be effective in
coordinating them towards an efficient outcome.

1.2 Machine Learning-based Auctions

Our goal in this paper is to propose a radically new auc-
tion design paradigm which only elicits a small number of
bids from the bidders and then uses a machine learning algo-
rithm to generalize to the whole value space. We are willing
to forego full efficiency to significantly lower the communi-
cation burden on the bidders.

There are numerous challenges that need to be addressed
when using an ML algorithm inside a CA. The primary
worry, of course, is what happens to economic efficiency
when the generalized value function is wrong. To address
this question, we introduce a new concept we call Probably
Approximate Efficiency (PAE) as a useful relaxation of the
standard efficiency notion from auction design. PAE enables
us to capture the efficiency of ML-based auctions, by prov-
ing that they incur less than an ε loss in efficiency, with a
probability 1 − δ. Readers familiar with the Probably Ap-
proximately Correct (PAC) concept from ML will notice the
intended similarity to the PAC concept (Kearns and Vazirani
1994); however, while the two concepts are similar in spirit,
they are quite different on a technical level.1

1While PAC uses generalization errors via an expectation over
all points, we must use point-wise prediction intervals.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

397

To instantiate our new paradigm, we use support vector
regression (SVR) algorithms using carefully chosen kernels,
as this gives us various desirable properties and good re-
sults in terms of efficiency: we show experimentally that
our ML-based CAs are highly efficient with high probabil-
ity. To minimize the efficiency loss as much as possible in
practice, we propose an iterative version of our auction de-
sign, where the auction queries the bidders for their value of
the allocated bundle. This allows the auction to correct the
generalized valuation in the parts of the value space that is
likely to be most relevant for determining the efficient allo-
cation. Note that prior work has already considered kernels
in research on combinatorial markets, e.g., for computing
sufficiently expressive clearing prices (Lahaie 2009; 2010b;
2011; Abernethy, Lahaie, and Telgarsky 2016).

A second worry is the expressiveness of the auction, i.e.,
the question of whether bidders are able to express their
values when their interaction with the auction is mediated
by an ML algorithm. Indeed, not all choices of ML al-
gorithms will allow the bidders to express their full value
function. We study the expressiveness properties of different
choices of kernels, and show that (for suitably chosen pa-
rameters), polynomial kernels are expressive for a restricted
value space, while exponential and Gaussian kernels are
fully expressive (for all value functions).

A third worry in the design of CAs is the complexity
of the winner determination problem. If the bidders’ value
functions are communicated to the auction center via an
ML algorithm, it is unclear how the WD problem should
be solved. For some choices of an ML algorithm, the WD
problem would become non-linear, which would prohibit
an efficient solving of the problem. In this paper, we also
provide a succinct integer programming (IP) formulation
for the WD problem that arises from using SVR with the
three types of kernels we employ. This enables us to solve
reasonably-sized auction instances using standard optimiza-
tion software.

2 Preliminaries

In a combinatorial auction (CA), there is a set M of m dis-
tinct, indivisible items, and a set N of n bidders. We let
si ∈ {0, 1}m denote a particular bundle under considera-
tion by bidder i, with sij = 1 iff the bundle contains item j.
Given a bundle si for every bidder, we let s = (s1, ..., sn)
denote the vector of those bundles.2 Each bidder i has a
value function vi which, for every bundle si, defines i’s
value vi(si) ∈ R≥0. Given a value function vi for each bid-
der, we let v = (v1, ..., vi, ..., vn) denote the corresponding
valuation profile.

The CA asks bidders for value reports on different bun-
dles. Bidders may make non-truthful value reports. How-
ever, in this paper we do not study the incentive properties
of the CA, and thus we do not distinguish between true and
reported values.

We use a = (a1, ..., an) to denote an allocation, with ai
being the bundle that i gets allocated. An allocation a is fea-
sible if ∀j :

∑
i aij ≤ 1. We let A denote the set of fea-

2When used in the machine learning algorithm, this nested vec-
tor needs to be flattened into a (n ·m)-dimensional vector.

Bidder 1 Proxy 1

Bidder 2 Proxy 2

Bidder n Proxy n

Center

... ...

d1

d2

dn

ṽ1
ṽ2

ṽn

Allocation

Payments

Mechanism

Figure 1: Schematic view of the ML-based Mechanism.

sible allocations. Given a feasible allocation a ∈ A, we let
V (a) =

∑
i vi(ai) denote the social welfare of a.

The winner determination problem (determining the
welfare-maximizing allocation) is an NP-hard combinato-
rial optimization problem. We denote the solution to this as
a∗v ∈ argmaxa∈A V (a).

The CA mechanism defines how the allocation is deter-
mined, and it specifies a payment rule, which defines how
bidders’ payments are determined. In this paper, we describe
machine learning-based mechanisms that are agnostic to the
specific payment rule used.

3 Machine Learning-Based Mechanisms

The main idea of our machine learning-based auction mech-
anism is that instead of eliciting the bidders’ full value func-
tions, the mechanism aims to only elicit a small number of
bids (i.e., value reports for bundles) from each bidder. It then
uses a machine learning (ML) algorithm to generalize from
those bids to the bidders’ full value functions.

3.1 Proxy Agents

To conceptualize the interaction of the bidders with the ML-
based mechanism, we assume that each bidder is equipped
with a proxy agent: each bidder i makes value reports to its
proxy agent, and the proxy agent interacts with the mecha-
nism center. We assume that the proxy agents are hosted and
operated by the mechanism itself, i.e., this is only a concep-
tual tool and not meant to lead to any separation of agency,
or an improvement in terms of privacy or security. See Fig-
ure 1 for a high-level depiction of our auction framework.

3.2 Queries and Bidding Language

There are two common preference elicitation queries the
proxy could use to interact with the bidder:

• Value Query: The proxy queries the bidder with a bundle
si ∈ {0, 1}m and asks him to report his value vi(si).

• Demand Query: The proxy queries the bidder with a price
vector specifying a price for each bundle in the bundle
space. The bidder replies with the bundle that maximizes
his utility at the current prices.

It is not easy to compare the difficulty of answering value
or demand queries, because this difficulty depends on the in-
ternal representation of the bidder’s value function (Blum-
rosen and Nisan 2007). In this work, we decided to let the
proxies use value queries to interact with the bidders, be-
cause this allows an immediate application of the machine

398

learning framework. In particular, we obtain a direct parallel
between the value-querying process from the CA preference
elicitation literature and the generation of a training set via
sampling from the ML literature.

3.3 The Proxy’s Machine Learning Algorithm

Each proxy agent is equipped with an ML algorithm A.3
For bidder i, A will be trained on a vector of data points
di, e.g., di = (di1, ..., dik, ..., di�). Throughout the paper,
we use di to denote a generic vector of data points and � to
denote a generic number of data points. Each data point is
a tuple dik = (xik, yik), where each xik is a bundle, and
yik = vi(xik) is bidder i’s value report for bundle xik.

For our ML-based mechanisms, we distinguish two dif-
ferent phases where the ML algorithm comes into play:

1. an initial training phase, where the proxy queries a set of
bundles from a given distribution, and

2. an (optional) iterative phase, where the proxy may query
additional bundles.

In the initial training phase, bidder i’s proxy receives ex-
actly q samples d0i1...d

0
ik...d

0
iq by sampling q times a bun-

dle xik from the distribution Xi, without replacement, and
querying bidder i for the associated value.4 We let X =
X1 ⊗ X2... ⊗ Xn denote the corresponding joint distribu-
tion. We let d0i = (d0i1, ..., d

0
iq) denote the vector (of length

q) of initial training data from bidder i, with d0i ∼ D0
X ,i. We

let D0
X denote the corresponding joint distribution.

In the (optional) iterative phase, the mechanism may de-
cide to elicit additional information from the bidders. We let
d+i denote the vector of additional data points queried from
bidder i (of length q+i). Finally, we let q�i = q + q+i denote
the total number of data points received from bidder i, and
d�i = [d0i , d

+
i]

† denote the whole vector of data points re-
ceived from bidder i, with d�i ∼ D�

X ,i. We let D�
X denote the

corresponding joint distribution. Note that the distribution
D�

X is induced by X and by the method which the mecha-
nism uses to query additional bundles in the iterative phase.

Given any vector of training data di, A determines bidder
i’s generalized value function ṽi = A(di), which allows it
to compute the generalized value ṽi(si) for each bundle si.
Based on this, we define the generalized social welfare of an
allocation a as: Ṽ (a) =

∑
i ṽi(ai).

3.4 The Mechanisms

Our ML-based mechanisms have three parameters: the ML
algorithm A, the distribution for the initial training phase X ,
and the number of initial samples q. Consequently, we let
M(A,X , q) denote a mechanism. For now, we leave A un-
specified, but in Section 5.1, we instantiate the ML algorithm
with support vector regression (using different kernels). For
the rest of the paper, we consider two specific mechanisms:

3One could use a different ML algorithm for each proxy. But
for simplicity we assume that all proxies use the same A.

4The proxies could uses different initial training set sizes. But
for simplicity we assume that the same q is used by all proxies.

†Note that [,] denotes simple vector concatenation.

1. One-shot Mechanism: The allocation is determined in
one round. In particular, the data available to each bidder’s
proxy is only collected in one shot.

2. Iterative Mechanism: The allocation is determined in
multiple rounds, and each bidder’s proxy collects data in
an iterative fashion, depending on the center’s feedback.
Algorithm 1 provides a formal description of the one-shot

ML-based mechanism.

Algorithm 1: ML-Based Mechanism: One-Shot Version
Parameters: ML algorithm A, distribution for initial

samples X , number of initial samples q
1 For each bidder i, the associated proxy agent samples q

bundles from Xi without replacement and queries its
bidder for the corresponding values, yielding the
initial training data d0i .

2 Each proxy agent invokes A to determine ṽi = A(d0i).
3 Each proxy agent submits ṽi to the center.
4 Allocation a ∈ argmaxa∈A

∑
i ṽi(ai) is selected.

5 Payments are determined by some payment rule.

In Line 2, we see that the proxies only invoke their ML
algorithm once - based on the initial training data d0i . The
proxies only have one interaction with the center (Line 3),
which then directly computes the final allocation (Line 4).
In particular, the mechanism provides no feedback about the
allocation to the bidders, before making the allocation fi-
nal. The iterative mechanism, provided in Algorithm 2, ad-
dresses exactly this shortcoming.

Algorithm 2: ML-Based Mechanism: Iterative Version
Parameters: ML algorithm A, distribution for initial

samples X , number of initial samples q
1 For each bidder i, the associated proxy agent samples q

bundles from Xi without replacement and queries its
bidder for the corresponding values, yielding the
initial training data d0i .

2 θ1i ← d0i (“current data” = data from training phase).
3 t ← 0; a0 ← null allocation .
4 do
5 t ← t+ 1.
6 Each proxy agent invokes ML algorithm A to

determine ṽti = A(θti).
7 Each proxy agent submits ṽti to the center.
8 Center computes at ∈ argmaxa∈A

∑
i ṽi(ai).

9 Center sends ati to each corresponding proxy agent.
10 If ati has not yet been queried from bidder i, bidder

i’s proxy agent queries vi(ati) from bidder i and
updates θt+1

i = [θti , (a
t
i, vi(a

t
i))].

11 while at−1 �= at.
12 Allocation at becomes the final allocation.
13 Payments are determined by some payment rule.

The motivation for using the iterative instead of the one-
shot version is to further increase efficiency, by trying to

399

correct some of the “mistakes” (overestimates or underesti-
mates) the ML algorithm may make. By querying tentatively
allocated bundles we allow for corrections of the generalized
valuation in those parts of the value space that are very likely
to be relevant for determining the efficient allocation. As we
show in Section 6, the iterative version does indeed lead to a
significant increase in efficiency.

Remark 1 (Individual Rationality). ML-based auction for-
mats may not elicit the information necessary to determine
payments so that individual rationality (IR) is preserved. To
elicit this information it is important that the value for the
bundle allocated to each bidder is always queried before de-
termining the payments. However, querying the bundle after
the final allocation is determined may lead to serious strate-
gic issues: a bidder could just report a very low value to
make sure that he will be charged low payments. The itera-
tive version of our auction overcomes this problem by ensur-
ing that all the necessary information is elicited before the
allocation is finalized.5 This ability of the iterative auction
to guarantee IR in this way is one of its big advantages over
the one-shot auction, and allows the application of common
payment rules such as first-price, VCG, core-selecting pay-
ment rules, etc., while guaranteeing IR.6

4 Probably Approximate Efficiency

In the mechanisms presented in Section 3.4, the generalized
value functions may not be exact, resulting in a loss of eco-
nomic efficiency when the final allocation is chosen. To cap-
ture this, we introduce a new concept called Probably Ap-
proximate Efficiency (PAE) as a desirable relaxation of the
standard efficiency desideratum of mechanism design. For
this we need an additional assumption on the valuation pro-
files v, namely that v ∼ V , where V denotes a joint distri-
bution over possible value functions; we denote by Vi the
corresponding marginal for bidder i. Note that V captures
the randomness in the bidders’ preferences over the domain,
while D�

X captures the randomness over the bundles being
sampled from the domain. Our PAE concept captures both
of these sources of randomness.

Definition 1 (Probably Approximate Efficiency (PAE)). For
a given δ ∈ (0, 1) and a distribution over valuation profiles
V , a mechanism M(A,X , q) is probably approximately ef-
ficient (PAE) with bound εδ , if it determines an allocation
a∗ṽ such that:

Pv∼V,d�∼D�
X

(
1− V (a∗ṽ)

V (a∗v)
≥ εδ

)
≤ δ. (1)

Here εδ is a bound on the efficiency loss valid at least 1− δ
fraction of the time. Note that a∗ṽ is the outcome found by
optimizing Ṽ (·), and thus indirectly depends on d�.

5In practice, we would simply need to save all value reports
that the bidders make throughout the auction.

6Of course, the fact that the mechanism is iterative rather than
one-shot may open up other opportunities for strategic manipula-
tion. However, we leave the analysis of this aspect (incentives and
strategic behavior) to future work.

Our new PAE concept enables us to capture the efficiency
of ML-based auction mechanisms. However, recall our orig-
inal design goal, of keeping the interaction between the bid-
ders and the mechanism low - in particular, avoiding the enu-
meration of the exponentially large bundle space. Thus, in
our new formalism, we want mechanisms that a have low
q�. For those mechanisms to be PAE, with a small δ and εδ ,
we need an effective learning algorithm that is able to gen-
eralize well from a small number of samples to the whole
bundle space. In a first step, we now define a measure for
the generalization error of an ML algorithm for those valu-
ations likely to arise in the efficient allocation, given V . In
a second step, we then relate this generalization error to the
efficiency loss of our mechanisms.

In the ML literature, generalization error is often codified
as the expected loss over all points outside the training set.
Here, we find it more useful to instead bound the error point-
wise, using the notion of a prediction interval, because we
are not interested in average error but rather the error at ex-
actly the efficient allocation point. When specialized to our
setting, such an interval has the following form:

Definition 2 (Generalized Value Prediction Interval). For a
given δ ∈ (0, 1), a distribution over valuation profiles V ,
and a mechanism M(A,X , q), the generalized value func-
tion ṽi for bidder i has an ηi,δ(s)-prediction interval, if the
following holds for all bundles s:

Pvi∼Vi, d�
i ∼D�

X ,i

(
|vi(s)− ṽi(s)| ≥ ηi,δ(s)

)
≤ δ (2)

Informally, this states that with probability 1− δ the pre-
diction at every bundle s will correct up to an error of ηi,δ(s).
Note that the constant ηi,δ(s) will depend on the structure of
Vi, the algorithm A employed to learn it, and D�

X ,i (and con-
sequently q�).7

Using Definition 2, we can now make a connection be-
tween the generalizability of the learning algorithm A within
the setting V to the eventual efficiency of the mechanism as
follows:

Theorem 1. Suppose the generalized valuation functions in
mechanism M(A,X , q) have a ηi,δ(s)-prediction interval
with respect to distribution over valuation profiles V . Then
M(A,X , q) is PAE with respect to V with

εδ =
ηδ(a

∗
v) + ηδ(a

∗
ṽ)

V (a∗v)
(3)

where ηδ(a) =
∑

1≤i≤n ηi,1− n√1−δ (ai).

Proof. Since M(A,X , q) has an ηi,δ(s)-prediction interval
with respect to V we have the following joint bound:

P
v∼V

d�∼D�
X

⎛
⎝ ∧

1≤i≤n

(|vi(ai)−ṽi(ai)| ≤ ηi,γ(ai))

⎞
⎠≥(1−γ)n∀a (4)

7Note that this is notionally similar to the confidence intervals
commonly used in the empirical sciences, however it provides a
quantile-based bound at an out-of-sample prediction point instead
of at an in-sample data point.

400

Because social-welfare is additive we obtain:

Pv∼V,d�∼D�
X

(∣∣∣V (a)− Ṽ (a)
∣∣∣ ≤ ηδ(a)

)
≥ 1− δ ∀a (5)

where: ηδ(a) =
∑

1≤i≤n ηi,1− n√1−δ(ai). Substituting in the
optimal allocations a∗v and a∗ṽ then yields:

Pv∼V,d�∼D�
X

(
|V (a∗v)− Ṽ (a∗v)| ≤ ηδ(a

∗
v)
)
≥ 1− δ (6)

Pv∼V,d�∼D�
X

(
|V (a∗ṽ)− Ṽ (a∗ṽ)| ≤ ηδ(a

∗
ṽ)
)
≥ 1− δ (7)

Because the points are optimal, the objective can only be off
by the combined amount:

P
v∼V,d�∼D�

X

(
V (a∗v)−V (a∗ṽ) ≤ ηδ(a

∗
v)+ηδ(a

∗
ṽ)
)
≥ 1−δ (8)

Finally, dividing by the social welfare and performing some
algebra yields:

Pv∼V,d�∼D�
X

(
1− V (a∗ṽ)

V (a∗v)
≥ ηδ(a

∗
v) + ηδ(a

∗
ṽ)

V (a∗v)

)
≤ δ (9)

This provides the result.

5 SVR-Based Auction Mechanisms

5.1 Support Vector Regression

To obtain a generalized value function ṽi from training data
di (i.e., a vector of bundle-value pairs), SVR projects any
input bundle si into a high dimensional feature space via
a mapping function ϕ(si), and then the prediction ṽi(si)
is a weighted linear combination of the training data in
the feature space (see Smola and Vapnik (1997) for de-
tails on SVRs). To find the weights, the method simulta-
neously maximizes the generalizability of the learned func-
tion through a regularization term that minimizes the sum-
squared weights, and minimizes the prediction error on the
training data. Formally we have:

min
w,b,e

1

2
wTw + c

�∑
k=1

L(ek) (10)

s.t. yik = wTϕ(xik) + b+ ek ∀ 1 ≤ k ≤ �

where w are the weight variables, b the offset term, the ek
are the prediction errors on the training data, and L(ek) is
the loss due to the prediction error of sample k. Traditionally
SVR uses the ζ-insensitive loss with L(ek) = max(0, |ek|−
ζ). Specializing to our setting, SVR then predicts ṽi at a
bundle si as:

ṽi(si) =

�∑
k=1

αikκ(si, xik) + bi (11)

where αi and bi are the solution to the dual of Problem (10),
and κ(sa, sb) = 〈ϕ(sa), ϕ(sb)〉 is a kernel, which via the
kernel trick is computable in closed form for suitable choices
of κ and ϕ (Vapnik and Vapnik 1998). As we can see from
(10), only the bundles xik with associated coefficient αik �=
0 contribute to the determination of the predicted value for a
new input. These bundles are called support vectors.

5.2 Expressiveness

Next, we consider how the choice of kernel influences the
types of value functions that can be perfectly captured by
our mechanism.

Definition 3 (Expressive ML-Based Mechanism). An ML-
based mechanism M(A,X , q) is expressive for a distribu-
tion over valuation profiles V if, for every bidder i, every
vi in the support of Vi, and every vector of data points
d�i ∼ D�

X ,i, the mechanism’s ML algorithm A determines
a generalized value function ṽi = A(di), such that:

ṽi(xik) = vi(xik) ∀ 1 ≤ k ≤ q�i (12)

where d�i = (d�i1, ...d
�
ik, ..., d

�
iq�i

) and d�ik = (xik, vi(xik)).

We will say that a kernel is expressive, if the kernel in-
duces an expressive SVR-based mechanism. Formally:

Definition 4 (Expressive Kernel). A kernel is expressive for
a distribution over valuation profiles V if we can use the
kernel to construct an SVR Ξ such that, for all X and q, the
mechanism M(Ξ,X , q) is expressive for V .

Informally, a kernel is expressive if the induced SVR is
able to exactly capture the bidder’s reported values (i.e., with
zero in-sample error). Using this concept, we now consider
several kernels for use in our mechanism. We start by gener-
alizing the standard polynomial kernel to include weights:

Definition 5 (Generalized Polynomial Kernel). κp(sa, sb)=∑r̄
r=0 λr〈sa, sb〉r is a generalized polynomial kernel of de-

gree r̄ where r̄ ∈ N, λr ≥ 0 ∀ 0 ≤ r < r̄, and λr̄ > 0.

For such kernels, we have:

Proposition 1 (Expressiveness of Generalized Polynomial
Kernels). The generalized polynomial kernel of degree r̄ is
expressive for all the distributions V where each vi is drawn
from the class of r̄-wise dependent valuations (Conitzer,
Sandholm, and Santi 2005).

Proof. To guarantee expressivity it is sufficient to
find a feature mapping ϕp such that κp(sa, sb) =
ϕp(sa)

Tϕp(sb) ∀ sa, sb and check that constraints in
Equation 10 wTϕp(xik) + b = yik ∀ 1 ≤ k ≤ � hold
exactly (ek = 0 ∀ k) for at least one solution (w, b). A
polynomial kernel of degree r̄ manifests a feature mapping
ϕp with a feature z for every subset of items ψ : |ψ| ≤ r̄,
and thus for any given bundle si, ϕp(si)z > 0 if si contains
all the items in ψ, and 0 otherwise (Sec. 3.4 Shawe-Taylor
and Cristianini 2004). Since the yik are reported from an
r̄-wise dependent valuation there will be a solution to the
system as follows: b = 0 and each wz is set such that
wzϕ(s)z contributes the value due to the interdependency
among the items in ψ.

Next, we derive the following general result:

Proposition 2 (Expressiveness of Strictly Positive-Definite
Kernels). Strictly positive definite kernels are expressive for
any distribution of valuation profiles V .

401

Proof. Considering Equation (11), we can rewrite Equa-
tion (12) as a linear system: Kαi + bi�1� = yi where
Kab = κ(xia, xib) is the kernel matrix on the training data,
αi = (αi1, . . . , αi�) and �1� is a vector if � ones. The ma-
trix K related to any strictly positive definite kernel has full
rank (Hofmann, Schölkopf, and Smola 2008). Thus, the lin-
ear system always has a solution.

We next consider two important kernels that belong to this
class. We start with the exponential kernel which is the limit
case of the generalized polynomial kernel where λr = λr

e/r!
for a new constant λe > 0:

Corollary 1 (Expressiveness of the Exponential Kernel).
The exponential kernel κe(sa, sb) = exp(λe〈sa, sb〉) is ex-
pressive for any distribution over valuation profiles V .

Corollary 2 (Expressiveness of the Gaussian Kernel). The
Gaussian kernel κg(sa, sb) = exp(−||sa−sb||/λg) is expres-
sive for any distribution over valuation profiles V .

5.3 Consistency

We can now bolster the efficiency result from Section 4 with
a desirable limit condition.

Definition 6 (Probably Approximately Consistent (PACO)).
An ML-based mechanism M(A,X , q) is probably approx-
imately consistent (PACO) if, when enough data is drawn
such that mini q

�
i = 2m, then, for every δ ∈ (0, 1), the

mechanism is PAE with εδ = 0.

In words, PACO requires the simple consistency property
that the mechanism has no learning error and thus is fully
efficient if the full bundle space has been queried. We can
instantiate this definition to expressive kernels as follows:

Theorem 2. An ML-based mechanism M(A,X , q) that
uses an SVR with an expressive kernel as its learning algo-
rithm A, a sufficiently large regularization constant c, and
sets the ζ-insensitive loss threshold to 0 is PACO.

Proof. By Definition 4, when the SVR uses an expressive
kernel, and fully optimizes for accuracy on the training data
by setting a sufficiently large c and ζ = 0, it will then predict
exactly on all the training points it is given. Since when q�i =
2m the data becomes complete, it will exactly match each
point, driving ηδ(si) → 0 for all si. The result then follows
from Theorem 1.

5.4 Winner Determination

The ability to concisely obtain generalized value functions in
the proxies is only useful to the extent that we can then solve
the winner determination problem with respect to them. For-
tunately, it is possible to encode a winner determination
problem based on the functions learned under our chosen
kernels, ṽ(si), as an integer program (IP). That we can do
this is perhaps surprising, as it requires us to compactly en-
code our non-linear social welfare objective in a linear pro-
gram, a feat we manage by exploiting the structure of the
kernel functions we employ. The effect is that we are able to
solve a problem with a non-linear objective, while still using
standard IP solvers (such as CPLEX). This provides for fast

solution times, because we place only a modest overhead
above the fundamental combinatorial decision that must be
made in any CA winner determination algorithm. Our IP for-
mulation begins as follows:

argmax
Aij ,Gikτ

n∑
i=1

�∑
k=1

αik

τ̄∑
τ=0

κ̆(τ)Gikτ Social Welfare

s.t.
τ̄∑

τ=1

Gikτ = 1 ∀i, k Eval. κ̆ at one pt.

n∑
i=1

Aij ≤ 1 ∀j Supply

Aij , Gikτ ∈ {0, 1}
Here, the main decision variable Aij = 1 iff bidder i ob-
tains good j in the optimal allocation. The social welfare
objective is then formed as a sum over each bidder’s sup-
port vectors indexed by k. For each, the value of their αik-
weighted kernel value is computed. For the {0, 1} input
space present in our bundle-based problem, the kernels we
have presented consist of the composition of a non-linear
function κ̆ : R → R, with a linear one κ̄ : W → R so
that κ(sa, sb) = κ̆(κ̄(sa, sb)). We take advantage of this to
linearize the kernel in the objective: we calculate the con-
stant appropriate to the kernel κ̆(τ), and then gate its inclu-
sion in a sum over all 0 ≤ τ ≤ τ̄ for that support vector
with a binary auxiliary variable Gikτ such that Gikτ = 1 iff
τ = κ̄(sa, sb). We then enforce that there is only one active
Gikτ per support vector, and the standard supply constraint
in the allocation variables. All that remains is to include an
explicit constrant that enforces our stipulation that Gikτ = 1
iff τ = κ̄(xik, Ai). This constraint is specific to the kernel
choice.

For polynomial and exponential kernels we set τ̄ ← |xik|,
and use κ̄(xik, Ai) ← 〈xik, Ai〉, which is formulated as:

∑
j∈xik

Aij =

τ̄∑
τ=0

(τ + 1)Gikτ − 1 ∀i, k (13)

Further, we set κ̆(ϑ) ← ∑r̄
r=0 λrϑ

r for the polynomial ker-
nel and κ̆(ϑ) ← exp(λeϑ) for the exponential kernel.

For the Gaussian kernel, τ̄ ← m and κ̄(xik, Ai) ←∑
1≤j≤m xikj ⊕Aij , which is formulated as:

∑
j∈xik

(1−Aij) +
∑
j /∈xik

Aij =

τ̄∑
τ=0

(τ+1)Gikτ−1 ∀i, k (14)

Further, we set κ̆(ϑ) ← exp(−ϑ/λg)
With the inclusion of an appropriate choice of Equa-

tion (13) or Equation (14), our formulation can then encode
all of the kernels described above. We note that, the number
of support vectors greatly influences the complexity of the
winner determination problem in our formulation. A way to
control for this affect is to use the ζ-insensitive loss with a
positive ζ to decrease the number of support vectors.

402

6 Experimental Analysis

6.1 Experimental Setup

To evaluate the effectiveness of our proposed mechanisms,
we have conducted a set of experiments to empirically iden-
tify the smallest PAE bound εδ for different distributions
over value functions V , and for several ML-based mecha-
nisms under different choices of inputs A, D, and q.

Because spectrum auctions are a very important domain
for CAs, we have chosen to evaluate our mechanisms in
this context. We use two standard value models from the
literature, both of which capture a stylized version of the
geographic structure in large spectrum auctions. Both in-
clude multiple bidder types, with some interested in larger
packages, and others interested in smaller packages. The
Global Synergy Value Model (GSVM) (Goeree and Holt
2008) models the goods (spectrum licenses) as being ar-
ranged in two circles. Depending on his type, a bidder may
be interested in licenses from different circles, and has a
value that depends on the total number of licenses of inter-
est. We let VGSVM denote the distribution over valuation pro-
files corresponding to GSVM. By contrast, the more com-
plex Local Synergy Value Model (LSVM) (Scheffel, Ziegler,
and Bichler 2012) places the goods on a two-dimensional
grid. Here, a bidder’s value depends on a sigmoid function of
the number of contiguous licenses. We let VLSVM denote the
distribution over valuation profiles corresponding to LSVM.

Within these domains, we have evaluated several mech-
anisms. First, to provide a baseline to quantify the benefits
of using ML, we also include in our experiments a simple
mechanism (No ML), where the proxies report the bundle-
value pairs obtained from the bidders as XOR bids to the
center, without first using ML to generalize from this data.

Next, we have considered both One-Shot mechanisms
(Algorithm 1) and Iterative mechanisms (Algorithm 2). For
those ML-based mechanisms M(A,X , q), in all of our ex-
periments, we used an SVR for A; this in turn is param-
eterized by the choice of kernel, regularization constant c,
and ζ-insensitive loss threshold. In our experiments we set
c = 100 and ζ = 0.1 such that the minimization of the in-
terpolation loss is prioritized in the objective of (10).

For both VGSVM and VLSVM we will consider the exponen-
tial and Gaussian kernels, since (as we have shown) they are
always expressive. For VGSVM we will additionally consider
the generalized polynomial kernel of degree 2, as it can be
shown that this kernel is expressive for VGSVM. The kernels
have hyperparameters λe, λr and λg respectively. We tuned
these parameters from a hold-out set of 100 valuation pro-
files from the respective setting under consideration.

We consider two different initial training distributions X .
We first study Full-Random, where each Xi is a uniform
distribution over the full bundle space, which implies that
a bidder may (likely) be asked to report a value for a bundle
in which he has no interest. This models a situation where
neither the agent nor the center has any useful prior over the
bidder’s value structure. Secondly, we study Pos-Random,
where each Xi is a uniform distribution over bidder i’s bun-
dles of interest.8 This models the case where there is a simple

8Note that under GSVM and LSVM, the bundles of interest

Initial Sample
Distribution Mechanism Kernel Efficiency †

q=10 q=20 q=40

Full-Random

No ML - 34% 39% 43%

One-Shot
Poly-2 59% 80% 92%

Exp 57% 70% 86%
Gaus 52% 70% 83%

Iterative
Poly-2 74% 86% 92%

Exp 66% 79% 88%
Gaus 71% 79% 86%

Pos-Random

No ML - 75% 82% 88%

One-Shot
Poly-2 89% 96% 100%

Exp 89% 95% 99%
Gaus 80% 84% 86%

Iterative
Poly-2 91% 97% 100%

Exp 94% 97% 100%
Gaus 86% 87% 87%

Table 1: Efficiency results for the Global Synergy Value
Model under a variety of sample distributions, mechanisms,
kernels and initial queries q, over 100 auctions. The reported
values are the 10th-quantile of efficiency, i.e. 90% of the
evaluated auctions had an efficiency at least this high.

prior that partitions the bundle space into bundles with and
without interest. For example if we have an “east cost bid-
der” we know all the “west coast” bundles are not of interest.
Such a partition is often available in CA settings. Finally, we
also vary the number of initial draws from the distribution
X , q ∈ {10, 20, 40}.

6.2 Efficiency Results

To find the smallest PAE bound εδ empirically, we ran 100
different auction instances in each setting, and measured the
efficiency obtained in each. The empirical estimate of εδ is
then simply the δ-quantile of the distribution of these effi-
ciencies. In Tables 1 and 2 we present the results for δ = 0.1;
we can therefore interpret the numbers provided as saying
that 90% of the auction instances were at least this efficient.

Table 1 provides the smallest PAE bound ε0.1 for the
GSVM. We observe that our one-shot ML-based mechanism
significantly out-performs the No-ML mechanism that sub-
mits XOR bids of the same bundles. We also observe that our
iterative mechanism always outperforms the one-shot ver-
sion. Further, we find that the exponential and the general-
ized polynomial kernel of degree 2 perform extremely well,
and in particular better than the Gaussian kernel. We observe
broadly similar patterns in the Local Synergy Value Model
presented in Table 1. However, on average, all mechanisms
show a lower efficiency under LSVM than under GSVM.9

correspond to the set of bundles where the bidder has positive value
for each individual item in each bundle.

†Since in the Iterative auction designs the final number of
queried bundles will be larger than the initial number q, we note
that the average Δq = q� − q0 of the iterative auctions is 3.0 for
the GSVM and 4.6 for the LSVM.

9One reason is the complex object topology of the LSVM (i.e.,
the two-dimensional grid), which is not explicitly captured by any
of our kernels, and may hinder generalizability.

403

Initial Sample
Distribution Mechanism Kernel Efficiency †

q=10 q=20 q=40

Full-Random

No ML - 34% 38% 43%

One-Shot Exp 56% 64% 70%
Gaus 32% 43% 51%

Iterative Exp 70% 73% 77%
Gaus 50% 59% 64%

Pos-Random

No ML - 60% 68% 75%

One-Shot Exp 79% 83% 82%
Gaus 54% 65% 66%

Iterative Exp 88% 92% 92%
Gaus 63% 65% 70%

Table 2: Efficiency results for the Local Synergy Value
Model (LSVM) under a variety of sample distributions,
mechanisms, kernels and initial queries q, over 100 auction
trials. The reported values are the 10th-quantile of efficiency,
i.e. 90% of the auctions had an efficiency at least this high.

6.3 Sensitivity to Hyperparameters

To test the sensitivity of the results to the tuning of the hy-
perparameters, we ran a separate experiment where we tuned
the hyperparameters using data from the wrong model. Ta-
ble 3 shows results for VGSVM with hyperparameters opti-
mized for VLSVM and vice-versa. We observe that in all cases
the mechanism is still able to achieve high efficiency, even
when the hyperparameters have been set based on wrong
training data. While all of the kernels are remarkably robust
to this effect, we see that the Gaussian kernel is especially
so. The average efficiency loss was 1.8 for all VLSVM-based
settings, and 2.2 for all VGSVM-based settings.

6.4 Trade-off Between Efficiency and Runtime

As mentioned in Section 5.4, increasing the ζ-insensitivity
threshold ζ above zero decreases the number of support vec-
tors, and therefore may stand to improve the speed of win-
ner determination, at the possible loss of some efficiency. To
test this hypothesis, we ran an experiment where we varied

Domain &
Initial Sample
Distribution

Mechanism Kernel Efficiency Loss †
q=10 q=20 q=40

GSVM
Full-Random

Iterative Exp -6% -13% -0%
Gaus -0% -0% -0%

GSVM
Pos-Random

Iterative Exp -0% -0% -0%
Gaus -0% -0% -0%

LSVM
Full-Random

Iterative Exp -9% -5% -5%
Gaus -0% -0% -0%

LSVM
Pos-Random

Iterative Exp -4% -5% -2%
Gaus -1% -1% -0%

Table 3: Results on the sensitivity to hyperparameters for
LSVM and GSVM when the hyperparameters have been
tuned for the other domain. The values are the difference in
the 10th-quantile of efficiency between the matching experi-
ments with correctly and incorrectly tuned hyperparameters.

Initial Sample
Distribution

Kernel
Insensitivity Threshold

ζ = 0.1 ζ = 10
Eff. Runtime (s) Eff. Runtime (s)

Full-Random Exp 77% 484.1 74% 53.5
Full-Random Gaus 64% 369.0 69% 106.4
Pos-Random Exp 92% 6.1 91% 2.8
Pos-Random Gaus 70% 334.0 68% 29.7

Table 4: Efficiency and run-time performance when varying
ζ-insensitive loss parameter. Shown are the results for the
iterative version of the ML-based auction in LSVM with q =
40. Results are averaged over 100 trials.

ζ ∈ {.1, 10} and recorded both the average runtime needed
to clear the market and the average efficiency in each setting.
These results are shown in Table 4. We observe that increas-
ing ζ does indeed have the effect of reducing the number
of support vectors (not shown in Table 4), which leads to
a corresponding reduction in WD complexity and increase
in computational speed. The observed efficiency decrease is
small for a very significant increase in speed.10 While our
IP-based winner determination method can clear reasonable
instances quickly, if users of our SVR-based mechanisms re-
quire even more clearing-speed, these results indicate that an
increase in ζ can produce a dramatic reduction in computa-
tional cost for only a modest decrease in efficiency, which in
some settings may be an attractive trade-off.

7 Conclusion

In this paper, we have introduced a new auction design
paradigm based on machine learning (ML). Our main goal
was to reduce the communication burden for the bidders,
only eliciting a small number of value reports, and then gen-
eralizing to the whole value space using an ML algorithm.

We have introduced a new efficiency measure called
Probably Approximate Efficiency (PAE), as a useful relax-
ation of the standard efficiency notion employed in mecha-
nism design. The new PAE concept enables us to formally
capture the efficiency of ML-based mechanisms in a proba-
bilistic way. To instantiate our new auction design paradigm,
we have used SVRs as our ML algorithm, with three differ-
ent kernels: polynomial, exponential, and Gaussian. We have
shown that the exponential and Gaussian kernels are fully
expressive and that they are consistent in the limit (when
querying the full bundle space). For all of the kernels we
have investigated, we have shown that the winner determi-
nation problem can be succinctly encoded as an IP, which
enables us to find the efficient allocation using standard opti-
mization software. Our experimental results comparing our
ML-based auctions to standard (non-ML) auctions are en-
couraging. We have shown that already with a small number
of sampled bundles, we can achieve high efficiency, and we

10For the Full-Random/Gaus setting, we actually observe an ef-
ficiency increase. Note that this is consistent with the SVR set-up,
given that ζ = 0.1 was not chosen to optimize efficiency. How-
ever, on average, the highest efficiency results are expected to be
obtained with small ζ’s.

404

are always able to beat the non-ML benchmark.

References

Abernethy, J.; Lahaie, S.; and Telgarsky, M. 2016. Rate
of Price Discovery in Iterative Combinatorial Auctions. In
Proceedings of the 16th ACM Conference on Economics and
Computation (EC).
Afriat, S. N. 1967. The Construction of Utility Func-
tions from Expenditure Data. International economic review
8(1):67–77.
Blumrosen, L., and Nisan, N. 2007. Combinatorial auc-
tions. In Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazi-
rani, V. V., eds., Algorithmic Game Theory. Cambridge Uni-
versity Press. 276–298.
Blumrosen, L., and Nisan, N. 2009. On the Computational
Power of Demand Queries. SIAM Journal on Computing
39(4):1372–1391.
Conitzer, V.; Sandholm, T.; and Santi, P. 2005. Combina-
torial Auctions with k-Wise Dependent Valuations. In Pro-
ceedings of the 20th National Conference on Artificial Intel-
ligence (AAAI), volume 5, 248–254.
Cramton, P. 2013. Spectrum Auction Design. Review of
Industrial Organization 42(2):161–190.
Goeree, J. K., and Holt, C. A. 2008. Hierarchical Package
Bidding: A Paper & Pencil Combinatorial Auction. Games
and Economic Behavior.
Goetzendorf, A.; Bichler, M.; Shabalin, P.; and Day, R. W.
2015. Compact Bid Languages and Core Pricing in Large
Multi-item Auctions. Management Science 61(7):1684–
1703.
Hofmann, T.; Schölkopf, B.; and Smola, A. J. 2008. Ker-
nel Methods in Machine Learning. The annals of statistics
1171–1220.
Kearns, M. J., and Vazirani, U. V. 1994. An Introduction to
Computational Learning Theory. MIT press.
Lahaie, S., and Parkes, D. C. 2004. Applying Learning Al-
gorithms to Preference Elicitation. In Proceedings of the 5th
ACM conference on Electronic commerce, 180–188. ACM.
Lahaie, S. 2009. A Kernel Method for Market Clearing. In
Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI), 208–213.
Lahaie, S. 2010a. Kernel Methods for Revealed Preference
Analysis. In Proceedings of the 19th European Conference
on Artificial Intelligence (ECAI), 439–444.
Lahaie, S. 2010b. Stability and Incentive Compatibility in a
Kernel-Based Combinatorial Auction. In Proceedings of the
24th Conference on Artificial Intelligence (AAAI).
Lahaie, S. 2011. A Kernel-Based Iterative Combinatorial
Auction. In Proceedings of the 25th Conference on Artificial
Intelligence (AAAI).
Sandholm, T. 2013. Very-Large-Scale Generalized Com-
binatorial Multi-Attribute Auctions: Lessons from Conduct-
ing $60 Billion of Sourcing. In Vulkan, N.; Roth, A. E.; and
Neeman, Z., eds., The Handbook of Market Design. Oxford
University Press. chapter 1.

Scheffel, T.; Ziegler, G.; and Bichler, M. 2012. On the Im-
pact of Cognitive Limits in Combinatorial Auctions: An Ex-
perimental Study in the Context of Spectrum Auction De-
sign. Experimental Economics 15:667–692.
Shawe-Taylor, J., and Cristianini, N. 2004. Kernel Methods
for Pattern Analysis. Cambridge university press.
Smola, A., and Vapnik, V. 1997. Support Vector Regres-
sion Machines. Advances in neural information processing
systems 9:155–161.
Vapnik, V. N., and Vapnik, V. 1998. Statistical Learning
Theory, volume 1. Wiley New York.

405

