
Group Activity Selection on Social Networks

Ayumi Igarashi, Dominik Peters, Edith Elkind
Department of Computer Science

University of Oxford, UK
{ayumi.igarashi, dominik.peters, edith.elkind}@cs.ox.ac.uk

Abstract

We propose a new variant of the group activity selection prob-
lem (GASP), where the agents are placed on a social network
and activities can only be assigned to connected subgroups.
We show that if multiple groups can simultaneously engage
in the same activity, finding a stable outcome is easy as long
as the network is acyclic. In contrast, if each activity can
be assigned to a single group only, finding stable outcomes
becomes intractable, even if the underlying network is very
simple: the problem of determining whether a given instance
of a GASP admits a Nash stable outcome turns out to be NP-
hard when the social network is a path, a star, or if the size of
each connected component is bounded by a constant. On the
other hand, we obtain fixed-parameter tractability results for
this problem with respect to the number of activities.

Introduction

Companies assign their employees to different departments,
large decision-making bodies split their members into expert
committees, and university faculty form research groups: di-
vision of labor, and thus group formation, is everywhere. For
a given assignment of agents to activities (such as manage-
ment, product development, or marketing) to be successful,
two considerations are particularly important: the agents need
to be capable to work on their activity, and they should be
willing to cooperate with other members of their group.

Many relevant aspects of this setting are captured by the
group activity selection problem (GASP), introduced by Dar-
mann et al. (2012). In GASP players have preferences over
pairs of the form (activity, group size). The intuition behind
this formulation is that certain tasks are best performed in
small or large groups, and agents may differ in their prefer-
ences over group sizes; however, they are indifferent about
other group members’ identities. In the analysis of GASP,
desirable outcomes correspond to stable and/or optimal as-
signments of players to activities, i.e., assignments that are re-
sistant to player deviations and/or maximize the total welfare.
In the work of Darmann et al. (2012), players are assumed to
have approval preferences, and a particular focus is placed on
individually rational assignments with the maximum number
of participants; subsequently, Darmann (2015) investigated a
model where players submit ranked ballots.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, the basic model of GASP ignores the relation-
ships among the agents: Do they know each other? Are their
working styles and personalities compatible? Typically, we
cannot afford to ask each agent about her preferences over
all pairs of the form (coalition, activity), as the number of
possible coalitions grows quickly with the number of agents.
A more practical alternative is to adopt the ideas of Myerson
(1977) and assume that the relationships among the agents
are encoded by a social network, i.e., an undirected graph
where nodes correspond to players and edges represent com-
munication links between them; one can then require that
each group is connected with respect to this graph.

In this paper we extend the basic model of GASP to take
into account the agents’ social network. We formulate several
notions of stability for this setting, including Nash stability
and core stability, and study the complexity of computing
stable outcomes in our model. These notions of stability are
inspired by the hedonic games literature (Aziz and Savani
2016) and were applied in the GASP setting by Darmann et
al. (2012) and Darmann (2015).

Now, hedonic games on social networks were recently con-
sidered by Igarashi and Elkind (2016), who showed that if the
underlying network is acyclic, stable outcomes are guaran-
teed to exist and some of the problems known to be computa-
tionally hard for the unrestricted setting become polynomial-
time solvable. We obtain a similar result for GASP, but only
if several groups of agents can simultaneously engage in the
same activity, i.e., if the activities are copyable. In contrast,
we show that if each activity can be assigned to at most one
coalition, finding a stable outcome is hard even if the un-
derlying network is very simple. Specifically, checking the
existence of Nash stable or core stable outcomes turns out
to be NP-hard even for very restricted classes of graphs, in-
cluding paths, stars, and graphs with constant-size connected
components. We believe that this result is remarkable since,
in the context of cooperative games, such restricted networks
usually enable one to design efficient algorithms for com-
puting stable solutions (see, e.g., Chalkiadakis, Greco, and
Markakis 2016; Elkind 2014; Igarashi and Elkind 2016).

Given these hardness results, we switch to the fixed pa-
rameter tractability paradigm. In the context of GASP, a
particularly relevant parameter is the number of activities:
generally speaking, we expect the number of players to be
considerably larger than the number of available activities.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

565

Complexity (general case) few activities (FPT wrt p) copyable activities

Nash stability trees NP-c. (Thm 6) poly time (Thm 5)
paths NP-c. (Thm 6) 4pp2 · poly(n) (Thm 9) poly time (Thm 5)
stars NP-c. (Thm 7) pp+12p · poly(n) (Thm 11) poly time (Thm 5)
small components NP-c. (Thm 8) pc8p · poly(n) (Thm 10)

core stability trees NP-c. (Thm 12) poly time (Thm 4)
paths NP-c. (Thm 12) poly time (Thm 4)
stars NP-c. (Thm 12) poly time (Thm 4)
small components NP-c. (Thm 12) pc+18p · poly(n) (Thm 13)

Table 1: Overview of our complexity results. Here, n is the number of players, p is the number of activities, and c is a bound on
the size of the connected components. The NP-completeness results for small components hold even for c = 4 for Nash stability
and for c = 3 for core stability.

We show that for the restricted classes of networks used in
our hardness proofs (i.e., paths, stars, and graphs with small
connected components), finding a Nash stable outcome is
fixed parameter tractable (FPT) with respect to the number
of activities; some of our results extend to core stability. Our
results are summarized in Table 1.
Full version. An extended version with full proofs is avail-
able on arXiv (Igarashi, Peters, and Elkind 2016).

Preliminaries

For s ∈ N, let [s] = {1, 2, . . . , s}. An instance of the Group
Activity Selection Problem (GASP) is given by a finite set of
players N = [n], a finite set of activities A = A∗ ∪ {a∅},
where A∗ = {a1, a2, . . . , ap} and a∅ is the void activity, and
a profile (�i)i∈N of complete and transitive preference rela-
tions over the set of alternatives X = A∗ × [n] ∪ {(a∅, 1)}.
Intuitively, a∅ corresponds to staying alone and doing noth-
ing; multiple agents can make that choice independently from
each other.

We refer to subsets S ⊆ N of players as coalitions. We say
that two non-void activities a and b are equivalent if for every
player i ∈ N and every � ∈ [n] it holds that (a, �) ∼i (b, �).
A non-void activity a ∈ A∗ is called copyable if A∗ contains
at least n activities that are equivalent to a (including a itself).
We say that player i ∈ N approves an alternative (a, k) if
(a, k) �i (a∅, 1).

An outcome of a GASP is an assignment of activities A to
players N , i.e., a mapping π : N → A. Given an assignment
π : N → A and a non-void activity a ∈ A∗, we denote
by πa = { i ∈ N | π(i) = a } the set of players assigned
to a. Also, if π(i) 	= a∅, we denote by πi = {i} ∪ { j ∈
N | π(j) = π(i)} the set of players assigned to the same
activity as player i ∈ N ; we set πi = {i} if π(i) = a∅. An
assignment π : N → A for a GASP is individually rational
(IR) if for every player i ∈ N with π(i) 	= a∅ we have
(π(i), |πi|) �i (a∅, 1). A coalition S ⊆ N and an activity
a ∈ A∗ strongly block an assignment π : N → A if πa ⊆ S
and (a, |S|) �i (π(i), |πi|) for all i ∈ S. An assignment
π : N → A for a GASP is called core stable (CR) if it
is individually rational, and there is no coalition S ⊆ N
and activity a ∈ A∗ such that S and a strongly block π.
Given an assignment π : N → A for a GASP, a player
i ∈ N is said to have an NS-deviation to activity a ∈ A∗

if (a, |πa| + 1) �i (π(i), |πi|), that is, if i would prefer to
join the group πa. An assignment π : N → A for a GASP is
called Nash stable (NS) if it is individually rational and no
player i ∈ N has an NS-deviation to some a ∈ A∗.

Our Model

We now define a group activity selection problem where
communication links between the players are represented by
an undirected graph.

Definition 1. An instance of the Group Activity Selection
Problem with graph structure (gGASP) is given by an in-
stance (N, (�i)i∈N , A) of a GASP and a set of communica-
tion links between players L ⊆ {{i, j} | i, j ∈ N ∧ i 	= j }.

A coalition S ⊆ N is said to be feasible if S is connected
in the graph (N,L). An outcome of a gGASP is a feasible
assignment π : N → A such that πi is a feasible coalition for
every i ∈ N . We adapt the definitions of stability concepts to
our setting as follows. We say that a deviation by a group of
players is feasible if the deviating coalition itself is feasible; a
deviation by an individual player where player i joins activity
a is feasible if πa ∪{i} is feasible. We modify the definitions
in the previous section by only requiring stability against fea-
sible deviations. Note that an ordinary GASP (without graph
structure) is equivalent to a gGASP where the underlying
graph (N,L) is complete.

In this paper, we will be especially interested in gGASPs
where (N,L) is acyclic. This restriction guarantees the ex-
istence of stable outcomes in many other cooperative game
settings. However, this is not the case for gGASPs: here, both
core and Nash stable outcomes may fail to exist, even if
(N,L) is a path or a star.

Example 2. Consider a gGASP with N = {1, 2, 3}, A∗ =
{a, b}, L = {{1, 2}, {2, 3}}, where preferences (�i)i∈N are
given as follows:

1 : (b, 2) �1 (a, 3) �1 (a∅, 1)
2 : (a, 2) �2 (b, 2) �2 (a, 3) �2 (a∅, 1)
3 : (a, 3) �3 (b, 1) �3 (a, 2) �3 (a∅, 1)

We will argue that each individually rational feasible assign-
ment π admits a strongly blocking feasible coalition and
activity. If all players do nothing, then player 3 and activity

566

b strongly block π. Now, there are only four individually
rational feasible assignments where some player is engaged
in a non-void activity. First, when π(1) = b, π(2) = b,
π(3) = a∅, the coalition {2, 3} together with activity a
strongly blocks π. Second, when π(1) = a∅, π(2) = a,
π(3) = a, the coalition {3} together with activity b strongly
blocks π. Third, when π(1) = a∅, π(2) = a∅, π(3) = b, the
coalition {1, 2, 3} together with activity a strongly blocks π.
Finally, when π(1) = a, π(2) = a, and π(3) = a, the coali-
tion {1, 2} together with activity b strongly blocks π.

Similarly, a Nash stable outcome is not guaranteed to exist
even for gGASPs on paths and stars.
Example 3 (Stalker game). Consider a two-player gGASP
where player 1 is happy to participate in any activity as long
as she is alone, and player 2 always wants to participate in an
activity with player 1. This instance admits no Nash stable
outcomes: if player 1 engages in an activity, then player 2
wants to join her coalition, causing player 1 to deviate to
another (possibly void) activity.

However, if all activities are copyable, we can effectively
treat gGASP as a non-transferable utility game on a graph. In
particular, we can invoke a famous result of Demange (2004)
concerning the stability of non-transferable utility games on
trees. Thus, requiring all activities to be copyable allows us to
circumvent the non-existence result for the core (Example 2).
The argument is constructive.
Theorem 4 (implicit in the work of Demange 2004). For
every gGASP where each activity a ∈ A∗ is copyable and
(N,L) is acyclic, a core stable feasible assignment exists and
can be found in time polynomial in p and n.
Now, the stalker game in Example 3 does not admit a Nash
stable outcome even if we make all activities copyable. How-
ever, for copyable activities we can still check the existence
of a Nash stable outcome in polynomial time if the social
network is acyclic.
Theorem 5. Given an instance (N,A, (�i)i∈N , L) of
gGASP where each activity a ∈ A∗ is copyable and the
graph (N,L) is acyclic, one can decide whether it admits a
Nash stable outcome in time polynomial in p and n.

Proof. If the input graph (N,L) is a forest, we can process
each of its connected components separately, so we assume
that (N,L) is a tree. We choose an arbitrary node as the
root and construct a rooted tree by orienting the edges in L
towards the leaves. We denote by D(i) the set of descendants
of i (including i) in the rooted tree. Then, for each player
i ∈ N , each alternative (a, k) ∈ X , and t ∈ [k] we set
fi((a, k), t) to true if there exists a feasible assignment π :
N → A such that |πi ∩ D(i)| = t, π(i) = a, each player
in D(i) ∩ πi likes (a, k) at least as much as any alternative
she can deviate to (including the void activity), and no player
in D(i) \ πi has an NS feasible deviation. Otherwise, we
set fi((a, k), t) to false. By construction, there exists a Nash
stable feasible assignment if and only if fr((a, k), k) is true
for some alternative (a, k) ∈ X , where r is the root of the
rooted tree.

For each player i ∈ N , each alternative (a, k) ∈ X , and
each t ∈ [k], we initialize fi((a, k), t) to true if t = 1 and

i weakly prefers (a, k) to any alternative of size 1, and we
set fi((a, k), t) to false otherwise. Then, for i ∈ N from the
bottom to the root, we iterate through all the children of i and
update fi((a, k), t); more precisely, for each child j of i and
for t = k, . . . , 1, we set fi((a, k), t) to true if

• t ≥ 2 and there exists an x ∈ [t − 1] such that both
fi((a, k), x) and fj((a, k), t− x) are true, or

• fi((a, k), t) is true, and players i and j can be separated
from each other, i.e., there exists (b, �) ∈ X such that (i)
fj((b, �), �) is true, (ii) b = a∅ or (a, k) �i (b, �+ 1), and
(iii) a = a∅ or (b, �) �j (a, k + 1).

In cases where fr((a, k), k) is true for some alternative
(a, k) ∈ X , a Nash stable feasible assignment can be found
using dynamic programming.

Hardness Results for Nash Stability

We now move on to the case where each activity can be used
at most once. We will show that computing Nash stable out-
comes of gGASPs is NP-complete even when the underlying
network is a path, a star, or a graph with constant size con-
nected components. Clearly, this problem is contained in NP
for any social network since we can easily check whether a
given assignment is Nash stable.

Our proof for paths is by reduction from a restricted ver-
sion of the NP-complete problem RAINBOW MATCHING.
Given a graph G and a set of colors C, a proper edge col-
oring is a mapping φ : E(G) → C where φ(e) 	= φ(e′) for
all edges e, e′ such that e 	= e′ and e ∩ e′ 	= ∅. Without
loss of generality, we assume that φ is surjective. A properly
edge-colored graph (G, C, φ) is a graph together with a set of
color and a proper edge coloring. A matching M in an edge-
colored graph (G, C, φ) is called a rainbow matching if all
edges of M have different colors. An instance of RAINBOW
MATCHING is an edge-colored graph (G, C, φ) and an inte-
ger k. It is a “yes”-instance if G admits a rainbow matching
with at least k edges and a “no”-instance otherwise. Le and
Pfender (2014) show that RAINBOW MATCHING remains
NP-complete even for properly edge-colored paths.

Theorem 6. Given an instance of gGASP whose underlying
graph is a path, it is NP-complete to determine whether it
has a Nash stable feasible assignment.

Proof. The hardness proof proceeds by a reduction from
PATH RAINBOW MATCHING. Given an instance (G, C, φ, k)
of PATH RAINBOW MATCHING where |C| = q, we construct
an instance of gGASP on a path as follows. We create a vertex
player v for each v ∈ V (G) and an edge player e for each
e ∈ E(G). To create the social network, we start with G and
place each edge player in the middle of the respective edge,
i.e., we let NG = V (G)∪E(G) and LG = { {v, e} | v ∈ e ∈
E(G) }. To the right of the graph (NG, LG), we attach a path
consisting of “garbage collectors” {g1, g2, . . . , gq−k} and q
copies (Nc, Lc) of the stalker game where Nc = {c1, c2}
and Lc = {{c1, c2}} for each c ∈ C. We introduce a color
activity c for each color c ∈ C. Each vertex player v approves
color activities φ(e) of its adjacent edges e with size 3; each
edge player e approves the color activity φ(e) of its color

567

with size 3; each garbage collector gi approves any color
activity c with size 1; finally, for players in Nc, c ∈ C, player
c1 approves its color activity c with size 1, whereas player c2
approves c with size 2.

We show that G has a rainbow matching of size at least k
if and only if there exists a Nash stable feasible assignment.

Suppose that there exists a rainbow matching M of size
k. We construct a feasible assignment π where for each e =
{u, v} ∈ M we set π(e) = π(u) = π(v) = φ(e), each
garbage collector gi, i ∈ [q − k], is arbitrarily assigned to
one of the remaining q−k color activities, and the remaining
players are assigned to the void activity. The assignment
π is Nash stable, since every garbage collector as well as
every edge or vertex player assigned to a color activity are
allocated their top alternative, and no remaining player has
an NS feasible deviation.

Conversely, suppose that there is a Nash stable feasible
assignment π. Let M = { e ∈ E(G) | π(e) ∈ C }. We will
show that M is a rainbow matching of size at least k. To see
this, notice that π cannot allocate a color activity to a member
of Nc, since otherwise no feasible assignment would be Nash
stable. Further, at most q − k color activities are allocated
to the garbage collectors, which means that at least k color
activities should be assigned to vertex and edge players. The
only individually rational way to do this is to select triples of
the form (u, e, v) where e = {u, v} ∈ E(G) and assign to
them their color activity φ(e). Thus, M is a rainbow matching
of size at least k.

For gGASPs on stars we provide a reduction from the
NP-complete problem MINIMUM MAXIMAL MATCHING
(MMM). An instance of MMM is a graph G and a positive
integer k ≤ |E(G)|. It is a “yes”-instance if G admits a
maximal matching with at most k edges, and a “no”-instance
otherwise. The problem remains NP-complete for bipartite
graphs (Demange and Ekim 2008).

Theorem 7. Given an instance of gGASP whose underlying
graph is a star, it is NP-complete to determine whether it has
a Nash stable feasible assignment.

Proof. To prove NP-hardness, we reduce from MMM on
bipartite graphs. Given a bipartite graph G = (U ∪ V,E)
with vertex bipartition (U, V) and an integer k, we create
a star with center c and |V | + 1 leaves: one leaf for each
vertex player v ∈ V plus one stalker s. We introduce an
activity u for each u ∈ U , and two additional activities a and
b. A player v ∈ V approves (u, 1) for each activity u such
that {u, v} ∈ E as well as (a, |V | − k + 1) and prefers the
former to the latter. That is, (u, 1) �v (a, |V | − k + 1) for
every u ∈ U with {u, v} ∈ E; v is indifferent among the
activities associated with its neighbors in the graph, that is,
(u, 1) ∼v (u′, 1) for all u, u′ ∈ U such that {u, v} ∈ E and
{u′, v} ∈ E. The center player c approves both (a, |V | −
k + 1) and (b, 1), and prefers the former to the latter, i.e.,
(a, |V | − k + 1) �c (b, 1) �c (a∅, 1). Finally, the stalker s
only approves (b, 2).

We now show that G admits a maximal matching M with
at most k edges if and only if our instance of gGASP admits
a Nash stable assignment. Suppose that G admits a maximal

matching M with at most k edges. We construct a feasible
assignment π by setting π(v) = u for each {u, v} ∈ M ,
assigning |V | − k vertex players and the center to a, and
assigning the remaining players to the void activity. Clearly,
the center c has no incentive to deviate and no vertex player
in a singleton coalition wants to deviate to the coalition of the
center. Further, no vertex v has an NS-deviation to an unused
activity u, since if π admits such a deviation, this would mean
that M ∪ {u, v} forms a matching, contradicting maximality
of M . Finally, the stalker player does not deviate since the
center does not engage in b. Hence, π is Nash stable.

Conversely, suppose that there exists a Nash stable feasible
assignment π and let M = { {π(v), v} | v ∈ V ∧π(v) ∈ U }.
We will show that M is a maximal matching of size at most
k. By Nash stability, the stalker player should not have an
incentive to deviate, and hence the center player and |V | − k
vertex players are assigned to activity a. It follows that k
vertex players are not assigned to a, and therefore |M | ≤
k. Moreover, M is a matching since each vertex player is
assigned to at most one activity, and by individual rationality
each activity can be assigned to at most one player. Now
suppose towards a contradiction that M is not maximal, i.e.,
there exists an edge {u, v} ∈ E such that M ∪ {u, v} is a
matching. This would mean that in π no player is assigned
to u, and v is assigned to the void activity; hence, v has an
NS-deviation to u, contradicting the Nash stability of π.

In the analysis of cooperative games on social networks
one can usually assume that the social network is connected:
if this is not the case, each connected component can be pro-
cessed separately. This is also the case for gGASP as long as
all activities are copyable. However, if each activity can only
be used by a single group, different connected components
are no longer independent, as they have to choose from the
same pool of activities. Indeed, we will now show that the
problem of finding Nash stable outcomes remains NP-hard
even if the size of each connected component is at most four.
Our hardness proof for this problem proceeds by reduction
from a restricted version of 3SAT. Specifically, we consider
(3,B2)-SAT: in this version of 3SAT each clause contains
exactly 3 literals, and each variable occurs exactly twice pos-
itively and twice negatively. This problem is known to be
NP-complete (Berman, Karpinski, and Scott 2003).

Theorem 8. Given an instance of gGASP where each con-
nected component of the underlying graph has size at most 4,
it is NP-complete to determine whether it has a Nash stable
feasible assignment.

Proof. We reduce from (3,B2)-SAT. Consider a formula φ
with variable set X and clause set C, where for each variable
x ∈ X we write x1 and x2 for the two positive occurrences
of x, and x̄1 and x̄2 for the two negative occurrences of x. For
each x ∈ X , we introduce four players x1, x2, x̄1, x̄2, which
correspond to the four occurrences of x. For each clause c ∈
C, we introduce one stalker sc and three other players c1, c2,
and c3. The network (N,L) consists of one component for
each clause—a star with center sc and leaves c1, c2, and c3—
and of two components for each variable x ∈ X consisting of
a single edge each: {x1, x2} and {x̄1, x̄2}. Thus, the size of

568

u e v gi Nc c

s

v1

v2
v3

vn

sc

c1
c2

c3

x1 x2 x̄1 x̄2

Figure 1: Graphs constructed in the proofs of Theorem 6, 7, and 8 (pictured left-to-right).

each component of this graph is at most 4. For each x ∈ X we
introduce one variable activity x, two positive literal activities
x1 and x2, two negative literal activities x̄1 and x̄2, and two
further activities ax and āx. Also, we introduce an activity c
for each clause c ∈ C. Thus,

A∗ =
⋃

x∈X

{x, x1, x2, x̄1, x̄2, ax, āx} ∪ C.

For each x ∈ X the preferences of the positive literal players
x1 and x2 are given as follows:

x1: (x, 2) � (x, 1) � (x1, 1) � (x2, 2) � (ax, 1) � (a∅, 1),
x2: (x, 2) � (x2, 1) � (x1, 2) � (ax, 2) � (a∅, 1).

If one of the positive literal players x1 and x2 is engaged
in the void activity and the other is engaged alone in a non-
void activity, this would cause the former player to deviate
to another activity; thus, in a Nash stable assignment, none
of the activities ax and a∅ can be assigned to positive literal
players. Similarly, for each x ∈ X the preferences of the
negative literal players x̄1 and x̄2 are given as follows:

x̄1: (x, 2) � (x, 1) � (x̄1, 1) � (x̄2, 2) � (āx, 1) � (a∅, 1),
x̄2: (x, 2) � (x̄2, 1) � (x̄1, 2) � (āx, 2) � (a∅, 1).

As argued above, Nash stable assignments cannot allocate
activities āx and a∅ to negative literal players. Hence, if there
exists a Nash stable assignment, there are only two possible
cases: first, both players x1 and x2 are assigned to x, and
players x̄1 and x̄2 are assigned to x̄1 and x̄2, respectively;
second, both players x̄1 and x̄2 are assigned to x, and players
x1 and x2 are assigned to x1 and x2, respectively.

For players in Nc where �c1, �c2, and �c3 are the literals in a
clause c, the preferences are given by

cr : (�cr, 1) � (c, 2) � (a∅, 1), (r = 1, 2, 3)

sc : (�c1, 2) ∼ (�c2, 2) ∼ (�c3, 2) ∼ (c, 2) � (a∅, 1).

That is, players c1, c2, and c3 prefer to engage alone in their
approved literal activity, whereas sc wants to join one of
the adjacent leaves whenever π(sc) = a∅ and that leaf is
assigned a literal activity; however, the leaf would then prefer
to switch to the void activity. This means that if there exists a
Nash stable outcome, at least one of the literal activities must
be used outside of Nc, and some leaf and the stalker sc must
be assigned to activity c. We will show that φ is satisfiable if
and only if there exists a Nash stable outcome.

Suppose that there exists a truth assignment that satisfies φ.
First, for each variable x that is set to True, we assign positive
literal activities x1 and x2 to the positive literal players x1 and

x2, respectively, and assign x to the negative literal players
x̄1 and x̄2. For each variable x that is set to False, we assign
negative literal activities x̄1 and x̄2 to the negative literal
players x̄1 and x̄2, respectively, and assign x to the positive
literal players x1 and x2. Note that this procedure uses at
least one of the literal activities �c1, �c2 and �c3 of each clause
c ∈ C, since the given truth assignment satisfies φ. Then, for
each clause c ∈ C, we select a player cj whose approved
activity �cj has been assigned to some literal player, and assign
cj and the stalker to c, and the rest of the clause players to
their approved literal activity if it is not used yet, and to the
void activity otherwise. It is easy to see that the resulting
assignment π is Nash stable.

Conversely, suppose that there exists a Nash stable feasible
assignment π. By Nash stability, for each variable x ∈ X ,
either a pair of positive literal players x1 and x2 or a pair
of negative literal players x̄1 and x̄2 should be assigned to
the corresponding pair of literal activities; in addition, for
each clause c ∈ C, the stalker sc and one of the players c1,
c2, and c3 should engage in the activity c, thereby implying
that the approved literal activity of the respective leaf should
be assigned to some literal players. Then, take the truth as-
signment that sets the variable x to True if its positive literal
players x1 and x2 are assigned to positive literal activities x1

and x2; otherwise, x is set to False. This assignment can be
easily seen to satisfy φ.

Fixed Parameter Tractability

In the instances of gGASP that are created in our hardness
proofs, the number of activities is unbounded. It is thus natu-
ral to wonder what can be said when there are few activities
to be assigned. It turns out that for each of the restricted
families of graphs considered in the previous section, find-
ing Nash stable assignments in gGASP is fixed parameter
tractable with respect to the number of activities.

The basic idea behind each of the three algorithms we
present is that we fix a set of activities that will be assigned to
the players, and for each possible subset B ⊆ A∗ of activities
we check whether there exists a stable assignment using the
activities from that subset only. Our algorithms for paths and
for small components use dynamic programming, allowing
us to build up the set B step-by-step.

We begin by giving the dynamic program that works for
paths. Briefly, we move along the path from left to right, and,
for each initial segment of the path, guess a set B′ ⊆ B of
activities that will be used by that segment of players. For
each guess, we determine whether it is possible to construct

569

an assignment that does not admit an NS-deviation within
the initial segment under consideration.

Theorem 9. There exists an algorithm that, given an instance
of gGASP whose underlying graph is a path, checks whether
this instance has a Nash stable feasible assignment and finds
one if it exists, and runs in time 4pp2 · poly(n)

Proof. Suppose that N = [n] and L = { {i, i + 1} | i =
1, 2, . . . , n − 1 }. First, we guess a subset B ⊆ A∗ of non-
void activities to be used; there are 2p possibilities, so we try
them all. For each B, we solve the problem by dynamic pro-
gramming. For each i ∈ [n], each B′ ⊆ B, each alternative
(a, k) ∈ B′ × [n] ∪ {(a∅, 1)}, and each number t ∈ [k], we
let fi(B,B′, (a, k), t) be true if there exists an individually
rational feasible assignment π : N → A so that

• the set of activities assigned to [i] is exactly B′;
• π(i) = a, |πi| = k, |πi ∩ [i]| = t; and
• every player in [i] weakly prefers her alternative under π

to engaging alone in any of the activities in A∗ \ B and
has no NS feasible deviation to activities in B′.

Otherwise, we let fi(B,B′, (a, k), t) be false.
For i = 1, if B′ = {a}, t = 1, and player 1 weakly prefers

(a, k) to each alternative (b, 1) such that b ∈ A \ B, we set
f1(B,B′, (a, k), t) to true and otherwise to false.

For i = 2, . . . , n, fi(B,B′, (a, k), t) is true if k−t ≤ n−i,
we have (a, k) �i (b, 1) for each b ∈ A \B, and either

• t = 1, and players i and i− 1 can be separated from each
other, i.e., there exists (b, �) ∈ X such that (i) fi−1(B,B′\
{a}, (b, �), �) is true, (ii) a = a∅ or (b, �) �i−1 (a, k + 1),
and (iii) b = a∅ or (b, �+ 1) �i (a, k); or

• t ≥ 2 and fi−1(B,B′, (a, k), t− 1) is true.

Otherwise fi(B,B′, (a, k), t) is set to false. It is not difficult
to see that a Nash stable assignment exists if and only if
fn(B,B, (a, k), k) is true for some alternative (a, k) ∈ X
and some B ⊆ A∗. The runtime bound is immediate.

Our algorithm for networks with small connected compo-
nents is similar to the dynamic program we just discussed.
We order the components, and, for each prefix of that order-
ing, we check if a given subset of activities can be assigned
to that prefix in a Nash stable way. Within each component,
we have enough time to consider all possible assignments,
and each potential deviation involves at most one component.
The resulting algorithm is FPT with respect to the combined
parameter p+ c, where c is a bound on the size of the com-
ponents of the network.

Theorem 10. There exists an algorithm that given an in-
stance of gGASP on a graph with constant-size connected
components checks whether it has a Nash stable feasible as-
signment, finds one if it exists, and runs in time pc8p ·poly(n),
where c is the maximum size of a connected component.

For stars, we use a different technique to obtain an FPT
result, namely (derandomized) color coding. We begin by
guessing the alternative (a, k) assigned to the center player.
Next, we again guess the precise set B of activities in use

by the players not assigned to alternative (a, k). We then ran-
domly color leaf players by activities in B ∪ {a∅}, rejecting
colorings that are infeasible or must lead to NS deviations.
Crucially, the latter task reduces to straightforward counting
questions, which allows this method to succeed.

Theorem 11. There exists an algorithm that, given an in-
stance of gGASP on a star checks whether it has a Nash
stable feasible assignment, finds one if it exists, and runs in
time 2ppp+1 · poly(n).
Proof. For each (a, k) ∈ X and B ⊆ A∗ \ {a}, we will
check whether there exists a Nash stable assignment such
that the center c and k − 1 leaves engage in a, exactly |B|
leaf players are assigned to activities in B, and the rest of the
players are assigned to the void activity.

First, we will check whether the center player c strictly
prefers some alternative (b, �) ∈ B×{2}∪ (A \B)×{1} to
(a, k). If this is the case, there is no Nash stable outcome with
the above properties, since the center player would deviate.

Next, we decide whether we can assign |B| leaves to activ-
ities in B so as to obtain a Nash stable outcome. We use the
color-coding technique to design a randomized algorithm: we
color each leaf player using colors in B independently and
uniformly at random. We say that a Nash stable assignment
π that assigns exactly |B| leaves to activities in B is compat-
ible with a coloring χ if π(i) = b implies χ(i) = b for each
b ∈ B. If there exists a Nash stable assignment π where each
of the activities in B is allocated to exactly one player, then
the probability that a random coloring χ is compatible with it
is |B|−|B|: each player i with π(i) ∈ B is colored ‘correctly’
with probability 1/|B|. Since the success probability depends
on p only, our algorithm can be derandomized by using a
family of k-perfect hash functions (Alon, Yuster, and Zwick
1995).

It remains to show how to find a Nash stable outcome
compatible with a given random coloring χ, or determine
that no such assignment exists, in polynomial time. To this
end, fix a coloring χ : N \ {c} → B. We seek to assign each
player i ∈ N \ {c} to one of the activities in {a, χ(i), a∅} in
such a way that exactly one agent of each color engages in the
color activity and k players including the center are assigned
to a. For b ∈ B, let Nb = { i ∈ N \ {c} | χ(i) = b }.

For each b ∈ B and � = 0, . . . , |Nb| − 1 let fb(�) be true
if we can assign exactly one player in Nb to b and exactly �
players in Nb to a so that no player in Nb has an NS deviation.
To compute these quantities, we need auxiliary variables.

Namely, for each b ∈ B, i ∈ Nb, and � = 0, . . . , |Nb| − 1
let fb(i, �) be true if we can assign b to i, while assigning
activity a to exactly � players in Nb and a∅ to exactly |Nb| −
1 − � players in Nb, so that no player in Nb has an NS-
deviation. To compute fb(i, �), we first check whether player
i has no incentive to deviate, i.e., whether (i) player i weakly
prefers (b, 1) to (b′, 1) for each b′ ∈ A \ B and (ii) a = a∅
or i weakly prefers (b, 1) to (a, k + 1).

In a similar fashion, we check if the remaining players in
Nb can be assigned to a and a∅ in the desired proportion.
Specifically, let Nb(i, a) be the set of players in Nb \{i} who
weakly prefer (a, k) to (b′, 1) for each b′ ∈ A \ B and let
Nb(i, a∅) be the set of players in Nb \ {i} who weakly prefer

570

(a∅, 1) to (b′, 1) for each b′ ∈ A \B as well as to (a, k + 1).
We set fb(i, �) to true if and only if conditions (i) and (ii)
are satisfied and we have Nb(i, a) ∪ Nb(i, a∅) = Nb \ {i},
|Nb(i, a)| ≥ �, and |Nb(i, a∅)| ≥ |Nb| − 1 − �, i.e., each
player in Nb \ {i} can be assigned to a or a∅, and for each
of these activities there is a sufficient number of players who
would not deviate when assigned to that activity.

Having computed fb(i, �) for all i ∈ Nb, we can compute
fb(�): we set fb(�) to true if fb(i, �) is true for some i ∈ Nb

and false otherwise.
We are now left with an instance of the MULTIPLE-

CHOICE KNAPSACK problem: we need to check if for each
b ∈ B there is a value �b, 0 ≤ �b ≤ |Nb|−1, such that fb(�b)
is true and

∑
b∈B �b = k − 1. This problem can be solved in

polynomial time by a straightforward dynamic programming
algorithm.

Core stability

By adapting the reductions for Nash stability, we can show
that checking the existence of a core stable outcome is also
NP-hard. This result holds for all classes of graph families
that we have considered.

Theorem 12. Given an instance of gGASP whose underlying
graph is a path, a star, or has connected components whose
size is bounded by 3, it is NP-complete to determine whether
it has a core stable feasible assignment.

Proof. To verify that a given feasible assignment is core sta-
ble, it suffices to check that for every alternative (a, k) there
is no connected coalition with at least k players who strictly
prefer (a, k) to the alternative of their current coalition. For
the networks we consider this can be done in polynomial time,
and hence our problem is in NP. The hardness reductions are
similar to the respective reductions for Nash stability; essen-
tially, we have to replace copies of the stalker game with
copies of the game with an empty core.

Our FPT result for graphs with small connected components
can also be adapted to the core. In contrast, our approach for
Nash stability for paths and stars does not seem to generalize
to core stability, and we leave these cases for future work.

Theorem 13. There exists an algorithm that given an in-
stance of gGASP checks whether it has a core stable fea-
sible assignment, finds one if it exists, and runs in time
pc+18p · poly(n), where c is the maximum size of the con-
nected components.

Conclusion

In this paper, we have initiated the study of group activity
selection problems with network structure, and found that
even for very simple families of graphs computing stable out-
comes is NP-hard. We identified several ways to circumvent
this computational intractability. For gGASPs with copyable
activities, we showed that there exists a polynomial time al-
gorithm to compute stable outcomes, and for gGASPs with
few activities, we provided fixed parameter algorithms for
restricted classes of networks.

We leave several interesting questions for future work.
Our fixed-parameter tractability results can be extended to
more general graph families, such as graphs with bounded
pathwidth and graphs with a bounded number of internal
nodes. However, for general graphs, the exact parameterized
complexity of determining the existence of stable outcomes
is unknown. When the underlying graph is complete, one
can adapt techniques of Darmann et al. (2012) to show that
the problem of computing Nash stable outcomes is in XP
with respect to p; for other networks, including trees, it is not
even clear whether our problem is in XP with respect to p.
It would be also interesting to investigate the parameterized
complexity of gGASPs using other parameters.

Another promising research direction is to study analogues
of other solution concepts from the hedonic games litera-
ture for gGASPs; in particular, it would be interesting to
understand the complexity of computing individually stable
outcomes in gGASPs.
Acknowledgements We thank the anonymous reviewers for
helpful comments that improved the presentation of the paper.
This work was supported by the European Research Council
(ERC) under grant number 639945 (ACCORD).

References
Alon, N.; Yuster, R.; and Zwick, U. 1995. Color-coding. J. ACM
42(4):844–856.
Aziz, H., and Savani, R. 2016. Hedonic games. In Brandt, F.;
Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia, A. D., eds.,
Handbook of Computational Social Choice. Cambridge Univer-
sity Press. chapter 15.
Berman, P.; Karpinski, M.; and Scott, A. D. 2003. Approxima-
tion hardness of short symmetric instances of MAX-3SAT. Tech-
nical Report 049. http://eccc.hpi-web.de/report/2003/049/.
Chalkiadakis, G.; Greco, G.; and Markakis, E. 2016. Charac-
teristic function games with restricted agent interactions: Core-
stability and coalition structures. Artificial Intelligence 232:76–
113.
Darmann, A.; Elkind, E.; Kurz, S.; Lang, J.; Schauer, J.; and
Woeginger, G. 2012. Group activity selection problem. In WINE
2012, 156–169.
Darmann, A. 2015. Group activity selection from ordinal prefer-
ences. In ADT 2015, 35–51.
Demange, M., and Ekim, T. 2008. Minimum maximal matching
is NP-hard in regular bipartite graphs. In TAMC 2008, 364–374.
Demange, G. 2004. On group stability in hierarchies and net-
works. Journal of Political Economy 112(4):754–778.
Elkind, E. 2014. Coalitional games on sparse social networks.
In WINE 2014, 308–321.
Igarashi, A., and Elkind, E. 2016. Hedonic games with graph-
restricted communication. In AAMAS 2016, 242–250.
A. Igarashi, D. Peters, and E. Elkind. Group activity selection on
social networks. arxiv:1611.04524 [cs.GT], 2016.
Le, V. B., and Pfender, F. 2014. Complexity results for rainbow
matchings. Theoretical Computer Science 524(C):27–33.
Myerson, R. B. 1977. Graphs and cooperation in games. Mathe-
matics of Operations Research 2(3):225–229.

571

