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Abstract

We visualize aggregate outputs of popular multiwinner voting
rules—SNTV, STV, Bloc, k-Borda, Monroe, Chamberlin–
Courant, and PAV—for elections generated according to the
two-dimensional Euclidean model. We consider three appli-
cations of multiwinner voting, namely, parliamentary elec-
tions, portfolio/movie selection, and shortlisting, and use our
results to understand which of our rules seem to be best suited
for each application. In particular, we show that STV (one
of the few nontrivial rules used in real high-stake elections)
exhibits excellent performance, whereas the Bloc rule (also
often used in practice) performs poorly.

Introduction

The goal of this paper is to develop a better understanding
of a number of well-known multiwinner voting rules, by an-
alyzing their behavior in elections where voters’ preferences
are generated according to a two-dimensional spatial model.
By focusing on this preference domain, we can visualize the
election results and check if they agree with the intuition
and motivation behind these rules. Our study can be seen
as an experimental counterpart of the work of of Elkind et
al. (2014; 2017), who analyze multiwinner rules axiomati-
cally.

In a multiwinner election, the goal is to select a size-k
committee (i.e., a set of k candidates, where k ∈ N is part
of the input) based on the voters’ preferences. Usually, vot-
ers can express their preferences by listing the candidates
from best to worst or by indicating which candidates they
approve; we focus on the former setting, as it fits the spatial
preference model better.

Applications of multiwinner voting range from choosing
a parliament through preparing a portfolio of company’s
products (Lu and Boutilier 2011; 2015) or choosing movies
to offer to passengers on a long flight (Elkind et al. 2014;
2017; Skowron, Faliszewski, and Lang 2016) to shortlist-
ing runners-up for an award (Barberà and Coelho 2008;
Elkind et al. 2014; 2017). As a consequence, there is also
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quite a variety of different multiwinner voting rules. For in-
stance, for parliamentary elections an important desidera-
tum is proportional representation of the voters, and there
are voting rules such as STV or the Monroe rule (we de-
fine all rules considered in this paper in the next section)
that have been designed with this idea in mind. On the
other hand, in the context of portfolio or movie selec-
tion we primarily care about the diversity of the selected
committee, and it has been argued that the Chamberlin–
Courant rule is good for this purpose (Lu and Boutilier 2011;
Skowron, Faliszewski, and Lang 2016). For shortlisting, our
primary concern is fairness: if there are two similar candi-
dates, we want to select both or neither, and increasing the
target committee size should not result in any of the selected
candidates being dropped; these requirements are satisfied
by k-Borda. Naturally, there are other scenarios which re-
quire other normative properties.

The examples above indicate that choosing a good mul-
tiwinner rule is not a trivial task. It is therefore natural to
ask how we can facilitate the decision-making process of a
user who is facing this choice. There are several good an-
swers to this question. First, some rules are specifically de-
signed for certain tasks. For example, STV and the Monroe
rule have explicit built-in mechanisms ensuring that every
sufficiently large group of like-minded voters is represented.
Second, we can analyze axiomatic properties of the rules.
This line of work, was extensively pursued for single-winner
rules; for the case of multiple winners in was initiated by
Felsenthal and Maoz (1992) and Debord (1992), with re-
cent contributions including the work of Elkind et al. (2014;
2017) and Aziz et al. (2015a; 2017). Finally, one can use em-
pirical analysis to compare different rules under particular
conditions. For example, Diss and Doghmi (2016) consider
a few multiwinner voting rules and experimentally investi-
gate how frequently they pick Condorcet committees.1 All
these approaches are useful, and the choice of a voting rule
should take all of them into account.

Nonetheless, a non-expert user may still feel ill at ease
when deciding which rule to choose for his or her particu-

1In a Condorcet committee, every committee member is pre-
ferred to every non-member by a majority of the voters.
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STV k-Borda

Figure 1: Results of an election (generated using the 2D Eu-
clidean model) according to STV (left) and k-Borda (right).
Voters are depicted as dark gray dots, candidates as light
gray dots, and the winners as larger blue dots.

lar application. In this case, a picture may be worth a thou-
sand words: a simple graph that clearly explains differences
between rules can be very informative. The contribution of
this paper is to propose a novel approach to selecting a suit-
able mutiwinner rule, which is based on graphical informa-
tion. That is, we provide images that we expect to be helpful
in discussions of multiwinner voting rules. Naturally, reality
is too complicated for a single picture to constitute a def-
inite argument, but we believe that, on the one hand, our
results provide good illustrations confirming intuitions re-
garding various multiwinner rules and, on the other hand,
they highlight some faults of the rules that otherwise would
not be easily visible.

Our Methodology. The outcome of an election depends
both on the voting rule and on the set of candidates. In this
work, we focus on the former aspect and ask what multi-
winner rules do when choosing from a set of candidates that
is representative of the electorate, i.e., under what one may
call the representative candidacy assumption. We evaluate
a number of multiwinner voting rules (SNTV, STV, Bloc,
k-Borda, Chamberlin–Courant, Monroe, and PAV) on elec-
tions generated using the two-dimensional Euclidean model
of preferences. In this model each candidate and each voter
is represented by a point on a plane, and voters form their
preference orders by ranking the candidates that are closer
to them above the ones that are further away.

This model is very appealing and extensively stud-
ied (Enelow and Hinich 1984; 1990) because of its natural
interpretations: A point representing a candidate or a voter
simply specifies his or her position regarding two given is-
sues. In the world of politics, these two issues could be, for
example, the preferred levels of taxation and immigration,
or the extent to which the individual believes in personal and
economic freedom. While in some settings more dimensions
may be necessary, the popularity of the Nolan Chart, which
is used to represent the spectrum of political opinions, indi-
cates that two dimensions are often sufficient to provide a
good approximation of voters’ preferences.

In Figure 1 we show a sample election (the points for can-
didates and voters are generated using uniform distribution
over a square) and the committees selected by STV (left)

and k-Borda (right). It is quite evident that the committee
on the left would form a far more representative parliament
than the one on the right, whereas the one on the right would
probably be a better choice for the set of candidates that are
shortlisted for a position, since they are similar to each other
and receive broad support among the voters (in particular,
no voter ranks them close to the bottom of their list).

Our main contributions are as follows:

1. For each of our voting rules and four distributions of can-
didates and voters (Gaussian, uniform on a disc, uniform
on a square, and a mix of four Gaussians), we have gen-
erated 10 000 elections and built histograms (Figure 3)
indicating how likely it is that a candidate from a given
position will be selected.

2. We consider three applications of multiwinner voting,
and, for each application, we identify the voting rules in
our collection that are most appropriate for it. We make
these recommendations based on our histograms and cer-
tain statistical properties of the elected committees. E.g.,
we confirm that STV is an excellent rule for parliamen-
tary elections, even superior to the Monroe rule; PAV can
also be seen as an interesting rule that chooses fairly rep-
resentative committees, ignoring candidates with extreme
opinions. We also provide evidence that Bloc should be
treated very carefully since it may not perform as well as
one might expect (this is particularly important because
Bloc is among the most popular multiwinner rules).

Due to space restrictions, we omit some of our results (in
particular, the analysis of approximation algorithms for the
Monroe and Chamberlin–Courant rules); these results are
available in the full version of this paper.

Preliminaries

For every positive integer n, we write [n] to denote the set
{1, . . . , n}.

Elections. An election E = (C, V ) consists of a set
C = {c1, . . . , cm} of candidates and a list V = (v1, . . . , vn)
of voters. Each voter vi has a preference order �i, i.e., a
ranking of the candidates from the most to the least favored
one (according to this voter). For a voter v and a candidate
c, we write posv(c) to denote the position of c in v’s prefer-
ence order (where the top-ranked candidate has position 1).
A committee is a subset of C.

A multiwinner voting rule is a function R that, given
an election E = (C, V ) and a target committee size k
(1 ≤ k ≤ |C|), outputs a nonempty set of size-k commit-
tees; these committees are said to tie as election winners. In
practice, one has to use some tie-breaking mechanism. For
our experiments, whenever we need to break a tie (possi-
bly at an intermediate stage in the execution of the rule), we
make a random choice with a uniform distribution over all
possibilities.

(Single-Winner) Scoring Functions. For an election
with m candidates, a scoring function γm associates each
position j, j ∈ [m], with a score γm(j). The γm-score that
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candidate c receives from voter v is γm(posv(c)). The γm-
score of candidate c in election E is the sum of the γm-
scores that c receives from the voters in E. We consider the
following two prominent families of scoring functions:

1. The Borda scoring function, βm, is defined as βm(j) =
m− j.

2. For each t ∈ [m], the t-Approval scoring function, αt, is
defined as αt(j) = 1 if j ≤ t and αt(j) = 0 otherwise.
The candidate’s 1-Approval score is known as her Plural-
ity score.

Multiwinner Rules. We focus on the following multiwin-
ner rules (in the description below we consider an election
E = (C, V ) and committee size k):

SNTV. The Single Nontransferable Vote rule (SNTV) out-
puts k candidates with the highest Plurality scores.

STV. The Single Transferable Vote rule (STV) executes a
series of iterations, until it finds k winners. A single it-
eration operates as follows: If there is at least one can-
didate with Plurality score at least q = � n

k+1� + 1, then
a candidate with the highest Plurality score is added to
the committee; then q voters that rank him or her first are
removed from the election (our randomized tie-breaking
plays an important role here), and the selected candidate is
removed from all voters’ preference orders. If there is no
such candidate, then a candidate with the lowest Plurality
score is removed from the election (again, ties are bro-
ken uniformly at random). The Plurality scores are then
recomputed.

Bloc. Under the Bloc rule we output k candidates with the
highest k-Approval scores (intuitively, each voter is asked
to name his or her k favorite committee members, and
those mentioned most frequently are elected).

k-Borda. Under the k-Borda rule we output k candidates
with the highest Borda score.

β-CC. The (classical) Chamberlin–Courant rule (β-CC) is
defined as follows (Chamberlin and Courant 1983). A k-
CC-assignment function is a function Φ: V → C such
that |Φ(V )| ≤ k (i.e., Φ associates each voter with a
candidate in a set W ⊆ C, |W | ≤ k; for a voter v,
candidate Φ(v) is referred to as v’s representative). The
β-CC score of an assignment Φ is defined as β(Φ) =∑

v∈V βm(posv(Φ(v))) (i.e., it is the sum of the Borda
scores of voters’ representatives). β-CC finds a k-CC-
assignment Φ that maximizes β(Φ) and outputs the com-
mittee Φ(V ) (if it happens that |Φ(V )| < k—a situa-
tion that occurs, e.g., when all the voters have identical
preference orders—then β-CC supplements Φ(V ) with
k − |Φ(V )| candidates selected at random).

β-Monroe. The (classical) Monroe rule (Monroe 1995)
is similar to β-CC, except that it is restricted to k-
Monroe-assignments. A k-Monroe-assignment is a k-CC-
assignment that satisfies the following constraints: (a)
|Φ(V )| = k, and (b) for each candidate c such that
Φ−1(c) 	= ∅ (i.e., for each selected representative) it holds

that �n
k � ≤ |Φ−1(c)| ≤ �n

k �. Intuitively, under the Mon-
roe rule each selected candidate represents, roughly, the
same number of voters.

αk-PAV. Consider a scoring function γ. For a voter v and
a committee W such that v ranks the members of W on
positions p1 < · · · < pk, the γ-PAV score that v assigns
to W is γ-PAV(W, v) =

∑k
t=1

1
t γ(pt). For an election

E = (C, V ), the γ-PAV score of a committee W is de-
fined as γ-PAV(W,V ) =

∑
v∈V γ-PAV(W, v). The rule

outputs a committee with the highest γ-PAV score. In this
paper, we consider αk-PAV (originally the rule was de-
fined for approval ballots, see e.g., the overview of Kil-
gour (2010); as we work with preference orders, we mod-
ify the definition accordingly).

With our tie-breaking, STV, SNTV, Bloc, and k-Borda are
computable in polynomial time using straightforward algo-
rithms. Unfortunately, the Chamberlin–Courant and Monroe
rules are NP-hard to compute (Procaccia et al. (2008) show
this for variants of these rules that use t-Approval scores αt

instead of β; for the Borda-based variants defined here, the
results for the Chamberlin–Courant rule and the Monroe rule
are due to Lu and Boutilier (2011) and Betzler et al. (2013),
respectively). We compute these rules by solving their in-
teger linear programming (ILP) formulations (suggested
by Lu and Boutilier (2011) for the case of Chamberlin–
Courant, and by Skowron et al. (2015) for the case of Mon-
roe). PAV is also NP-hard to compute (Aziz et al. 2015b;
Skowron, Faliszewski, and Lang 2016)2, and we use a sim-
plified version of the ILP formulation proposed by Skowron
et al. (2016); see the full version of the paper.

Euclidean Preferences. Given two points on the plane,
p1 = (x1, y1) and p2 = (x2, y2), we write d(p1, p2) to de-
note the distance

√
(x2 − x1)2 + (y2 − y1)2 between them.

In a two-dimensional Euclidean election E = (C, V ),
each entity e (i.e., either a candidate or a voter) is asso-
ciated with a point p(e) = (x(e), y(e)). Given a pair of
candidates ci, cj ∈ C, a voter v ∈ V prefers ci to cj if
d(p(v), p(ci)) < d(p(v), p(cj)). Note that this condition
does not constrain voter’s preferences over two equidistant
candidates. In our case, since we draw our elections at ran-
dom, such situations are unlikely to happen. When they do,
we break the tie arbitrarily.

Euclidean preferences are very useful to realistically
model political preferences and, in many cases, to model
preferences in shortlisting tasks. Unfortunately, they are not
nearly as useful for modeling preferences over movies. The
reason is that people often do not have a single most fa-
vorite type of a movie, but rather like various genres for
different reasons. Nonetheless, investigating rules meant for
the movie selection application (i.e., for selecting diverse
committees) in our framework is still important. On the one
hand, movie selection is not the only application where di-
verse committees are needed, and, on the other hand, if a rule
behaves badly on the Euclidean domain, then it is unlikely
that it would behave well for richer preference models.

2the hardness proofs for this rule are in the approval model, but
can be easily adapted to the preference-order based one.
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Main Results and Analysis

Experimental Setup. We assume that both the candidates
and the voters have ideal positions in a two-dimensional Eu-
clidean issue space that are drawn from the same distribu-
tions. For each voting rule and each distribution, we gener-
ated 10 000 elections, each with m = 200 candidates and
n = 200 voters, and for each of them we computed a win-
ning committee of size k = 20.

We consider four distributions of the ideal positions:

Gaussian. Ideal points are generated using symmetric
Gaussian distribution with mean (0, 0) and standard de-
viation 1.

Uniform Square. Ideal points are distributed uniformly on
the square [−3, 3]× [−3, 3].

Uniform Disc. Ideal points are distributed uniformly on the
disc with center (0, 0) and radius 3.

4-Gaussian. Ideal points are generated using four symmet-
ric Gaussian distributions with standard deviation 0.5, but
different mean values, namely, (−1, 0), (1, 0), (0,−1)
and (0, 1); each mean is used to generate 25% of the
points.

We use the Gaussian distribution to model a society with
one dominant idea (e.g., where being moderate is the most
popular position, or where a single dominant party exists).
Since the boundary plays a significant role in the case of
uniform distributions (we will discuss this effect below), we
have chosen the Gaussian distribution, as its density van-
ishes close to the boundary.

The 4-Gaussian distribution models a structured society,
with four well-established positions (for the movie selection
scenario, these might correspond to, e.g., a combination of
two genres and two typical budget values; in the world of
politics, these could be four political parties).

We also use the uniform distributions, on a square and on
a disc, as intermediate cases, and in order to study specific
behavior of voting rules at the border and, in case of the
square, at the corners of the support of the distribution.

Raw Results. For each rule and each distribution, we
have computed a histogram, showing how frequently win-
ners from a given location were selected. These histograms,
together with examples of elections and their winning com-
mittees, are presented in Figure 3 (the first row presents the
distributions themselves).

The histograms were generated as follows. For each rule
and distribution, all the winners were always within the
[−3, 3]×[−3, 3] square. We have partitioned this square into
120× 120 cells (each cell is a 0.05× 0.05 square), and—for
each given distribution and rule—counted how many times
a member of the winning committee fell into a given cell
(we refer to this value as the frequency of this cell). Then we
have transformed the frequencies into color intensities (the
more winners fall into a particular cell, the darker it is in Fig-
ure 3). Since there are big differences among frequencies of
cells across various rules and distributions (e.g., the highest
frequency of a cell for k-Borda with the Gaussian distribu-
tion is over 27 times larger than the highest frequency of a

cell for SNTV under the uniform square distribution), we
took the following approach. Given a cell of frequency x,
we compute its color intensity y (0 ≤ y ≤ 1; the closer is y
to 1 the darker is the cell) using the following formula:

y = 1
π/2 arctan

(
x
εT

)
, (1)

where T is the sum of the frequencies of all the cells (so in
our case T = 20 · 10000) and ε is a parameter. We used
ε = 0.0004, so for the highest frequency of a cell in all our
experiments (found for k-Borda with the Gaussian distribu-
tion) we have x/(εT ) = 10.9; for most other rules and dis-
tributions this value is below 1.5 and thus falls into the part
where our function behaves fairly linearly (see Figure 2).
To present the distributions themselves, we computed his-
tograms of the ideal points generated using our distributions
(on the technical side, to generate these histograms, we used
candidate positions from 10 000 generated elections for each
distribution; since formula (1) is normalized, the pictures in
the first row of Figure 3 are comparable to those in the other
rows).

Analysis. We now consider the three applications of mul-
tiwinner rules that we mentioned in the introduction and an-
alyze which of our rules are most suitable for each applica-
tion.

Parliamentary Elections. We start with the case of par-
liamentary elections. Intuitively, in this application we value
proportional representation, which requires that the distribu-
tion of the winners (as seen through the histograms) should
be as close as possible to the underlying distribution of the
voters. Thus, at first sight, among our rules SNTV would
be the champion in this category. In addition, SNTV sat-
isfies a number of axioms studied by Elkind et al. (2014;
2017), especially those geared towards proportional repre-
sentation. However, at the same time, it is intuitively clear
that SNTV is not a very good rule because it only takes
the voters’ top choices into account, thus ignoring most of
the information in voters’ preferences. A look at the sample
elections for SNTV (Figure 3) shows that this intuition is
correct: The reason why SNTV has such an appealing his-
togram is that it selects committee members in areas that, by
random chance, have above-average density of voters and
below-average density of candidates. Over all 10 000 elec-

Figure 2: Plot of the function y = 1
π/2 arctan

(
x
εT

)
that we

use for converting cell frequencies to color intensities.
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Figure 3: Histograms and sample elections for our rules and distributions. The first row shows the distributions only. For sample
election, voters are depicted as dark gray dots, candidates as light gray dots, and the winners as larger blue dots.

tions such areas are distributed evenly, similarly to the dis-
tribution of the candidates and voters.

This means that, in addition to considering the his-
tograms, we also need to check if results of individual elec-
tions are close to what the histograms show. To this end we
have used an indirect approach that, nonetheless, turned out
to be very effective. Let us fix some rule R and one of our
distributions. For each generated election, we (1) count how
many members of the winning committee are in each of the
four quadrants [0,±∞)×[0,±∞), (2) collect these numbers
in a sequence, and (3) compute the variance of this sequence;
Table 1 shows the result of this computation, averaged over
all instances. Since all our distributions are symmetric with
respect to the x and y axes, for rules that represent voters

proportionally in individual instances we expect this num-
ber to be small. Of course, the converse claim need not be
true: Low variance does not guarantee proportional repre-
sentation. That is, the variance-based approach can be used
to eliminate ‘bad’ rules rather than to identify ‘good’ rules.

Table 1 clearly identifies a group of rules for which the
variance of the number of winners per quadrant is close to
or below 1.0, whereas for other rules the variance is sig-
nificantly higher (in our experiments, typically close to or
above 3.0). Thus, the performance of SNTV (close to 3.0) is
a strong argument against it. On the other hand, the results
for STV (both the shape of histograms and the variance) in-
dicate that it is an exceedingly good rule for selecting parlia-
ments. Indeed, this is the only rule with low variance that is
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rule square disc Gauss. 4 Gauss.

SNTV 3.292 3.219 3.275 2.787
STV 0.994 1.070 1.150 1.043
β-Monroe 0.738 0.797 0.864 0.765
β-CC 0.765 0.820 0.866 0.826
Bloc 17.789 17.146 18.709 9.663
αk-PAV 1.323 1.391 1.463 1.289
k-Borda 4.605 4.653 4.736 3.653

Table 1: Variance of the number of winners in each quadrant.
Bold font indicates rules where this value suggests asym-
metric placement of winners on the plane (for k-Borda, this
turns out to be a false alarm).

computationally tractable. This is quite important, as STV is
among just a few nontrivial voting rules used in practice, yet
some researchers—including some of us, until recently—
consider it unappealing. The axiomatic results of Elkind et
al. (2014; 2017) and our experiments provide different argu-
ments in favor of using STV for proportional representation.

The results for β-Monroe are slightly less appealing than
those for STV. While the variance of the number of win-
ners per quadrant is low, the histograms are farther from re-
sembling the distributions of candidates and voters. They
are very similar to those for β-CC, which should not be
too surprising. In our experiments, the only difference be-
tween these rules is that β-Monroe is forced to assign ex-
actly 10 voters to each selected committee member, whereas
β-CC can choose an optimal assignment, where the number
of voters assigned to each committee member may be arbi-
trary. Nonetheless, for each of the distributions, around 80%
of the committee members selected by β-CC were assigned
to between 7 and 13 voters each. In effect, the assignments
computed by β-CC and β-Monroe were quite similar. Nat-
urally, if the distributions of candidates and voters were not
identical, the results would be different as well (we have run
initial experiments to confirm this, available in the full ver-
sion of the paper). Below we discuss the intriguing patterns
in the histograms for β-CC (a similar explanation applies to
β-Monroe).

Portfolio/Movie Selection. Let us now consider the port-
folio/movie selection scenario (Lu and Boutilier 2011; 2015;
Elkind et al. 2014; 2017; Skowron, Faliszewski, and Lang
2016). Here we care mostly about the diversity of the com-
mittee and, intuitively, we would like to obtain histograms
that cover a large chunk of the support of the distribu-
tion, but which—as compared to the parliamentary elections
setting—are less responsive to the densities of the candidates
and voters.

We first analyze the results for β-CC, a rule that seems
to be designed exactly for this scenario. However, it does
not quite fit the description above. As we will see, to some
extent this is due to the nature of the rule, and to some ex-
tent this is because our initial expectations were not entirely
reasonable. There are two main issues regarding β-CC.

The first one concerns what we call the edge effect and
the corner effect. Let us consider the uniform square dis-

tribution. If a candidate is located far from the edges, then
he or she is also surrounded by a relatively large number
of other candidates with whom he or she needs to compete
for a high position in voters’ preference orders. On the other
hand, if a candidate is located near an edge (or, better yet,
near a corner) then the competition is less stiff. However, if
a candidate is close to the edge/corner, the number of voters
for whom he or she would be a representative also decreases.
In effect, for the uniform square and uniform disc distribu-
tions, we see increased frequencies of winners near (but not
exactly on) the edges and corners. The edge and corner ef-
fects are visible also for SNTV and STV (though to a lesser
extent), and they are very prominent for Bloc (especially in
conjunction with cases where an area near edge/corner has
an above-average density of voters).

The second issue regarding β-CC is that when some can-
didate is included in the committee, other candidates that
are very close to him or her are unlikely to be selected;
indeed, this behavior is quite desirable when one wants to
maintain diversity of the committee. This explains why for
the uniform square and uniform disc distributions the near-
edge area with increased frequencies is surrounded by an
area with lower frequencies. This effect also explains the in-
teresting pattern for the 4-Gaussian distribution. Since there
are many voters in the centers of the four Gaussians, can-
didates from these locations are likely to be included in the
committee. But this very fact strongly decreases the chances
of the candidates that are located just a bit further away from
the centers of the Gaussians.

Our visual inspection of the election results for β-CC
shows that every single committee appears to be diverse and
appealing for the portfolio/movie selection problem (this is
also supported by the low value of the variance of the num-
ber of winners per quadrant). However, the histograms show
that the rule also has an implicit, systematic bias against cer-
tain candidates (the nature of this bias depends on the distri-
bution) that users of the rule should take into account.
αk-PAV also appears to be a very interesting rule for the

portfolio/movie selection task (and, perhaps, even for parlia-
mentary elections). In our experiments, αk-PAV chose com-
mittees distributed fairly uniformly in the central areas, ig-
noring candidates with extreme opinions.

Shortlisting. Here our guiding principle is that the com-
mittee should consist of similar candidates (i.e., located
close to each other). For this criterion, k-Borda is our rule of
choice. In all of the experiments it consistently chose candi-
dates located in the center, close to each other. Table 1 indi-
cates that k-Borda has high variance of the number of win-
ners per quadrant. We believe that this is caused not by any
faults of the rule itself, but by a fairly natural statistical prop-
erty of our distributions. Since k-Borda selects 20 candidates
from the center, due to random perturbations, sometimes the
central candidates are not distributed over the quadrants in
a perfectly balanced way, and our variance-based measure
does not take into account the candidates’ centrality.

The Strange Case of Bloc. In the situation where k can-
didates are to be selected (e.g., to a city council), it is quite
common to ask the voters to come up with k names (ranked
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or non-ranked). Bloc, in particular, is quite a popular rule.
Our histograms show that Bloc is very sensitive to the edge
and corner effects (the pattern is similar to that for β-CC,
but the effects are much stronger). Worse yet, Table 1 shows
very high variance of the number of winners in each quarter
and, indeed, the example elections for Bloc in Figure 3 show
very asymmetric placements of the winners. These two argu-
ments by themselves make Bloc a questionable voting rule.

Bloc is also the only rule in our collection that shows the
following inversion effect: For the Gaussian distribution, the
frequencies of the cells near the center (i.e., near the mean of
the Gaussian distribution) are lower than the frequencies of
the cells in the ring surrounding it. This is a very counter-
intuitive and unexpected phenomenon: The most popular
views in the society are represented less frequently than the
not-so-popular ones. We believe that the mechanism behind
this effect is similar to that behind the edge/corner effect:
Even though the center has the highest density of the voters,
it also has the highest density of the candidates, who there-
fore “steal points away” from each other. As a consequence,
the slightly less popular candidates in the ring get enough
support (both from some of the voters in the center and from
those on the ring and beyond) to be elected.3

Robustness of the Results

So far we have considered elections with m = 200 candi-
dates, m = 200 voters, and committee size k = 20 only.
Thus it is natural to wonder if our conclusions remain valid
as we vary these parameters.

Except for STV and β-Monroe, all our rules belong to
the class of committee scoring rules (Elkind et al. 2014;
2017; Faliszewski et al. 2016), i.e., they define a per-voter
score of each possible committee and select committees for
which the sums of these scores are the highest. In conse-
quence, the results for these rules should not change signif-
icantly with the number of voters (unless this number be-
comes very small). Since STV and β-Monroe are similar in
spirit to committee scoring rules (indeed, STV is similar to
SNTV and β-Monroe is very closely related to β-CC), the
results for them should be similarly robust.

We also do not expect strong qualitative differences in our
results for different numbers of candidates or different com-
mittee sizes (again, except for very small values). Nonethe-
less, we do observe quantitative differences.

In Figure 4 we present histograms for our rules with re-
spect to the disc distribution, for committee sizes 10, 20,
and 30 (the histogram for committee size 20 is the same as
in Figure 3; we repeat it for the sake of comparison). We
note that the results for SNTV and STV are nearly the same
irrespective of the committee size.4 The results for Bloc,
αk-PAV, and k-Borda also look very similar, and the dif-
ferences are only in the radii of the discs/rings generated

3Indeed, this can be seen as a type of approximate cloning
(see the discussion in the papers of of Tideman (1987), Laffond
et al. (1996), and Elkind et al. (2011)).

4For k = 30, the quota for STV is q = � 200
31

� + 1 = 7. Thus,
in the first 28 stages we remove 196 voters, so the 29th candidate
is chosen by 4 voters and the 30th candidate is selected randomly.
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Figure 4: Histograms for our rules under the disc distri-
bution, for committee sizes 10, 20, and 30. For αk-PAV
(k ∈ {10, 30}) and Monroe (k = 30) we computed only
5000 elections. Due to technical issues, for β-Monroe with
k = 10 we computed only about 500 elections.

by these rules (this is especially natural for k-Borda; as we
choose more and more of the centrally located candidates,
they form a larger and larger disc). The results for β-CC and
β-Monroe for different committee sizes also look similar,
but for k = 10 (especially for the case of β-CC) the arti-
facts in the histograms become much more visible (e.g., for
k = 10 and β-CC, there are two very clearly visible consec-
utive rings). This indicates that our observations about β-CC
and β-Monroe do not necessarily carry over to the case of
very small committees.
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Conclusions

Our results lead to several interesting observations. Fore-
most, within the framework of our study STV stands out as
an exceptionally good rule for parliamentary elections. On
the other hand, the Monroe rule, which is also an appealing
rule for this application, did not do quite as well. We also
found that the Monroe and Chamberlin–Courant rules may
have (somewhat surprising) implicit biases against some
candidates. Further, we discovered that in our experiments
αk-PAV tends to ignore extremist candidates and fairly uni-
formly covers central areas (this seems quite related to the
results of Aziz et al. (2015a; 2017) on justified representa-
tion). We confirmed that k-Borda has good properties as a
shortlisting rule and provided strong arguments against the
Bloc rule.
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