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Abstract

In the Colonel Blotto game, which was initially introduced
by Borel in 1921, two colonels simultaneously distribute their
troops across different battlefields. The winner of each battle-
field is determined independently by a winner-take-all rule.
The ultimate payoff of each colonel is the number of bat-
tlefields he wins. This game is commonly used for analyz-
ing a wide range of applications such as the U.S presiden-
tial election, innovative technology competitions, advertise-
ments, etc. There have been persistent efforts for finding the
optimal strategies for the Colonel Blotto game. After almost a
century Ahmadinejad, Dehghani, Hajiaghayi, Lucier, Mahini,
and Seddighin provided a poly-time algorithm for finding the
optimal strategies.
They first model the problem by a Linear Program (LP) with
exponential number of constraints and use Ellipsoid method
to solve it. However, despite the theoretical importance of
their algorithm, it is highly impractical. In general, even Sim-
plex method (despite its exponential running-time) performs
better than Ellipsoid method in practice.
In this paper, we provide the first polynomial-size LP formu-
lation of the optimal strategies for the Colonel Blotto game.
We use linear extension techniques. Roughly speaking, we
project the strategy space polytope to a higher dimensional
space, which results in a lower number of facets for the poly-
tope. We use this polynomial-size LP to provide a novel, sim-
pler and significantly faster algorithm for finding the optimal
strategies for the Colonel Blotto game.
We further show this representation is asymptotically tight in
terms of the number of constraints. We also extend our ap-
proach to multi-dimensional Colonel Blotto games, and im-
plement our algorithm to observe interesting properties of
Colonel Blotto; for example, we observe the behavior of play-
ers in the discrete model is very similar to the previously stud-
ied continuous model.

1 Introduction

In the U.S. presidential election, the President is elected by
the Electoral College system. In the Electoral College sys-
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tem, each state has a number of electoral votes, and the can-
didate who receives the majority of electoral votes is elected
as the President of the United States. In all of the states
except Maine and Nebraska, a winner-take-all role deter-
mines the electoral votes, and the candidate who gets the
majority of votes in a state will benefit from all the elec-
toral votes of the corresponding state. Since the President
is not elected by the national popular vote directly, any in-
vestment in the states that are highly biased toward a party
would be wasted. For example, a Democratic candidate can
count on the electoral votes of states like California, Mas-
sachusetts, and New York, and a Republican candidate can
count on the electoral votes of states like Texas, Mississippi,
and South Carolina. This highlights the importance of those
states that are likely to choose either party and would de-
termine the outcome of the election. These states, known as
swing states or battleground states, are the main targets of
a campaign during the election, e.g., the main battleground
states of the 2012 U.S. presidential election were Colorado,
Florida, Iowa, New Hampshire, North Carolina, Ohio, Vir-
ginia, and Wisconsin. Now answers to the following ques-
tions seem to be essential: how can a national campaign dis-
tribute its resources like time, human resources, and money
across different battleground states? What is the outcome of
the game between two parties?

One might see the same type of competition between
two companies that are developing new technologies. These
companies need to distribute their efforts across different
markets. The winner of each market would become the
market-leader and takes almost all the benefits of the cor-
responding market (Kovenock and Roberson 2010; 2012).
For instance, consider the competition between Samsung
and Apple, where they both invest in developing products
like cellphones, tablets, and laptops, and all can have differ-
ent specifications. Each product has its own specific market
and the most plausible brand will lead that market. Again, a
strategic planner with limited resources would face a similar
question: what would be the best strategy for allocating the
resources across different markets?
Colonel Blotto Game. The Colonel Blotto game, which
was first introduced in Borel (1921), provides a model
to study the aforementioned problems. This paper was
later discussed in an issue of Econometria (Borel 1953;
Fréchet 1953a; 1953b; von Neumann 1953). Although the
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Colonel Blotto model was initially proposed to study a war
situation, it has been applied for analyzing the competi-
tion to different contexts from sports, to advertisements,
and to politics (Myerson 1993; Laslier and Picard 2002;
Merolla, Munger, and Tofias 2005; Chowdhury, Kovenock,
and Sheremeta 2009; Kovenock and Roberson 2010; 2012).
In the original Colonel Blotto game, two colonels fight
against each other over different battlefields. They simulta-
neously divide their troops among different battlefields with-
out knowing the actions of their opponents. A colonel wins a
battlefield iff the number of his troops dominates the number
of troops of his opponent. The final payoff of each colonel,
in its classical form, is the number of the battlefields he wins.
The maxmin strategy of a player maximizes the minimum
gain that can be achieved. In two-player zero-sum games,
a maxmin strategy is also the optimal strategy, since any
other strategy may result in a lower payoff against a rational
player. It is also worth mentioning that in zero-sum games
a pair of strategies is a Nash equilibrium iff both players
are playing maxmin strategies. Therefore finding maxmin
strategies results in finding the optimal strategies for players
and also the Nash equilibria.

Colonel Blotto is a zero-sum game, but the fact that
the number of pure strategies of the agents is exponen-
tial in the number of troops and the number of battlefields
makes the problem of finding the optimal strategies quite
hard. There were several attempts for solving variants of
the problem since 1921 (Tukey 1949; Blackett 1954; 1958;
Bellman 1969; Shubik and Weber 1981; Weinstein 2005;
Roberson 2006; Kvasov 2007; Hart 2008; Golman and Page
2009; Kovenock and Roberson 2012). Most of the works
consider special cases of the problem. For example, many re-
sults in the literature relax the integer constraint of the prob-
lem and study a continuous version of the problem where
troops are divisible. For example, Borel and Ville (1938)
proposed the first solution for three battlefields. Gross and
Wagner (1950) generalized this result for any number of
battlefields. However, they assumed colonels have the same
number of troops. Roberson (2006) computes the optimal
strategies of the Blotto games in the continuous version
of the problem where all the battlefields have the same
weight, i.e. the game is symmetric across the battlefields.
Hart (2008) considered the discrete version, again when the
game is symmetric across the battlefields, and solved it for
some special cases. Very recently Ahmadinejad, Dehghani,
Hajiaghayi, Lucier, Mahini, and Seddighin (2016) made a
breakthrough in the study of this problem by finding opti-
mal strategies for the Blotto games after nearly a century,
which attracted a lot of attention (NSF 2016; Insider 2016;
Scientific Computing 2016). They obtain exponential sized
LPs, and then provide a clever use of Ellipsoid method for
finding the optimal strategies in polynomial time.

Although theoretically, Ellipsoid method is a very power-
ful tool with deep consequences in complexity and optimiza-
tion, it is “too inefficient to be used in practice” (Bernhard,
Korte, and Vygen 2008). Interior point methods and Simplex
method (even though it has exponential running-time in the
worst case) are “far more efficient” (Bernhard, Korte, and
Vygen 2008). Thus a practical algorithm for finding the op-

timal strategies for the Blotto games remains an open prob-
lem. In fact, there have been huge studies in the existence
of efficient LP reformulations for different exponential-size
LPs. For example Rothvoss (2014) proved that the answer
to the long-standing open problem, asking whether a graph’s
perfect matching polytope can be represented by an LP with
a polynomial number of constraints, is negative. The sem-
inal work of Applegate and Cohen (2003) also provides
polynomial-size LPs for finding an optimal oblivious rout-
ing. We are the first to provide a polynomial-size LP for
finding the optimal strategies of the Colonel Blotto games.
Although Ahmadinejad et al. (2016) use an LP with an ex-
ponential number of constraints, our LP formulation has
only O(N2K) constraints, where N denotes the number
of troops and K denotes the number of battlefields. Conse-
quently, we provide a novel, simpler and significantly faster
algorithm using the polynomial-size LP.

Furthermore, we show that our LP formulation is
asymptotically tight. The rough idea behind obtaining a
polynomial-size LP is the following: Given a polytope P
with exponentially many facets, we project P to another
polytope Q in a higher dimensional space that has a poly-
nomial number of facets. Thus basically we are adding a
few variables to the LP in order to reduce the number of
constraints down to a polynomial. Q is called the linear ex-
tension of P . The minimum number of facets of any lin-
ear extension is called the extension complexity. We show
that the extension complexity of the polytope of the opti-
mal strategies of the Colonel Blotto game is Θ(N2K). In
other words, there exists no LP-formulation for the polytope
of maxmin strategies of the Colonel Blotto game with fewer
than Θ(N2K) constraints.

We also extend our approach to the Multi-Resource
Colonel Blotto (MRCB) game. In MRCB, each player has
different types of resources. Again the players distribute
their budgets in the battlefields. Thus each player allocates
a vector of resources to each battlefield. The outcome in
each battlefield is a function of both players’ resource vec-
tors that they have allocated to that battlefield. MRCB mod-
els a very natural and realistic generalization of the Colonel
Blotto game. For example in U.S. presidential election,
the campaigns distribute different resources such as people,
time, and money among different states. We provide an LP
formulation for finding optimal strategies in MRCB with
Θ(N2cK) constraints and Θ(N2cK) variables, where c is
the number of resources. We prove this result is also tight up
to a constant factor since the extension complexity of MRCB
is Θ(N2cK).

By implementing our method, we observe that the payoff
of the players in the continuous model by Roberson (2006)
very well predicts the outcome of the game in the auctionary
and symmetric version of our model.

Due to space constraints, some of the proofs and figures
are not included in this document. The full version is avail-
able on arxiv (Behnezhad et al. 2016)

2 Preliminaries
Throughout this paper, we assume the number of battlefields
is denoted by K, and the number of troops of players A and
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B is denoted by A and B respectively. Also in some cases,
we use N to denote the number of troops of an unknown
player.

Generally, mixed strategies are shown by a probability
vector over pure strategies. However, in this paper we project
this representation to another space that specifies probabili-
ties to each battlefield and troop count pair. More precisely,
we map a mixed strategy x of A to GA(x) = x̂ ∈ [0, 1]d(A),
where d(A) = K× (A+1). We may abuse this notation for
convenience and use x̂i,j to show the probability the mixed
strategy x puts j troops in the i-th battlefield. Note that this
mapping is not one-to-one. Similarly, we define GB(x) to
map a mixed strategy x of B to a point in [0, 1]d(B), where
d(B) = K × (B + 1). Let RA and RB denote the set of
all possible mixed strategies of A and B in a Nash equilib-
rium. We define PA = {x̂ | ∃x ∈ RA,GA(x) = x̂}
and PB = {x̂ | ∃x ∈ RB ,GB(x) = x̂} to be the set of
all maxmin strategies in the new space for A and B, respec-
tively.

Multi-Resource Colonel Blotto is a generalization of
Colonel Blotto where each player may have different types
of resources. In MRCB, there are K battlefields and c re-
source types. Players simultaneously distribute all their re-
sources of all types over the battlefields. Let Ai and Bi de-
note the number of resources of type i players A and B
respectively have. A pure strategy of a player is a parti-
tion of his resources over battlefields. In other words, let
xi,j and yi,j denote the amount of resources of type j,
players A and B put in battlefield i respectively. A vec-
tor x = 〈x1,1, . . . , xK,c〉 is a pure strategy of player A if
for any 1 ≤ j ≤ c,

∑K
i=1 xi,j = Aj . Similarly, a vector

y = 〈y1,1, . . . , yK,c〉 is a pure strategy of player B if for any
1 ≤ j ≤ c,

∑K
i=1 yi,j = Bj . Let UA(x, y) and UB(x, y)

denote the payoff of players A and B, and UA
i (x, y) and

UB
i (x, y) show their payoff over the i-th battlefield respec-

tively. Note that

UA(x, y) =

K∑

i=1

UA
i (x, y),

and similarly UB(x, y) =
∑K

i=1 U
B
i (x, y). On the other

hand, since MRCB is a zero-sum game, UA
i (x, y) =

−UB
i (x, y). Similar to Colonel Blotto, we define RA

M and
RB

M to denote the set of all possible mixed strategies of
players A and B in a Nash equilibrium of MRCB. Moreover,
for any mixed strategy x of player A we define the mapping
GA
M(x) = x̂ ∈ [0, 1]d

M(A) where dM(A) = K × (A1 +
1) . . .×(Ac+1p). Moreover, by x̂i,j1,...,jc we mean the prob-
ability that in mixed strategy x, A puts jt amount of resource
type t in the i-th battlefield for any t where 1 ≤ t ≤ c. We
also define the same mapping for player B, GB

M(x) = x̂ ∈
[0, 1]d

M(B) where dM(B) = K × (B1 +1) . . .× (Bc +1).
Lastly, we define PM

A = {x̂ | ∃x ∈ RA
M,GA

M(x) = x̂}
and PM

B = {x̂ | ∃x ∈ RB
M,GB

M(x) = x̂} to be the set of
all maxmin strategies after the mapping.

For clarification of how U.S. presidential election is com-
monly modeled as a Colonel Blotto game, we model U.S.

presidential election as a simple single-resource Colonel
Blotto game. Consider a democrat candidate A, and a re-
publican candidate B, having budgets A and B, respectively.
For each state and also District of Columbia there is a bat-
tlefield, thus there are 51 battlefields overall. Any pure strat-
egy of each candidate is a partition of his/her budget among
the battlefields. For each state if A and B spend x and y re-
sources respectively, the candidates will receive an expected
number of electoral votes. For example right now California
has 55 electoral votes and usually more towards democrates.
Hence if A spends two millions of dollars in California and
B only spends one million dollars, in expectation A will
receive 54 electoral votes and B will only receive 1, i.e.
UA

California(2, 1) = 54 and UB
California(2, 1) = 1 1. Finally the

total payoff of each candidate is the sum of expected elec-
toral votes over all states. Each candidate is trying to maxi-
mize the number of his/her electoral votes in expectation.

3 LP Formulation

The conventional approach to formulate the mixed strategies
of a game is to represent every strategy by a vector of prob-
abilities over the pure strategies. More precisely, a mixed
strategy of a player is denoted by a vector of size equal to
the number of his pure strategies, whose every element indi-
cates the likelihood of taking a specific action in the game.
The only constraint that this vector adheres to, is that the
probabilities are non-negative and add up to 1. Such a for-
mulation for Colonel Blotto requires a huge amount of space
and computation since the number of pure strategies of each
player in this game is exponentially large.

To overcome this hardness, Ahmadinejad et al. (Ah-
madinejad et al. 2016) propose a more concise representa-
tion that doesn’t suffer from the above problem. This is of
course made possible by taking a significant hit on the sim-
plicity of the description. They suggest, instead of indicating
the probability of taking every action in the representation,
we only keep track of the probabilities that a mixed strategy
allocates a certain amount of troops to every battlefield. In
other words, in the new representation, for every number of
troops and any battlefield we have a real number, that de-
notes the probability of allocating that amount of troops to
the battlefield. As a result, the length of the representation
reduces from the number of pure strategies to (A+ 1)K for
player A and (B+1)K for player B. This is indeed followed
by a key observation: given the corresponding representa-
tions of the strategies of both players, one can determine the
outcome of the game regardless of the actual strategies. In
other words, the information stored in the representations of
the strategies suffices to determine the outcome of the game.

In contrast to the conventional formulation, Ahmadine-
jad et al.’s representation is much more complicated and not
well-understood. For example, in order to see if a represen-
tation corresponds to an actual strategy in the conventional
formulation, we only need to verify that all of the probabil-
ities are non-negative and their total sum is equal to 1. Ah-
madinejad et al.’s representation, however, is not trivial to

1Note that in this model the game is constant sum, but equiva-
lent to a zero-sum game
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verify. Apart from the trivial constraints such as the proba-
bilities add up to 1 or the number of allocated troops matches
the number of the player’s troops, there are many other con-
straints to be met. Moreover, it is not even proven whether
such a representation can be verified with a polynomial num-
ber of linear constraints.

Ahmadinejad et al. (Ahmadinejad et al. 2016) leverage
the new representation to determine the equilibria of Colonel
Blotto in polynomial time. Recall that in zero-sum games
such as Colonel Blotto, the minmax strategies are the same
as the maxmin strategies, and the game is in Nash Equilib-
rium iff both players play a maxmin strategy (Nisan et al.
2007). Roughly speaking, the high-level idea of Ahmadine-
jad et al. is to find a mixed strategy which performs the best
against every strategy of the opponent. By the equivalence of
the minmax and maxmin strategies then, one can show such
a strategy is optimal for that player. Therefore, the naive for-
mulation of the equilibria of Blotto is as follows:

max u (1)
s.t. x̂ is a valid strategy for player A

UA(x̂, ŷ) ≥ u ∀ŷ
Note that, x̂ is a vector of size (A + 1)K that represents

a strategy of player A. Similarly, for every mixed strategy
of B, represented by ŷ, we have a constraint to ensure x̂
achieves a payoff of at least u against ŷ. Notice that the only
variables of the program are the probabilities encoded in
vector x̂. All other parameters are given as input and hence
appear as constant coefficients in the program. As declared,
there are two types of constraints in Program 1. The first set
of constraints ensures the validity of x̂, and the second set of
constraints ensures x̂ performs well against every strategy
of player B. Ahmadinejad et al. (2016) call the first set the
membership constraints and the second set the payoff con-
straints. Since for every mixed strategy, there exists a pure
best response strategy, one can narrow dawn the payoff con-
straints to the pure strategies of player B.

The last observation of Ahmadinejad et al. (2016) is to
show both types of the constraints are convex in the sense
that if two strategy profiles x̂1 and x̂2 meet either set of con-
straints, then x̂1+x̂2

2 is also a feasible solution for that set.
This implies that Program 1 is indeed a linear program that
can be solved efficiently via the Ellipsoid method. However,
Ahmadinejad et al.’s algorithm is practically impossible to
run.

The reason Ahmadinejad et al.’s algorithm is so slow is
that their LP has exponentially many constraints. Therefore,
they need to run the Ellipsoid algorithm run solve the pro-
gram. In addition to this, their separation oracle is itself a
linear program with exponentially many constraints which
is again very time consuming to run. However, a careful
analysis shows that these exponentially many constraints are
all necessary. This implies that the space of the LP as de-
scribed by Ahmadinejad et al. requires exponentially many
constraints to formulate and hence we cannot hope for a bet-
ter algorithm. A natural question that emerges, however, is
whether we can change the space of the LP to solve it with
a more efficient algorithm?

In this paper, we answer the above question in the affirma-
tive. There has been persistent effort to find efficient formu-
lations for many classic polytopes. As an example, spanning
trees of a graph can be formulated via a linear program that
has an exponential number of linear constraints. It is also not
hard to show none of those constraints are redundant (Ed-
monds 1971). However, Martin (Martin 1991) showed that
the same polytope can be formulated with O(n3) linear
constraints where n is the number of nodes of the graph.
Other examples are the permutahedron (Goemans 2015),
the parity polytope (Rothvoß 2013), and the matching poly-
tope (Rothvoß 2014). In these examples, a substantial de-
crease in the number of constraints of the linear formulation
of a problem is made possible by adding auxiliary variables
to the program. Our work follows the same guideline to for-
mulate the equilibria of Blotto with a small number of con-
straints.

In Section 4, we explain how to formulate the member-
ship and payoff limitations with a small number of linear
constraints. Finally, in Section 5, we show that our formula-
tion is near optimal. In other words, we show that any linear
program that formulates the equilibria of Blotto has to have
as many linear constraints as the number of constraints in our
formulation within a constant factor. We show this via rect-
angle covering lower bound proposed by Yannakakis (Yan-
nakakis 1988)

4 Polynomial LP

In this section, we give a linear program to find a maxmin
strategy for a player in an instance of Colonel Blotto with
polynomially many constraints and variables. To do this, we
describe the same representation proposed by Ahmadine-
jad et al.(2016) in another dimension to reduce the num-
ber of constraints. This gives us a much better running time
Since one need to use the Ellipsoid method to find the op-
timal strategies using the formulation of Ahmadinejad et
al., which makes their algorithm very slow and impracti-
cal. We define a layered graph for each player and show
any mixed strategy of a player can be mapped to a partic-
ular flow in his layered graph. Our LP includes two sets of
constraints namely membership constraints and payoff con-
straints. Membership constraints guarantee we find a valid
strategy and payoff constraints guarantee this strategy mini-
mizes the maximum benefit of the opponent.

Definition 1 (Layered Graph) For an instance of a Blotto
game with K battlefields, we define a layered graph for a
player with N troops as follows: The layered graph has K+
1 layers and N +1 vertices in each layer. Let vi,j denote the
j’th vertex in the i’th layer ( 0 ≤ i ≤ K and 0 ≤ j ≤ N ).
For any 1 ≤ i ≤ K there exists a directed edge from vi−1,j

to vi,l iff 0 ≤ j ≤ l ≤ N . We denote the layered graph of
player A and B by LA and LB respectively.

Based on the definition of layered graph we define canonical
paths as follows:

Definition 2 (Canonical Path) A canonical path is a di-
rected path in a layered graph that starts from v0,0 and ends
at vK,N .
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Figure 1: Figure (a) shows a layered graph for a player with
3 troops playing over 3 battlefields. In Figure (b) a canonical
path corresponding to a pure strategy where the player puts
no troops on the first battlefield, 1 troop on the second one
and two troops on the 3rd one is shown. Figure (c) shows a
flow of size 1, which is a representation of a mixed strategy
consisting of three pure strategies with probabilities 0.3, 0.4
and 0.3.

We map canonical paths to pure strategies and vice versa,
this mapping is informally explained in Figure 1 and the fol-
lowing lemma proves that it is one-to-one.

Lemma 3 Each pure strategy for a player is equivalent to
exactly one canonical path in the layered graph of him and
vice versa.

So far, it is clear how layered graphs are related to pure
strategies using canonical paths. Now, we explain the re-
lation between mixed strategies and flows of size 1 where
v0,0 is the source and vK,N is the sink. One approach to for-
mulate the mixed strategies of a game is to represent every
strategy by a vector of probabilities over the pure strategies.
Since based on Lemma 3, each pure strategy is equivalent to
a canonical path in the layered graph, for any pure strategy
s with probability P (s) in a mixed strategy we assign a flow
of size P (s) to the corresponding canonical paths of s in
the layered graph. All these paths begin and end in v0,0 and
vK,N respectively. Therefore, since

∑
P (s) = 1 for all pure

strategies of a mixed strategy, the size of the corresponding
flow is exactly 1.
Corollary 4 For any mixed strategy of a player with N
troops there is exactly one corresponding flow from vertex
v0,0 to vK,N in the layered graph of that player.

Note that although we map any given mixed strategy to a
flow of size 1 in the layered graph, this is not a one-to-one
mapping since several mixed strategies could be mapped to
the same flow. However, in the following lemma, we show
that this mapping is surjective.
Lemma 5 For any flow of size 1 from v0,0 to vK,N in the
layered graph of a player with N troops, there is at least one
mixed strategy of that player with a polynomial size support
that is mapped to this flow.

Using the flow representation for mixed strategies and the
above properties, we give the first LP with polynomially
many constraints and variables to find a maxmin strategy for
any player in an instance of Colonel Blotto. Our LP consists
of two sets of constraints. The first set (membership con-
straints) ensures we have a valid flow of size 1, which means
we are able to map the solution to a valid mixed strategy. The

second set of constraints is needed to ensure the minimum
payoff of the player, whom we are finding the maxmin strat-
egy for, is at least u. By maximizing u we obtain a maxmin
strategy. In the following theorem, we prove that it is pos-
sible to formulate PA with polynomially many constraints
and variables. Note that one can swap A and B and use the
same LP to formulate PB .

Theorem 6 In an instance of Colonel Blotto, with K bat-
tlefields and at most N troops for each player, PA could be
formulated with Θ(N2K) constraints and Θ(N2K) vari-
ables.

To obtain a mixed strategy for player A, it suffices to run
the LP and find a mixed strategy of A that is mapped to
the flow it finds. Note that based on Lemma 5 such mixed
strategies always exist. Then, we do the same for player B
by simply substituting A and B in the LP.

5 Lower Bound

A classic approach to reduce the number of LP constraints
to describe a polytope is to represent it in a higher dimen-
sion. More precisely, adding extra variables to an LP might
substantially reduce the number of facets in its correspond-
ing polytope. This means a complex polytope may be much
simpler in a higher dimension. This is exactly what we do
in Section 4 to improve Ahmadinejad et al.’s algorithm. In
this section, we prove that any LP formulation that describes
solutions of a Blotto game requires at least Θ(N2K) con-
straints, no matter what the dimension is. This proves the
given LP in Section 4 is tight up to a constant factor.

The minimum number of necessary constraints in any for-
mulation of a polytope P is called the extension complex-
ity of P , denoted by xc(P ). Bounding the extension com-
plexity of a polytope is often nontrivial since the number
of necessary constrains to formulate an LP depends on the
set of variables, or in other words the space of the solution
polytope. However, a very useful technique given by Yan-
nakakis (1988) is to prove a lower bound on the positive
rank of the slack matrix of P , which is proven to be equal to
xc(P ). Note that the positive rank of a slack matrix defined
over any formulation of p is equal to xc(P ), which means we
do not have to consider all possible formulations. To prove
this lower bound we use a method called rectangle covering
lower bound (Yannakakis 1988).

Lemma 7 The extension complexity of the membership
polytope of a player in an instance of Blotto with K bat-
tlefields and N troops for each player is at least Θ(N2K).

To prove Lemma 7, from the LP given in Section 4, we
only consider the constraints that ensure the non-negativity
of flow passing through edges of the layered graph of
player A and prove the extension complexity of the poly-
tope described by these constraints is Θ(N2K). And using
Lemma 7 we prove the main theorem of this section:

Theorem 8 In an instance of Blotto with K battlefields and
N troops for each player the extension complexity of PA is
Θ(N2K).
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6 Multi-Resource Colonel Blotto

In this section, we explain how our results could be gen-
eralized to solve Multi-Resource Colonel Blotto or MRCB.
We define MRCB to be exactly the same game as Colonel
Blotto, except that instead of having only one type of re-
source (troops), players may have any number of resource
types. Examples of resource types are time, money, energy,
etc.

To solve MRCB we generalize some concepts that we
have already defined for Colonel Blotto. We first define gen-
eralized layered graphs and generalized canonical paths as
follows:

Definition 9 (Generalized Layered Graph) Let Nm

denote the total number of available resources of
m-th resource type for player X . The generalized
layered graph of X has K × N1 × . . . × N c ver-
tices denoted by v(i, r1, . . . , rc), with a directed
edge from v(i, r1, . . . , rm−1, x, rm+1, . . . , rc) to
v(i + 1, r1, . . . , rm−1, y, rm+1, . . . , rc) for any possi-
ble i, r and 0 ≤ x ≤ y ≤ Nm.

Definition 10 (Generalized Canonical Path) A general-
ized canonical path is defined over a generalized layered
graph and is a directed path from v0,0,...,0 to vK,N1,...,Nc .

Similarly, one can show every pure strategy of the Multi-
Resource Colonel Blotto game corresponds to a canonical
path in his generalized layered graph and there is a surjective
mapping from his mixed strategies to flows of size 1 from
v(0, . . . , 0) to v(K,N1, . . . , Nc) using similar techniques
we used in Section 4. Using these properties, we prove the
following theorem:

Theorem 11 In an instance of MRCB, PM
A can be formu-

lated with O(N2cK) constraints and Θ(N2cK) variables.

We also prove the matching lower bound for MRCB.

Theorem 12 In an instance of MRCB, the extension com-
plexity of PM

A is Θ(N2cK).

7 Experimental Results

We implemented our algorithm using Simplex method on
a dual-core processor machine an 8GB memory. Using this
fast implementation, we are able to run the code for different
cases. Here we provide our observations that mostly confirm
the theoretical predictions.

We would like to point out that we did not implement Ah-
madinejad et al. (2016)’s algorithm. Since not only their al-
gorithm uses an Ellipsoid method, but the separation ora-
cle also contains an exponential-size LP which is solved by
Ellipsoid method. In general algorithms that use Ellipsoid
method are rarely implemented due to efficiency problem,
but this nested use of Ellipsoid method makes their algo-
rithm significantly slow, even for very small inputs.

We call an instance of Colonel Blotto symmetric if the
payoff function is the same for all battlefields . Also, an in-
stance of blotto is auctionary if the player allocating more
troops in a battlefield wins it (gets more payoff over that
battlefield).

Figure 2: The y-axis is the payoff of player A in the Nash
equilibrium and the x-axis shows the value of A − B. The
black and red lines show the payoff in the continuous model
and discrete model respectively. In figure (a), K = 6 and
B = 10 and in figure (b), K = 4 and B = 12.

There have been several attempts to mathematically find
the optimal payoff of players under the aforementioned con-
ditions. Surprisingly, we observed the payoff of players in
the symmetric and auctionary discrete version are very close
to those of the continuous version (Roberson 2006). The
payoffs are specially very close when the number of troops
are large compared to the number of battlefields, making
the strategies more flexible and more similar to the contin-
uous version. Figure 2 compares the payoffs in the afore-
mentioned models. In Roberson’s model in case of a tie, the
player with more resources wins while in the normal case
there is no such assumption; however a tie rarely happens
since by adding any small amount of resources the player
losing the battlefield would win it.

8 Conclusion

We provide the first polynomial-size LP formulation of the
optimal strategies for the Colonel Blotto game. We show this
representation is asymptotically tight, which means there ex-
ists no linear representation of the problem with a smaller
number of constraints. We also extend our approach to
multi-resource version of the problem, where we have dif-
ferent types of resources such as money, time, and human
resources.

We implement our algorithm and run experiments that
were previously impossible to do in a reasonable time.
This allows us to observe some interesting properties of the
Colonel Blotto; for example we observe that the game’s out-
come in the discrete model is very similar to the continuous
model studied by Roberson (2006).
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