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Abstract

Online advertising allows advertisers to implement fine-tuned
targeting of users. While such precise targeting leads to more
effective advertising, it introduces challenging multidimen-
sional pricing and bidding problems for publishers and adver-
tisers. In this context, advertisers and publishers need to deal
with an exponential number of possibilities. As a result, de-
signing efficient and compact multidimensional bidding and
pricing systems and algorithms are practically important for
online advertisement. Compact bidding languages have al-
ready been studied in the context of multiplicative bidding.
In this paper, we study the compact pricing problem.

More specifically, we first define the multiplicative reserve
price optimization problem (MRPOP) and show that unlike
the unrestricted reserve price system, it is NP-hard to find the
best reserve price solution in this setting. Next, we present
an efficient algorithm to compute a solution for MRPOP that
achieves a logarithmic approximation of the optimum solu-
tion of the unrestricted setting, where we can set a reserve
price for each individual impression type (i.e., one element
in the Cartesian product of all features). We do so by charac-
terizing the properties of an optimum solution. Furthermore,
our empirical study confirms the effectiveness of multiplica-
tive pricing in practice. In fact, the simulations show that our
algorithm obtains 90-98% of the value of the best solution
that sets the reserve prices for each auction individually (i.e.,
the optimum set of reserve prices).

Finally, in order to establish the tightness of our results in the
adversarial setting, we demonstrate that there is no compact
pricing system (i.e., a pricing system using O(n'~¢) bits to
set n reserve prices) that loses, in the worst case, less than
a logarithmic factor compared to the optimum set of reserve
prices. Notice that this hardness result is not restricted to the
multiplicative setting and holds for any compact pricing sys-
tem. In summary, not only does the multiplicative reserve
price system show great promise in our empirical study, but
it is also theoretically optimal up to a constant factor in the
adversarial setting.
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1 Introduction

As a main advantage over traditional advertising, online
advertising allows advertisers to target specific subsets of
users via a very fine-tuned and descriptive targeting crite-
ria. In these settings, both publishers and advertisers face
challenging pricing and bid optimization problems in mul-
tidimensional settings. As a result, the space of possibili-
ties for setting the price or declaring the bids are exponen-
tial, even when restricted to the few most important features.
This leads to interesting problems of designing efficient and
compact multidimensional bidding and pricing systems and
algorithms, which are practically important for online ad-
vertisement. While compact bidding languages have already
been studied, our goal in this work is to study the compact
pricing problem.

More specifically, in the context of online advertising for
sponsored search or display ads, the space of impression
types of interest to the advertiser is usually very big, spe-
cially because it is the Cartesian product of several fea-
tures (such as geographic location, time of day/week), do-
mains of which have sizes typically ranging from thousands
to millions. These features have a big impact on the qual-
ity and desirability of the impression, hence their impor-
tance in determining the bid. Compact bidding languages
(and, in particular, multiplicative bidding) were proposed
and are now widely used as a solution to the challenge of
maneuvering in this large exponential space. Not only do
these make campaign management easier and more focused,
but they also mitigate the issue of over-reliance on sparse
data. Such bidding languages provide a middle ground be-
tween a uniform bidding strategy ((Feldman et al. 2007b;
Muthukrishnan, Pal, and Svitkina 2007a)) over all interest-
ing impressions and the unmanageable strategy of setting up
a customized campaign for each type of impression. More
specifically, the advertiser specifies, in addition to targeting
criteria for interesting impressions and a base bid, certain
multiplicative adjustments for each feature associated with
the impression. In the wake of adoption of multiplicative
bidding languages by several major search engine-based ad-
vertising platforms ((Bing Ads 2014; Google Support 2014;
HubSpot 2013)), (Bateni et al. 2014) studied the impact of
employing such a bidding language on advertisers’ welfare.
They focus on two questions: (1) how expressive is this lan-
guage? (2) how difficult is it to optimize over?



In this work, we ask similar questions regarding the spec-
ification of reserve prices for auctions. As was the case with
optimal bids for a single advertiser, the characterizing fea-
tures of an impression may have significant impact on its
typical value for all advertisers and hence it plays a big role
in determining the optimal reserve price.

Next we formally define the multiplicative reserve price
system. Let D denote the set of all (bid) distributions
over RT. The space of auctions is characterized by a d-
dimensional type vector (a1, as, ..., aq) where a; € A; for
i € [d], and [d] = {1,2,...,d}. Welet A = A; x A X
-++ X Aq. Given as input is a mapping B : A — D denot-
ing the bid distribution (where B denotes the distribution of
the top bid in the auction). A multiplicative reserve price so-
lution is specified by d vectors vy, vs, ..., vq, Where for a
feature a; € A;, the adjustment factor of a; is v;(a;). The
reserve price of an auction with type (a1, as,...,aq) is set
to r({ai,az,...,aq)) =[], vi(a).

The multiplicative reserve price optimization problem
(MRPOP) is as follows: Given mappings B and s as de-
scribed above, the goal is to find a multiplicative reserve
price solution vy, vs, ..., vy that maximizes the total profit
Y acam(B(a),r(a)), where m(B,r) denotes the expected
profit of the auction with bid distribution B and reserve price
r; see Equation (1). In this paper, we first study the compu-
tation of the multiplicative reserve price optimization prob-
lem. We show that this problem is NP-hard.

Theorem 1.1. The multiplicative reserve price optimization
problem is NP-hard.

This rules out the existence of a polynomial-time algo-
rithm that finds an optimum solution to MRPOP, unless
P = NP. Next, we investigate the properties of the optimum
solutions in order to design an approximation algorithm for
MRPOP. We say that a solution (vy,vs,...,vq) is stable
if changing any single vector v; does not increase the total
profit (i.e., it is a locally maximum solution). Notice that any
optimum solution is a stable solution, as well. We say that
a solution (v, va, ..., vq) is polynomially bounded if all of
the elements of the vectors vy, va, . . ., v4 are upper-bounded
and lower-bounded by two polynomial functions. In the fol-
lowing theorem we bound the efficiency of any polynomially
bounded stable solution.

Theorem 1.2. The profit of any polynomially bounded sta-
ble solution is within a logarithmic factor of that of the op-
timum set of reserve prices.

Next based on this structural property we design an almost
efficient polynomial-time algorithm that works well both in
theory and practice. In particular, this algorithm achieves
90-98% of the profit of the optimum set of reserve prices.
Our results are based on a large number of two-dimensional
instances where each of the two features have millions of
possibilities. We design an algorithm to proves the follow-
ing.

Theorem 1.3. There exists a polynomial-time algorithm
that finds a solution with profit within a logarithmic factor
of that of the optimum set of reserve prices.

Finally, we study the question of whether one can design
an algorithm that works better than logarithmic in the worst
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case, or even, if one can design a new pricing system ad-
mitting such an algorithm. Recall that the main purpose of
a compact reserve pricing language is to simplify the pro-
cess of setting reserve prices for n different type of auc-
tions simultaneously. Clearly, by using O(n) bits of com-
munication, one can set a single independent reserve price
on each auction. Hence, the number of communication bits
for a desirable pricing system should be significantly less
than ©(n). In the following theorem, we provide an upper
bound on the approximation factor of any pricing system as
a function of the number of communication bits it requires.

Theorem 1.4. Pick an arbitrary number o € (0,1). Any
%Ulog n.-apl.aroximation.pricing system requires.Q(nl_")
communication bits. This also holds for the restricted case
of one deterministic bid per auction.

Plugging ¢ = €¢/2 into the above theorem gives the fol-
lowing corollary which shows the tightness of our results
in the adversarial setting. Recall that both Theorem 1.4 and
Corollary 1.4.1 hold for all pricing systems. Therefore, this
lower bound rules out the existence of a better approxima-
tion factor for other pricing systems such as a pricing system
that applies another operation instead of multiplication.

Corollary 1.4.1. For any small constant ¢ there is no
o(log(n))-approximation pricing system using O(n'~¢)
communication bits.

Note that the above result rules out the possibility of im-
proving the logarithmic approximation factor for a wide va-
riety of compact reserve price settings including the compact
reserve pricing systems defined in preliminaries section.

Related Work. To the best of our knowledge, this work
initiates the study of compact reserve pricing systems and
the multiplicative language for reserve prices. Moreover, our
information-theoretic lower bound is the first such result for
selling a single item in the multidimensional setting. Previ-
ous inapproximability result have been achieved for other
cases like the multi-item settings (Hart and Nisan 2013;
Briest et al. 2010; Chawla, Malec, and Sivan 2010). Ini-
tially, (Bateni et al. 2014) study multiplicative bidding lan-
guages on the advertiser’s welfare. Indeed, this provide a
middle ground between a uniform bidding strategy ((Feld-
man et al. 2007b; Muthukrishnan, Pal, and Svitkina 2007a))
over all interesting impressions and the unmanageable strat-
egy of setting up a customized campaign for each type
of impression. The multiplicative bidding languages has
been adopted by several major search engine-based adver-
tising platforms (Bing Ads 2014; Google Support 2014;
HubSpot 2013). In the recent decade, motivated by online
advertisements several works has been initiated on optimiza-
tion under budget constraints, both from publishers’ point of
view ((Mehta et al. 2007; Karande, Mehta, and Srikant 2013;
Goel, Mirrokni, and Leme 2015; Devanur and Hayes 2009;
Charles et al. 2013)) and advertisers’ point of view ((Ar-
chak, Mirrokni, and Muthukrishnan 2010; Borgs et al. 2007,
Feldman et al. 2007a; Muthukrishnan, Pal, and Svitkina
2007b)).



Due to space constraints, some of the proofs and figures
are omitted in this version and included in the full version.

2 Preliminaries

In this section we formally define the multiplicative reserve
price optimization problem (MRPOP). As mentioned ear-
lier, in this problem we seek to find the optimal multiplica-
tive reserves to maximize the expected revenue of several
posted-price auctions in total. Our focus is on the Bayesian
setting, that is, for each auction we assume we’re given the
distribution of the bids in advance. Recall that, for a bid dis-
tribution D, the (expected) revenue of a posted-price auction
with reserve price p is

m(D,p) =p- Prib=pl. ¢))
The space of auctions is characterized by a d-dimensional
auction type where the set of all possible realizations of
each type ¢ is given as A;. More precisely, every auction
corresponds to a type vector (a1, as,...,aq) wWhere every
a; € A;. Welet A = A; x Ay x -+ x Ay be the set of all
type vectors for which we run a posted price auction. Given
as input is a mapping B : A — D denoting the bid distri-
bution of each auction type. For a reserve mapping function

M : R+*? 5 R*, we represent a compact solution of the
problem by a list of d vectors v = (v, v%, ... v9), where
the size of each v’ matches that of A;. For every auction
type (a1, as,...,aq) then, the corresponding reserve price
would be equal to M(v} ,v2 ,... vl ). The emphasis of
our work is on the case where

M(r1,72, .y 1n) = vaw

or in words, the corresponding reserve price of an auction
type is the product of the pertinent coefficients. In this case,
we call the problem MRPOP and refer to a compact solu-
tion of this type as a multiplicative reserve price solution.

Given a mapping B, our goal is to find a multiplicative
reserve price solution v', v2, ..., v? that maximizes the total
profit

Rev(v) = ) w(B(a),r(v,a)),
acA
where 7 (v, a) is the reserve price of the multiplicative solu-
tion v for auction type a.

When d = 2, one can think of A = A; x A, as a table of
auctions where every type vector corresponds to a cell of the
table. Moreover, a multiplicative reserve price solution v =
(v', v?) can be represented as a list of multiplicative reserves
on the rows and the columns of the table. As declared, the
reserve price of every cell is the multiplication of the reserve
prices of its corresponding row and column.

We denote by R, an upper bound on the range of the dis-
tributions. In other words, we assume all of the bid distribu-
tions are over the integer numbers in interval [0, R]. Also, n
denotes the total number of type vectors in our setting.

3 Q(logn) Gap
A pricing system ¥ : I' — R™ maps a key v € I' from
a set of predefined keys I' to a vector of reserve prices
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1. For at least half the vectors b = (b1,ba, ...

7 = (r1,ra,...,7y,). Clearly, the number of bits required
to represent a key in I' is lower bounded by log, |T'|. This
is the number of bits one needs to communicate with the
pricing system to set the reserve prices.

We say a pricing system W ' - R” is an a-
approximation pricing system if for any vector of bid dis-
tributions D = (D1,Da,...,Dy,), there exists akey v € T’
such that the profit of reserve prices ¥ () on D is at least o
times that of the optimum reserve prices.

Theorem 3.1 bounds the number of bits one needs to com-
municate with an a-approximation pricing system.

Theorem 3.1. Pick an arbitrary constant o € (0,1). Any
%Ulog n-approximation pricing system ¥ : I' — R" re-
quires QU(n'=7) communication bits. This also holds for a
restricted case in which there is one deterministic bid on
each item.

To prove the theorem, we use the Bernstein’s bound.

Lemma 3.1 (Bernstein’s bound). Let z1,x2,...,x, be a
sequence of independent random variables such that for all
1<i<nwehave0 < z; < C. If we define X = 2?21 X,

\2/2
we have Pr (‘X 7E[X]| Z )\) S QGXp(f m)

We can now give the proof of the theorem.

Proof of Theorem 3.1. In order to prove this theorem we

provide a set B of vectors of bids b = (b1,ba,...,by)
such that for any arbitrary vector of reserve prices ©¥ =
(r1,7r2,...,r) we have the following two properties.

,bn) € B, we
have 37" | b; > 1onlogn.

2. For 1 — 2exp ( - %nlf") fraction of the vector of bids

bin B, the profit of assigning reserve prices 7 is less than
2n.

To show the second property, equivalently, we prove that if
one picks a vector of bids b from BB uniformly at random, the
profit of reserve prices 7 on b is less than 2n with probability
atleast 1 — 2exp (— 3n'=7).

Let W : I' - R"bea ialog n-approximation pricing
system. This means that for each vector of bids b € B, there
exists a key 7 € I such that the profit of () on b is at
least 2n. Notice that given an arbitrary v € I', for at most
2exp ( — 2n'~7) fraction of the bids b € B, the reserve
prices U(~y) has profit more than or equal to 2n. Therefore,
we have

1/2 3
T > =0.25exp (n'77).
I = Qexp(f%nk") p(8 )
This directly implies that ¥ requires at least

log, (0.25 exp (%nkg))

bits, as desired. Now, we just need to provide the set B with
the promised properties.

€ Q(n'~?) communication



We define B = {b = (b,bo,....00)|Vib; €
{n?,n?/2,n7/3,...,1}}. Remark that selecting one vec-

tor b = (b1,ba,...,b,) from B uniformly at ran-

dom is equivalent to selecting each element b; of b

uniformly at random and independently from the set
{n7,n?/2,n°/3,...,1}.

We start with proving the first property of the set 1.
To prove this property we show that if one draws a vec-

tor b = (b1,ba,...,by,) from B uniformly at random, with
probability at least 0.5 we have > . b, > %Jn log n.
Let’s define B = .1 | b;. Recall that b;’s are indepen-
dent random variables drawn form {n”,n?/2,n°/3,...,1}

uniformly at random. Thus, for any 1 < ¢ < n we have

Eb;| = jni T = Z?Ul ;logn? = ologn. Thus, we
have E[B] > onlogn. Also, for any 1 < i < n we upper

bound the variance of b; as follow.

Var(bi) = E[b;] — (E[bi])* < E[b7]

:Z?g (”75) ”Z”i<

Thus we have Var(B) < 2nn? < n?(onlogn), when n >
exp(1/20). Now, by applying Bernstein’s bound we have

1
Pr (E[B] -B> 50n10gn> <

1
Pr (Unlogn - B> 50n10gn) <
(0.50nlogn)?/2

2exp ( n?(onlogn) + n?(0.50nlog n)/3) -
(1/4)onlogn,
2exp (— m) =

3
2 exp ( — %Unlf" log n) <1/2,

where the last inequality holds for large enough n. This
means that Pr(B > onlogn) > 1/2.

Next we prove the second property of the set B. Let
7= (ry,ra,...,T,) be an arbitrary vector of reserve prices.
Forall 1 < i < n,letx; = r; if r; < b; and let
z; = 0 otherwise. Note that the proﬁt of assigning reserve
prices ¥ = (ri,r9,...,T,) On b is Z _, x;. Let’s define
X = Z?Zl x;. Below, for any arbitrary 0 < ¢ < n we
bound E[z;]. Here we pick j such that ]:1 <7r < "7
Note that we have E[x;] = ;. Pr(r; < b;) < ”7
Therefore, we have E[X] = n. Also, for any 1 < ¢
upper bound the variance of x; as follow.

d— .
ne
=n

Var(z;) = E[s?) ~ (E[])? < Bla?] = 202

3
< i(ﬁ)zz »
n7\ J

Thus, we have Var(X) < nn° = n'*7. Now, by applying

n’.

IN

Bernstein’s bound we have
Pr(X = B[X] 2 n) < 2exp ( w2

T — n ex _

- - P nlte 4+ non/3

—2exp( z 1= ‘7).

Therefore we have Pr (X > 2n) < 2exp ( — gnl ") R
which proves the second property of the set 5 and completes

the proof. O

Setting 0 = €/2 in Theorem 3.1 gives us the following
corollary.

Corollary 3.1.1. For any small constant € there is no
o(log(n))-approximation pricing system using O(n'~¢)
communication bits.

4 Hardness Result

We show that MRPOP is NP-hard even when the space
of the auction is 2-dimensional. Indeed this hardness re-
sult carries over to the general problem. We obtain this re-
sult via a reduction from MaxCut. In the MaxCut prob-
lem, we are given an undirected graph G, whose vertices
we wish to partition into two disjoint sets to maximize the
number of crossing edges. It has been shown that the Max-
Cut problem is NP-hard and cannot be even approximated
within a factor better than 0.878 in polynomial time un-
less a widely believed conjecture fails (Christofides 1975;
Khot and Vishnoi 2005). We provide the proof of the fol-
lowing theorem in the full version.

Theorem 4.1. The MRPORP problem is NP-hard.

S Polynomial Time Approximation

In this section, we propose a structure for a set of desirable
solutions for the MRPOP problem, namely stable solutions.
Recall that a multiplicative reserve price solution is specified
by d vectors (v!,v?%, ... v?), where every v’ is itself a vec-
tor of multiplicative reserves of size | A;|. The reserve price

of every type vector (aq, g, . . ., ) is then determined as
H U&z
1<i<d
We defined a solution v = (v!,v2,... v?) to be stable

if every vector v* is optimal given that the other vectors are
fixed. More precisely, v is stable if and only if for any ¢ € [d]
and any u’ such that |u*| = |v'| we have
Rev(v) > Rev(v",u').

In addition to this, we assume stable solutions are always
non-zero.

Stable solutions have several desirable properties. For in-
stance, one can show that the revenue of a polynomially

bounded stable solution is at least 1/log(R) of that of the
optimal solution.
2

Theorem 5.1. Let v = (vl v?, v?) be a stable solution
for an instance of the problem wherein the reserve prices
are O(R). Then, Rev(v) > Opt/O(log(R)) where Opt is
the maximum possible revenue any solution can achieve for
this instance of the problem.
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Figure 1: The horizontal line denotes the date and the vertical line illustrates the average accumulated bid per impression for
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Figure 2: The horizontal line denotes the date and the vertical line illustrates the ratio of the revenue achieved by an algorithm

that that of the optimal unrestricted algorithm in percentage.

In what follows, we give an algorithm that finds an
O(log R) approximation solution for the MRPOP problem
with dimension d, in polynomial time.

At first, we set the multiplicative solutions for all reserve
price vectors equal to 1. Since all bids are integer numbers
bounded by R, this guarantees a 1/R fraction of the opti-
mal revenue. Then we iteratively improve the revenue by
updating the solution vectors. More precisely, in every step,
for each 1 < i < d, we find a vector v’ that maximizes
Rev(v~% u?). Notice that this can be computed in polyno-
mial time by iterating over all possible choices of each index.
Note that we only consider multiplicative reserves between
1/R and R, so that our solution always remains polynomi-
ally bounded. Next we calculate Rev(v—%, u*) — Rev(v) for
each index ¢ and find the vector that maximizes this expres-
sion. Then we update our solution by replacing the vector in
our solution. Note that since Rev(v~% u*) > Rev(v), our
solution improves in every step. We stop when the improve-
ment in revenue is no more than an arbitrary small threshold.

Theorem 5.2. There exists an algorithm that finds a
O(1/ log R) approximation solution to MRPOP in polyno-
mial time.
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6 Empirical Study

In this section, we present an empirical evaluation of the al-
gorithm we present in Section 5. We compare the perfor-
mance of our algorithm with that of the uniform reserve pric-
ing and unrestricted algorithms described as follows.

uniform reserve pricing: we find the reserve price p that
maximizes Y w(D, p) for all auctions and set the multi-
plicative reserves in a way that the reserve price of every
auction is equal to p.

unrestricted: We set reserve prices for each auction sep-
arately. As declared, the revenue achieved in this case is
an upper bound on the optimal revenue we can get in the
restricted setting.

Our experiments are based on millions of bids submitted
by advertisers to Google Advertising Exchange, AdX. More
precisely, once a user visits a webpage with an ad supported
by the exchange, this opportunity is reported to the advertis-
ers as a set of features. Every feature reveals a property of
the ad to the advertiser; the advertiser submits a bid based
on these. Therefore, in our dataset, for every combination of
the (advertiser, values of features), we have a submitted bid.
To run the experiments, we select two features that have a
meaningful correlation with bids and create a table where



each cell denotes a pair of values for the features. Note that
one is related to contextual property of ad slot ID and one
of them is related to the demographic of user watching the
page. For every cell, we find the bid distribution correspond-
ing to it and evaluate the algorithms performance on the ta-
ble. Each row of the table corresponds to a value for feature
1 and each column represents a unique value for feature 2.
Tables have millions of rows and columns. The experiments
are run on the data of 17 consecutive days.

We would like to note that although the numbers are close
for the last day, there is still a gap between revenues. Of
course, the gap fluctuates based on several factors that have
high impacts on the revenues of the algorithms. For instance,
depending on the time that the query arrives, some query
features might be reset, and hence are less informative in
comparison to other dates. Another example is that on par-
ticular dates, both the number of queries and the number of
demands for ad slots increase. Analogously, sometimes the
advertisers are reluctant to bid, affecting the results. What is
clear from the charts is that the iterative algorithm is clearly
providing better revenues; nonetheless, the ratio of improve-
ment is affected by several factors.

As shown in Figures 1 and 2, the iterative algorithm works
almost optimally in practice. The experiments are run on 18
different data sets, each containing millions of distributions
in average. According to our experiments, the iterative algo-
rithm achieves more than 94% (in average) of the total rev-
enue achievable in the unrestricted version of the problem.
Note that, as multiplicative pricing is inherently weaker than
and unrestricted algorithm, revenue loss is inevitable. How-
ever, our experiments show that the revenue loss in practice
is substantially better than the theoretical bounds.

Uniform reserve pricing algorithm exhibits a poor perfor-
mance in the experiments. The average revenue loss of this
algorithm is more than 40% over the data sets. Although this
is better than the theoretical guarantees, this algorithm is not
competitive to the iterative algorithm.
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