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Abstract

Euclidean preferences are a widely studied preference
model, in which decision makers and alternatives are
embedded in d-dimensional Euclidean space. Decision
makers prefer those alternatives closer to them. This
model, also known as multidimensional unfolding, has
applications in economics, psychometrics, marketing,
and many other fields. We study the problem of decid-
ing whether a given preference profile is d-Euclidean.
For the one-dimensional case, polynomial-time algo-
rithms are known. We show that, in contrast, for every
other fixed dimension d > 1, the recognition problem
is equivalent to the existential theory of the reals (ETR),
and so in particular NP-hard. We further show that
some Euclidean preference profiles require exponen-
tially many bits in order to specify any Euclidean em-
bedding, and prove that the domain of d-Euclidean pref-
erences does not admit a finite forbidden minor charac-
terisation for any d > 1. We also study dichotomous
preferences and the behaviour of other metrics, and sur-
vey a variety of related work.

1 Introduction

The study of preferences spans a multitude of fields: eco-
nomics (and particularly game theory and social choice),
political science, psychology, multi-agent systems, market-
ing, and others. An important element of working with pref-
erences is understanding them by constructing models for
them and identifying underlying structure. For example, in
a psychological model of preferences, we aim to discover
which underlying psychological process has generated the
preferences we now observe (Coombs 1964). In political
science, one might wonder about the underlying structure
of ‘political space’ by analysing voter preferences (Mer-
rill and Grofman 1999). In economics, working with well-
structured preferences often allows a model to become ana-
lytically tractable.

This paper will use the lens and language of computa-
tional social choice. In recent years, much work in computa-
tional social choice has focussed on identifying structure in a
given preference profile (Elkind, Lackner, and Peters 2016).
The reason for this is simple: many of the problems social
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choice aims to solve (such as preference aggregation, com-
mittee selection, or fair and efficient allocation) are compu-
tationally hard. However, if we manage to identify under-
lying, hopefully low-dimensional structure in the input pro-
file, we can exploit this structure to guide algorithms. This
approach has been successful, particularly for the domain
of single-peaked preferences: once we have identified an
axis on which an input profile is single-peaked, we can effi-
ciently find Kemeny, Young, and Dodgson winners (Brandt
et al. 2015), identify an optimal committee according to
the Chamberlin–Courant rule (Betzler, Slinko, and Uhlmann
2013), control elections (Faliszewski et al. 2011), and solve
the stable roommates problem (Bartholdi and Trick 1986).

This leaves the question of whether we can, in fact,
efficiently find a certificate for single-peakedness (or an-
other desired domain restriction) that such algorithms can
use. The answer is often positive: there are efficient and
certificate-producing recognition algorithms for preferences
that are single-peaked (Escoffier, Lang, and Öztürk 2008),
single-crossing (Elkind, Faliszewski, and Slinko 2012), one-
dimensional Euclidean (Doignon and Falmagne 1994), or
single-peaked on a tree (Trick 1989). Indeed, each of
these preference domains is quite well-understood, for ex-
ample in terms of forbidden-substructure characterisations
(Ballester and Haeringer 2011), concise representations of
all certificates (Peters and Elkind 2016; Bartholdi and Trick
1986), containment relations between the different domains
(Elkind, Faliszewski, and Skowron 2014), and the proba-
bility with which a random preference profile falls within a
given domain (Bruner and Lackner 2015).

Intriguingly, there is another preference domain for which
we do not have a comparable amount of understanding, yet
it is an extremely popular modelling choice across disci-
plines. Known as spatial preferences, or as the d-Euclidean
domain, or as multidimensional unfolding, this preference
domain contains profiles that can be ‘embedded’ into d-
dimensional Euclidean space. Precisely, a preference pro-
file is d-Euclidean if we can assign every voter and every
alternative a point in Rd such that voters prefer those alter-
natives that are closer to them (according to the usual Eu-
clidean metric) to those that are further away. This char-
acterisation of preferences has intuitive appeal: considering
Rd as a continuous ‘policy space’, within which alternatives
can vary along multiple dimensions, each voter is identified

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

642



with an ideal point (Bennett and Hays 1960).
In practice, the embedding of voters and alternatives into

Rd is hidden, and we only have access to the ordinal ranking
data in form of a preference profile (Anshelevich, Bhard-
waj, and Postl 2015). Given this data, can we recover an ap-
propriate embedding into Rd that explains the preferences?
This problem is known as multidimensional unfolding (Ben-
nett and Hays 1960), and a large variety of methods that
attempt to estimate embeddings have been proposed in the
statistics and psychometrics literature (for a modern exposi-
tion see, e.g., Borg and Groenen 2005). None of these meth-
ods is guaranteed to return a suitable embedding whenever
it exists and terminate in polynomial time.

We analyse this problem from a formal computational
perspective. In particular, we prove that the decision prob-
lem of identifying d-Euclidean preference profiles is NP-
hard for each fixed d � 2. More precisely, we prove that
the problem is equivalent to the existential theory of the re-
als (ETR), and thus is in fact ∃R-complete. The recognition
problem is thus unlikely to be contained in NP (though it
is decidable in PSPACE). Using recent results about hyper-
plane arrangements, we deduce that, for each fixed d � 2,
there exist d-Euclidean preference profiles such that the co-
ordinates of any d-Euclidean embedding require exponen-
tially many bits to specify. Thus, there is provably no
polynomial-time algorithm that, on input a preference pro-
file, outputs a d-Euclidean embedding if one exists.

Some restricted preference domains admit characterisa-
tions by a finite list of forbidden subprofiles, such as prefer-
ences that are single-peaked (Ballester and Haeringer 2011),
single-crossing (Bredereck, Chen, and Woeginger 2013), or
single-peaked on a circle (Peters and Lackner 2017). In con-
trast, Chen, Pruhs, and Woeginger (2015) show that the 1-
Euclidean domain does not admit such a characterisation.
They conjectured that the same is true for the domain of d-
Euclidean preferences, for each fixed d � 2. We use a con-
nection with the theory of oriented matroids to prove their
conjecture.

The results in this paper cast some doubt on the fruitful-
ness of exploiting structure in d-Euclidean preferences in
computational social choice, and they also limit the extent
to which the spatial preference model can be used to reli-
ably explain observed preference data. Future work could
explore ways of mitigating this situation. At the end of this
paper, we briefly sketch one way that this could be done,
namely by replacing the Euclidean �2-metric by the �1- or
�∞-metric. We show that the recognition problems corre-
sponding to these metrics are contained in NP.

2 Preliminaries
Euclidean preferences Let A be a finite set of alterna-
tives or candidates. A preference relation � over A (usually
referred to as a vote) is a complete and transitive binary re-
lation over A. We denote by � the strict part of �, that is,
a � b if and only if a � b but b �� a; and we denote by ∼
the indifference part of �, with a ∼ b if and only if a � b
and b � a. A profile V over A is a set of votes over A.
For notational convenience, we give voters names like v or
i, and refer to their preference relation by �v and �i.

Let V be a profile over A. We say that V is d-Euclidean
(where d � 1) if there exists a map x : V ∪A→ Rd with

a �v b =⇒ ‖x(v)− x(a)‖ < ‖x(v)− x(b)‖ (1)
for all v ∈ V and a, b ∈ A. Thus, voter v prefers those al-
ternatives which are closer to v according to the embedding
x. Here, ‖ · ‖ refers to the usual Euclidean �2-norm on Rd,

‖(x1, . . . , xd)‖ = ‖(x1, . . . , xd)‖2 =
√
x2
1 + · · ·+ x2

d.

The (open) ball of radius r centred at c is B(c, r) = {x ∈
Rd : ‖x− c‖ < r}.

Typically, we will consider profiles of strict orders in
which every vote �v is antisymmetric (that is, we do not
allow ties). Notice that in any d-Euclidean embedding of a
profile of strict orders, no two alternatives can reside at the
same point of Rd.

In some applications, it makes sense to consider prefer-
ences that include indifferences (ties). An extreme case,
which nevertheless finds many applications, is that of di-
chotomous preferences. A vote � is dichotomous if there
are no three alternatives a, b, c ∈ A with a � b � c. Equiv-
alently, � is dichotomous if A splits into approved and non-
approved alternatives. That is, we can write A = A1 ∪ A2

with A1 ∩ A2 = ∅ satisfying a � b iff a ∈ A1 and b ∈ A2.
We then say that the voter approves of the alternatives in A1,
while the voter does not approve the alternatives in A2. A
dichotomous vote can (and will) be specified by just giving
the set A1 of approved alternatives.

Our definition of Euclidean preferences applies to di-
chotomous preferences as well. Following the terminology
of Elkind and Lackner (2015), we call a profile of dichoto-
mous preferences d-DE (Dichotomous Euclidean) if it is d-
Euclidean. In this context, the definition requires that there
is an embedding x : V ∪ A → Rd so that for each voter
v ∈ V , the set of approved alternatives of v coincides with
the set of alternatives contained in some ball B(x(v), rv)
centred at x(v).

Some authors define Euclidean preferences in a subtly dif-
ferent way from us. One popular definition involves revers-
ing the direction of the implication arrow in (1). Notice
that under this definition, whenever a voter is equidistant
between two alternatives, the voter is free to break the tie
in either way. In particular, when d � 2, then every pref-
erence profile is “d-Euclidean” under this definition – place
all voters at the origin, and position alternatives on the unit
sphere around the origin. In the area of multidimensional
unfolding, embeddings of this type are said to include de-
generacies (see, e.g., Busing, Groenen, and Heiser 2005).
Our definition circumvents this issue by just outright disal-
lowing degeneracies.

Bogomolnaia and Laslier (2007) use another different
definition: they replace the implication in (1) by an if-and-
only-if. This definition is equivalent to ours for strict pref-
erences, but is much more restrictive for preferences includ-
ing ties: Bogomolnaia and Laslier’s definition requires that
whenever a voter v is indifferent between a and b, then a
and b are equidistant to v. Our definition does not impose
any relation on the relative distances in cases of ties, which
makes it more applicable to the case of dichotomous orders.
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Existential Theory of the Reals (ETR) The language of
the first-order theory of the reals consists of formulas using
as symbols (i) a countable collection of variable symbols
xi, (ii) constant symbols 0 and 1, (iii) addition, subtraction,
multiplication symbols, (iv) the equality (=) and inequality
(<) symbols, (v) Boolean connectives (∨,∧,¬), (vi) univer-
sal and existential quantifiers (∀, ∃). The theory of the reals
consists of all true sentences in this language, interpreted us-
ing the obvious semantics (where quantifiers quantify over
the real numbers R).

The existential theory of the reals (ETR) consists of the
true sentences of the form

∃x1 ∈ R ∃x2 ∈ R . . . ∃xn ∈ R F (x1, x2, . . . , xn)

with F (x1, x2, . . . , xn) a quantifier-free formula in the lan-
guage just defined. In other words, F is a Boolean combi-
nation of equalities and inequalities of real polynomials.

The decision problem of ETR is the problem of decid-
ing whether a given sentence of the above form is true, that
is whether it is a member of ETR. Schaefer (2010) intro-
duced the complexity class ∃R as the class of decision prob-
lems that admit a polynomial-time many-one reduction to
the decision problem of ETR. Thus, ∃R captures the com-
putational complexity of the existential theory of the reals.
We say that a problem A is ∃R-hard if all problems in ∃R re-
duce to A in polynomial time. We say that A is ∃R-complete
if it is contained in ∃R and is ∃R-hard.

From the definition of ETR it is not even clear that the
decision problem of ETR is decidable. By introducing a
quantifier-elimination procedure, Tarski (1948) showed that
ETR is in fact decidable. Since then, a variety of algorith-
mic improvement have been made over Tarski’s procedure,
and there exist algorithms with a singly-exponential time
dependence in the number of variables (Grigor’ev 1988;
Renegar 1992). In addition, Canny (1988) obtained the as-
tonishing result that ETR can be solved in polynomial space.
Thus ∃R ⊆ PSPACE. ETR can be used to solve the proposi-
tional satisfiability problem (3SAT); thus, we have the con-
tainments NP ⊆ ∃R ⊆ PSPACE.

Several ∃R-complete problems are known, and many of
them are questions of the form “can a given combinatorial
object be geometrically represented?”. Particular examples
include recognising intersection graphs of line segments in
the plane (Schaefer 2010), of unit disk graphs (Kang and
Müller 2012), or of unit distance graphs (Schaefer 2013).

Arrangements of hyperplanes Our exposition and termi-
nology follows Kang and Müller (2012).

An (affine) d-hyperplane is a set of form h = {x ∈ Rd :
cTx = b} ⊆ Rd for some c ∈ Rd and b ∈ R. A particu-
lar example of a hyperplane, for given p, q ∈ Rd, is the set
{x ∈ Rd : ‖x−p‖ = ‖x− q‖} of points that are equidistant
to p and q; in two dimensions, this is the perpendicular bi-
sector. Any hyperplane h divides Rd \h into two connected
components, namely the half-planes cTx > b and cTx < b.
We can give h an orientation by (arbitrarily) designating one
of these components as h’s positive side h+, and the other
as h’s negative side h−. We call a hyperplane with a chosen
orientation an oriented hyperplane. An oriented hyperplane

arrangement (h1, . . . , hn) is a finite ordered collection of
oriented hyperplanes in Rd.

Given a fixed oriented hyperplane arrangement H =
(h1, . . . , hn), we can assign to each point x ∈ Rd its sign
vector σ(x) ∈ {−, 0,+}n by setting σ(x)i = + if x ∈ h+

i ,
σ(x)i = 0 if x ∈ hi, and σ(x)i = − if x ∈ h−

i . Thus, the
sign vector of x records, for each oriented hyperplane in the
arrangement, on which side of the hyperplane x lies. The
combinatorial description D(H) = {σ(x) : x ∈ Rd} of H
is the set of all sign vectors induced by the arrangement H.
If D(H) = D(H′), we say thatH andH′ are isomorphic.

A connected component of Rd \H = Rd \ (h1∪· · ·∪hn)
is called a cell. All points in the same cell have the same
sign vector.

3 The Recognition Problem

Here is the formal definition of the recognition problem
whose complexity we will investigate in this section.

d-EUCLIDEAN

Instance: a profile V of strict orders over A
Question: is V d-Euclidean?

Proposition 1. d-EUCLIDEAN is contained in ∃R for ev-
ery d � 1. In particular it is contained in PSPACE.

Proof. This is almost immediate from the definition of d-
Euclidean preferences. Namely, a profile is d-Euclidean if
and only if there exist reals xr,i ∈ R for each r ∈ A∪V and
i = 1, . . . , d such that whenever a �v b, we have

‖xv − xa‖ < ‖xv − xb‖
⇐⇒ ∑d

i=1 (xv,i − xa,i)
2
<

∑d
i=1 (xv,i − xb,i)

2
.

Thus, the problem is equivalent to asking whether a system
of polynomial inequalities has a solution. This system can
be constructed in polynomial time, given the profile.

Our hardness proofs will use the following problem about
combinatorial descriptions of hyperplane arrangements.

d-REALISABILITY

Instance: a set S ⊆ {−,+}n of sign vectors with
(−, . . . ,−), (+, . . . ,+) ∈ S
Question: is there an oriented d-hyperplane arrangement H
with S ⊆ D(H)?

For example, the set S = {(+,+,+,+), (−,+,+,−),
(−,+,−,+), (−,+,−,−), (−,−,−,+), (−,−,−,−)} is
2-realised by the four red lines in Figure 1, where the red
label of the line is placed on the positive side of the line.

Theorem 2 (Kang and Müller 2012). d-REALISABILITY
is ∃R-complete for d � 2.

Kang and Müller establish this by a reduction from SIM-
PLE STRETCHABILITY, the problem of deciding whether
an arrangement of pseudolines can be stretched into an iso-
morphic arrangement of lines. That problem is ∃R-complete
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Figure 1: 2-Euclidean embedding of a profile obtained from
a 2-realisable sign vector set S through the reduction of The-
orem 3. Black dots represent voters vσ , positioned within
the unit ball and within the cell with sign vector σ induced
by the red hyperplanes (lines). The red labels are on the
positive side of each line. Blue circles denote the points pi.
Blue dots correspond to alternatives; note that ai and bi are
at radius R · i± 2 from the origin.

by Mnëv’s (1985) universality theorem, a deep topologi-
cal result about representing semialgebraic varieties. Shor
(1991) gives a direct proof of NP-hardness by a reduction
from SAT.

We are now ready to prove our main result.

Theorem 3. d-EUCLIDEAN is ∃R-complete for each d�2.

Proof. We have already seen that d-EUCLIDEAN is con-
tained in ∃R (Proposition 1). We now show ∃R-hardness by
a reduction from d-REALISABILITY.

Let S ⊆ {−,+}n be a given set of sign vectors with
(−, . . . ,−), (+, . . . ,+) ∈ S. We construct a profile of |S|
votes over a total of 2n alternatives. Precisely, we take as al-
ternatives the set A = {a1, b1, . . . , an, bn}. For each σ ∈ S,
we introduce a voter vσ with strict order �σ such that

{a1, b1} �σ {a2, b2} �σ · · · �σ {an, bn}
and specified by

{
ai �σ bi ⇐⇒ σi = +,

bi �σ ai ⇐⇒ σi = −.
This completes the description of the reduction. We now
show its correctness.

Suppose the profile constructed is d-Euclidean, and let x :
V ∪ A → Rd be a Euclidean embedding. Take the oriented

hyperplane arrangementH = (h1, . . . , hn) defined by

hi = {x ∈ Rd : ‖x− x(ai)‖ = ‖x− x(bi)‖},
h+
i = {x ∈ Rd : ‖x− x(ai)‖ < ‖x− x(bi)‖},

h−
i = {x ∈ Rd : ‖x− x(ai)‖ > ‖x− x(bi)‖}.

Then, clearly, S ⊆ D(H): Let σ ∈ S and let i ∈ {1, . . . , d}.
If σi = +, we have ai �σ bi, and thus by definition of
Euclidean preferences, we must have ‖x(vσ) − x(ai)‖ <
‖x(vσ)−x(bi)‖ and hence x(vσ) ∈ h+

i so that σ(x(vσ))i =
+ = σi. Similarly if σi = −. It follows that σ ∈ D(H).
Hence S ⊆ D(H).

Conversely, suppose that S ⊆ D(H) for some oriented
d-hyperplane arrangement H. By applying an appropriate
scaling map x �→ λx if needed, we may assume that every
cell of H intersects the unit ball B(0, 1) ⊆ Rd. Write H =
(h1, . . . , hn) with hi = {x ∈ Rd : uT

i x = bi}, where
without loss of generality ‖ui‖ = 1, so that ui is a unit
vector. Further, we will say that h+

i = {x : uT
i x > bi} and

h−
i = {x : uT

i x < bi}.
We now construct a Euclidean embedding x : A ∪ V →

Rd. We start by placing the voter vσ corresponding to σ ∈ S
at an arbitrary point x(vσ) ∈ B(0, 1) of the cell of H with
sign vector σ. This exists by our assumption that S ⊆ D(H).

Next, for each i = 1, . . . , d, pick some point pi ∈
hi ∩ B(0, 1) (this is possible because B(0, 1) meets both
h−
i and h+

i since (−, . . . ,−), (+, . . . ,+) ∈ S). Following
an argument by Kang and Müller (2012), we set for r > 0

w+
i,r := pi + rui and w−

i,r := pi − rui,

B+
i,r := B(w+

i,r, r) and B−
i,r := B(w−

i,r, r).

Note that B+
i,r ⊆ h+

i and B−
i,r ⊆ h−

i . In fact (see
picture),

⋃
r>0 B

+
i,r = h+

i and
⋃

r>0 B
−
i,r = h−

i .
Hence, for all r sufficiently large, we have

x(vσ) ∈ B+
i,r for σ with σi = +, and

x(vσ) ∈ B−
i,r for σ with σi = −.

Fix a value R > 4 of r for which
this holds. We now pick the positions of the alterna-
tives in the Euclidean embedding: Set

pi

w−i,1

x(ai) = w+
i,R·i and x(bi) = w−

i,R·i.

We are left to verify that the map x : A∪V → Rd thus con-
structed actually corresponds to voters’ preferences. First let
us show that, according to the embedding x, every voter’s
preference has the form

{a1, b1} �σ {a2, b2} �σ · · · �σ {an, bn}.
So let vσ be a voter, let 1 � i < j � n, and let ci ∈ {ai, bi}
and cj ∈ {aj , bj}. Then

‖x(vσ)− x(ci)‖
� ‖x(vσ)− pi‖+ ‖pi − x(ci)‖ (triangle inequality)
� 2 +R · i (ui is a unit vector)
< R · j − 2 (j > i and R > 4)
� ‖x(cj)− pj‖ − ‖pj − x(vσ)‖ (as before)
� ‖x(vσ)− x(cj)‖. (reverse triangle inequality)
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Hence ci �σ cj , as desired. Finally, we need to confirm that

‖x(vσ)− x(ai)‖ < ‖x(vσ)− x(bi)‖ ⇐⇒ σi = +.

So suppose σi = +. By choice of R, we have x(vσ) ∈
B+

i,R·i, so that ‖x(vσ)− x(ai)‖ < R · i. On the other hand,
we have ‖x(vσ) − x(bi)‖ � R · i: for suppose not. Then
x(vσ) ∈ B−

i,R·i, and thus x(vσ) ∈ B+
i,R·i ∩ B−

i,R·i = ∅, a
contradiction.

Certainly, this hardness result implies that it is also hard
to recognise d-Euclidean profiles of weak orders (since strict
orders form a special case). For dichotomous orders, hard-
ness does not follow immediately, but a similar reduction
can be used. The argument employed is almost identical to
the hardness result for recognising unit disk graphs (Kang
and Müller 2012); see the full version (Peters 2016).
Theorem 4. For each d � 2, it is ∃R-complete to decide
whether a profile of dichotomous votes is d-Euclidean.

4 Precision

In this section, we consider the question of how many bits
are needed to specify a Euclidean embedding x : A ∪ V →
Rd. We only consider the ‘natural encoding’ where the co-
ordinates of each point are given as rational numbers. Note
that if every d-Euclidean profile were to admit an embed-
ding that can be specified in polynomially many bits, then
this would put the problem d-EUCLIDEAN in NP. Yet in
this section we show that there is a family of profiles which
need exponentially many bits in order to specify any Eu-
clidean embedding. This result, by itself, does not rule out
that the decision problem d-EUCLIDEAN is in NP: there
could be a ‘clever’ way to certify that an embedding exists,
without explicitly giving the embedding. On the other hand,
our result shows that the function problem associated with
the problem d-EUCLIDEAN is provably not in P.

Let us now make precise the notion of the size of an em-
bedding x : A∪V → Rd. Here, we follow the definitions of
McDiarmid and Müller (2013). The number of bits needed
to store an integer n ∈ Z is the number of digits in its binary
representation plus its sign: size(n) := 1 + �log2(n + 1)�.
We represent a rational number q ∈ Q as a pair of integers
representing a fraction: if q = m/n in lowest terms, we set
size(q) := size(m) + size(n). The size of a rational vector
x ∈ Qd is size(x) :=

∑d
i=1 size(xi). Finally, the size of a

rational Euclidean embedding x : A ∪ V → Qd is

size(x) :=
∑

r∈A∪V

size(x(r)).

Before we establish the promised lower bound, let us first
give a corresponding upper bound. Namely, while some d-
Euclidean profiles require exponentially many bits to spec-
ify, (single-)exponentially many bits are always enough. To
see this, we will first need a guarantee that every d-Euclidean
profile admits a rational embedding, because we have only
assigned sizes to rational embeddings.
Theorem 5. Every d-Euclidean profile admits a rational
embedding. Further, for each d � 2, there is a constant

c = c(d) such that any d-Euclidean profile with n voters and
m alternatives admits a rational embedding x : A∪V → Qd

with size(x) � 2c(n+m).

This theorem is an essentially immediate corollary of a
general result due to Basu, Pollack, and Roy (1996) about
the bit sizes of solutions to polynomial inequalities.

For the lower bound, we use techniques developed by Mc-
Diarmid and Müller (2013) and Kang and Müller (2012) and
apply them to the reduction of Theorem 3. The proof ap-
pears in the full version of this paper (Peters 2016). For a
profile V over alternative set A, we define ‖V ‖ := |V |+|A|.
Theorem 6. Fix d � 2. For a d-Euclidean preference profile
V , let e(V ) denote the minimum size of a rational Euclidean
embedding of V . For each m � 1, let e(n+m) be the max-
imum e(V ) among d-Euclidean preference profiles V with
‖V ‖ = n+m. Then e(n+m) � 2Ω(n+m).

5 Forbidden Subprofile Characterisations

We say that the profile V contains the profile W if we
can obtain W by first deleting some alternatives and vot-
ers from V , and then relabelling the remaining alternatives
and reordering the remaining voters. A preference domain
R (that is, a set of profiles) may then be characterised by
forbidden subprofiles by giving a set S of profiles such that
R = {profile V : V does not contain any W ∈ S}.

We call a preference domain R hereditary if it is closed
under containment. That is, if V ∈ R and V contains W ,
then W ∈ R. The d-Euclidean domain is hereditary for any
d � 1. Any hereditary domain R is characterised by its
complementR (its set of counterexamples) in this way.

Consider a possible characterisation of the d-Euclidean
domain by a set S of forbidden subprofiles. We will call
this characterisation good if the set S is polynomial-time
recognisable: that is, given a profile, there should be a
polynomial-time algorithm deciding whether the given pro-
file is contained in S. Certainly, if S were finite, then S pro-
vides a good characterisation. However, there exist infinite
characterisations that are still good in this sense, for exam-
ple for interval graphs (Lekkerkerker and Boland 1962) and
matrices with the consecutive ones property (Tucker 1972).

However, given the complexity result of Section 3, it is
a straightforward observation that for each d � 2, no good
characterisation by forbidden substructures will exist for the
d-Euclidean domain, subject to a reasonable complexity-
theoretic assumption.

Proposition 7. For each d � 2, the set of d-Euclidean pref-
erence profiles does not admit a good characterisation by
forbidden substructures unless ∃R ⊆ coNP.

Proof. Suppose a good characterisation by S exists. We
give a coNP-algorithm that recognises d-Euclidean prefer-
ences: Given an input profile, guess some subprofile, guess
a relabeling of voters and alternatives in this subprofile, and
check whether the result is contained in S .

By a similar argument, no finite characterisation can ex-
ist unless P = ∃R = NP. In the remainder of this sec-
tion, we prove this weaker result without appealing to any

646



complexity-theoretic assumptions. To do this, we use a con-
nection between the theory of arrangements of hyperplanes
and the theory of ordered matroids.
Theorem 8 (Bokowski and Sturmfels 1989). There exist
infinitely many nonrealisable uniform oriented matroids of
rank 3 such that every proper minor of them is realisable.

To prove our result about d-Euclidean preferences, we
will use the examples from Theorem 8 and apply to them the
chain of many-one reductions that yielded the hardness re-
sult of Theorem 3. We present this argument in several lem-
mas, whose proofs appear in the full version (Peters 2016).
Lemma 9. Fix d � 2. For every n0 ∈ N, there exists n >
n0 and a set S ⊆ {−,+}n with (+, . . . ,+), (−, . . . ,−) ∈
S such that S is not d-realisable, but for each i = 1, . . . , n,
the set S−i = {s−i : s ∈ S} obtained by deleting coordi-
nate i is d-realisable.
Lemma 10. Fix d � 2. For every m0 ∈ N, there is m > m0

such that there exists a preference profile over m alterna-
tives which is not d-Euclidean, yet removing any alternative
yields a d-Euclidean profile.

It is worth noting that all these infinitely many minimal
counterexamples have the shape {a1, b1} � {a2, b2} �
· · · � {an, bn}, and in particular they are single-peaked.
Theorem 11. The domain of d-Euclidean preferences does
not admit a finite characterisation by forbidden configura-
tions, for any fixed d � 2.

Proof. Suppose for a contradiction that such a characterisa-
tion exists, and let M be the maximum number of alterna-
tives in any of the forbidden configurations. By Lemma 10,
there exists a profile V over at least M+1 alternatives which
is not d-Euclidean. Since the forbidden configurations char-
acterise the d-Euclidean domain, one of the configurations
must be contained in V . Considering the size of the config-
uration, it must be contained in V even with one alternative
deleted. However this profile is d-Euclidean, contradicting
the fact that the d-Euclidean domain is hereditary.

6 Other metrics

We have defined Euclidean preferences using the usual Eu-
clidean �2-metric, measuring distances by shortest paths in
the plane. Other choices of metric may be preferred in cer-
tain contexts. We now look at the �1-metric and the �∞-
metric. The �1-metric is also known as the cityblock or Man-
hattan distance, because it measures distances by shortest
paths on a grid like the street network of Manhattan. For-
mally, the �1-norm is defined by

‖(x1, . . . , xd)‖1 := |x1|+ · · ·+ |xd|.
Thus, the �1-distance ‖x − y‖1 of two points x and y is the
sum of the absolute distances along each coordinate axis.
The �∞-metric, on the other hand, measures the maximum
distance along a coordinate axis:

‖(x1, . . . , xd)‖∞ := max{|x1|, . . . , |xd|}.
For each of these metrics (or indeed, any metric space), we
can obtain a notion of d-Euclidean preferences. For certain

settings, the �∞ metric has a nice interpretation as corre-
sponding to ‘pessimistic’ voters who judge candidate ac-
cording to their (subjectively) worst feature. The �1 met-
ric also has intuitive appeal – see Eguia (2011) and the ref-
erences therein for arguments in favour of using Euclidean
preferences with respect to this metric.

Comparing the �1- and �∞-metrics to the �2-metric we
have used so far, one gets the sense that �1 and �∞ are more
‘discrete’ or ‘combinatorial’ than the more geometric �2.
Supporting this intuition, we find that the complexity of the
recognition problem changes (unless NP = ∃R):

Theorem 12. The problems of recognising preference pro-
files that are d-Euclidean with respect to the �1-metric or the
�∞-metric are contained in NP for every d � 1.

Proof. We start with the �1-metric and show containment
in NP by giving a nondeterministic reduction to linear pro-
gramming. For each of the d coordinate axes of Rd, nonde-
terministically guess in which order the points correspond-
ing to voters and alternatives appear along that axis. Once
we have decided these orderings, we can rewrite the defini-
tion of �1-Euclidean preferences without using absolute val-
ues. Then, we can replace strict inequalities with weak in-
equalities by introducing additive ‘slack’ constants (Elkind
and Faliszewski 2014, Prop. 3). The result is a linear pro-
gram producing an �1-Euclidean embedding if one exists.

dv,c,i = ±(xv,i − xc,i) (distance from v to c along i)

dv,c =
∑d

i=1 dv,c,i (distance from v to c)
dv,a � dv,b − 1 when a �v b

xy,i � xy′,i − 1 when y occurs left of y′ on axis i

In constraints of the first form, the ± can be replaced by
plus or minus at ‘compile’-time so that the quantity reflects
|xv,i−xc,i|. The argument for the �∞-metric is similar: here
we additionally guess for each pair (v, c) in which direction
the maximum distance is achieved.

7 Conclusions

The results of this paper are bad news for the d-Euclidean
domain: because producing a Euclidean embedding will in
general be infeasible, we are stuck with heuristic algorithms
that may or may not produce a correct output in their allotted
time. In some sense, our hardness results show that the es-
timation algorithms developed for the multidimensional un-
folding problem over the past several decades are best pos-
sible, in the sense that we cannot hope for exact efficient
algorithms. Still, future developments in ETR-solver tech-
nology might allow solving practical instances in reasonable
time, and perhaps some of the ideas in the area of multidi-
mensional unfolding can be formalised and yield exact algo-
rithms. We have run some preliminary experiments on the
PrefLib dataset (Mattei and Walsh 2013) using the nlsat
solver (Jovanović and De Moura 2012) which appears to be
the strongest ETR-solver available. However, nlsat was
unable to decide whether any of the non-trivial PrefLib pro-
files that we tried was 2- or 3-Euclidean within a time bound
of one hour.
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