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Abstract

The goal of multi-winner elections is to choose a fixed-size
committee based on voters’ preferences. An important con-
cern in this setting is representation: large groups of vot-
ers with cohesive preferences should be adequately repre-
sented by the election winners. Recently, Aziz et al. (2015a;
2017) proposed two axioms that aim to capture this idea: jus-
tified representation (JR) and its strengthening extended jus-
tified representation (EJR). In this paper, we extend the work
of Aziz et al. in several directions. First, we answer an open
question of Aziz et al., by showing that Reweighted Approval
Voting satisfies JR for k = 3, 4, 5, but fails it for k ≥ 6.
Second, we observe that EJR is incompatible with the Per-
fect Representation criterion, which is important for many
applications of multi-winner voting, and propose a relaxation
of EJR, which we call Proportional Justified Representation
(PJR). PJR is more demanding than JR, but, unlike EJR, it is
compatible with perfect representation, and a committee that
provides PJR can be computed in polynomial time if the com-
mittee size divides the number of voters. Moreover, just like
EJR, PJR can be used to characterize the classic PAV rule in
the class of weighted PAV rules. On the other hand, we show
that EJR provides stronger guarantees with respect to average
voter satisfaction than PJR does.

1 Introduction

Decision-making based on the aggregation of possibly con-
flicting preferences is a central problem in the field of so-
cial choice, which has received a considerable amount of at-
tention from the artificial intelligence researchers (Conitzer
2010; Brandt et al. 2016). The most common preference ag-
gregation scenario is the one where a single candidate has
to be selected. However, there are also many applications
where the goal is to select a fixed-size set of alternatives:
example range from choosing a parliament or a committee
to identifying a set of plans, allocating resources, shortlist-
ing candidates for a job or an award, picking movies to be
shown on a plane or creating a conference program (Bar-
berà and Coelho 2008; Monroe 1995; Elkind, Lang, and
Saffidine 2015; Skowron, Faliszewski, and Slinko 2015;
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Elkind et al. 2017). Recently, the complexity of multi-
winner voting rules (Betzler, Slinko, and Uhlmann 2013;
Aziz et al. 2015b) and their social choice properties (Elkind,
Lang, and Saffidine 2015; Aziz et al. 2015a; 2017; Elkind et
al. 2017) have been actively explored by the artificial intel-
ligence research community.

Multi-winner voting rules are often applied in scenarios
in which the set of winners needs to represent the different
opinions or preferences of the agents involved in the elec-
tion. Thus, it is important to formulate axioms that capture
our intuition about what it means for a set of winners to pro-
vide a faithful representation of voters’ preferences (Mon-
roe 1995; Dummet 1984; Black 1958). Aziz et al. (2015a;
2017) have recently proposed two such axioms for approval-
based multi-winner voting, namely justified representation
(JR) and extended justified representation (EJR). Intuitively,
JR requires that a large enough group of agents with similar
preferences is allocated at least one representative; EJR says
that if this group is large enough and cohesive enough, it de-
serves not just one, but several representatives (see Section 2
for formal definitions). Similar axioms have been proposed
for multi-winner voting rules with ranked ballots (Dummet
1984; Elkind et al. 2017). Aziz et al. show that for every
collection of ballots there is a winning set that provides EJR;
they then explore a number of popular multi-winner voting
rules and show that several of them satisfy JR, but only one
rule satisfies EJR.

Our first contribution in this paper is to answer a ques-
tion left open by Aziz et al. Specifically, Aziz et al. prove
that Reweighted Approval Voting (RAV)1 satisfies JR if the
desired number of winners k is 2 but it fails JR if k ≥ 10.
We close this gap and prove that RAV satisfies JR if k ≤ 5
and fails JR if k ≥ 6. Our proof proceeds by construct-
ing and solving a linear program that establishes bounds on
RAV scores.

We then formulate an axiom that we call Perfect Repre-
sentation (PR), which says that if a given instance admits a
‘perfect solution’ (all voters are represented, and each win-
ner represents the same number of voters), then we expect a
voting rule to output such a solution. This axiom is very ap-

1In the journal version of their paper, Aziz et al. (2017) refer to
this rule as Sequential Proportional Approval Voting (SeqPAV).
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pealing in parliamentary elections and similar applications
of multi-winner voting. However, it turns out to be incom-
patible with EJR: there is an election where these two ax-
ioms correspond to disjoint sets of winning committees.

Motivated by this result, we propose a relaxation of EJR,
which we call Proportional Justified Representation (PJR).
PJR is more demanding than JR, but, unlike EJR, it is com-
patible with perfect representation, and a committee that
provides PJR can be computed in polynomial time; in par-
ticular, we show that a well-studied efficiently computable
voting rule satisfies PJR if the committee size k divides the
number of voters n. In contrast, it is conjectured that find-
ing committees that provide EJR is computationally hard.
Moreover, just like EJR, PJR can be used to characterize the
classic Proportional Approval Voting (PAV) in the class of
weighted PAV rules. However, we then show that the addi-
tional flexibility supplied by PJR comes at a cost: we define
a measure of average voter satisfaction and show that EJR
provides much stronger guarantees with respect to this mea-
sure than PJR does. We conclude the paper by discussing
our results and indicating directions for future work.

2 Preliminaries

Given a positive integer s, we denote the set {1, . . . , s}
by [s]. We consider elections with a set of voters N =
{1, . . . , n} and a set of candidates C = {c1, . . . , cm}. Each
voter i ∈ N submits an approval ballot Ai ⊆ C, which
represents the subset of candidates that she approves of. We
refer to the list A = (A1, . . . , An) as the ballot profile. An
approval-based multi-winner voting rule takes as input a tu-
ple (N,C,A, k), where k is a positive integer that satisfies
k ≤ |C|, and returns a subset W ⊆ C of size k, which we
call the winning set, or committee. We omit N and C from
the notation when they are clear from the context.

The following voting rules have received a considerable
amount of attention in the literature (Kilgour 2010; Elkind
et al. 2017; Aziz et al. 2015a; 2017):

Proportional Approval Voting (PAV) Under PAV, an agent
is assumed to derive an utility of 1 + 1

2 + 1
3 + · · ·+ 1

j from
a committee that contains exactly j of her approved candi-
dates, and the goal is to maximize the sum of the agents’
utilities. Formally, the PAV-score of a set W ⊆ C is defined
as

∑
i∈N r(|W ∩ Ai|), where r(p) =

∑
j∈[p]

1
j , and PAV

outputs a set W ⊆ C of size k with the highest PAV-score.
We can generalize the definition of PAV by using an arbi-

trary non-increasing score vector in place of (1, 1
2 ,

1
3 , · · · ):

for every vector w = (w1, w2, . . .), where w1, w2, . . . are
non-negative reals, w1 = 1 and w1 ≥ w2 ≥ . . ., we
define a voting rule w-PAV that, given a ballot profile
(A1, . . . , An) and a target number of winners k, returns a
set W of size k with the highest w-PAV score, defined as∑

i∈N rw(|W ∩Ai|), where rw(p) =
∑

j∈[p] wj .

Reweighted Approval Voting (RAV) RAV is a multi-round
rule that in each round selects a candidate and then reweighs
the approvals for the subsequent rounds. Specifically, it
starts by setting W = ∅. Then in round j, j ∈ [k], it com-

putes the approval weight of each candidate c as
∑

i:c∈Ai

1

1 + |W ∩Ai| ,

selects a candidate with the highest approval weight, and
adds her to W . Just as for PAV, we can extend the definition
of RAV to score vectors other than (1, 1

2 ,
1
3 , · · · ): every vec-

tor w = (w1, w2, . . .), where w1, w2, . . . are non-negative
reals, w1 = 1 and w1 ≥ w2 ≥ . . . defines a sequential
voting rule w-RAV, which proceeds as RAV, except that it
computes the approval weight of a candidate c in round j as∑

i:c∈Ai
w|W∩Ai|+1, where W is the winning set after the

first j − 1 rounds.
The Monroe rule For each voter i ∈ N and each candidate
c ∈ C we write ui(c) = 1 if c ∈ Ai and ui(c) = 0 if c �∈ Ai.
Given a committee W ⊆ C of size k, we say that a mapping
π : N → W is valid if it satisfies |π−1(c)| ∈ {
n

k �, �n
k 


}

for each c ∈ W . The Monroe score of a valid mapping π
is given by

∑
i∈N ui(π(i)), and the Monroe score of W is

the maximum score of a valid mapping from N to W . The
Monroe rule returns a committee of size k with the maxi-
mum Monroe score.
The Greedy Monroe rule Given a ballot profile A =
(A1, . . . , An) over a candidate set C and a target commit-
tee size k, the Greedy Monroe rule proceeds in k rounds. It
maintains the set of available candidates C ′ and the set of
unsatisfied voters N ′; initially C ′ = C and N ′ = N . It
starts by setting W = ∅. In round t, t = 1, . . . , k, it selects
a candidate ct from C ′ and a group of voters Nt from N ′
of size approximately n

k (specifically, �n
k 
 if t ≤ n− k
n

k �,
and 
n

k � if t > n − k
n
k �) so as to maximize the quan-

tity |{i ∈ Nt : ct ∈ Ai}| over all possible choices of
(Nt, ct). The candidate ct is then added to W , and we set
C ′ = C ′ \ {ct}, N ′ = N ′ \Nt. We say that the candidates
in Nt are assigned to ct. After k rounds, the rule outputs W .

PAV and RAV were defined by Thiele (1895). The Mon-
roe rule was proposed by Monroe (1995) and Greedy Mon-
roe is due to Skowron, Faliszewski, and Slinko (2015)
(Skowron, Faliszewski, and Slinko define this rule for the
setting where ballots are rankings of the candidates; we
adapt their definition to approval ballots). For PAV and
Monroe finding a winning committee is NP-hard (Aziz et al.
2015b; Procaccia, Rosenschein, and Zohar 2008), whereas
for RAV and Greedy Monroe winning committees can be
computed in polynomial time; in fact, RAV and Greedy
Monroe were originally proposed as approximation algo-
rithms for PAV and Monroe, respectively.

Under each of the rules we consider, there may be more
than one winning committee. In what follows, we assume
that all ties are broken in some deterministic way; none of
our results depends on the tie-breaking rule.

We will now define the key concepts in the work of Aziz
et al. (2015a; 2017): justified representation and extended
justified representation.

Definition 1. (Extended) justified representation ((E)JR)
Consider a ballot profile A = (A1, . . . , An) over a candi-
date set C and a target committee size k, k ≤ |C|. Given a
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positive integer � ∈ [k], we say that a set of voters N∗ ⊆ N
is �-cohesive if |N∗| ≥ �nk and |⋂i∈N∗ Ai| ≥ �. A set
of candidates W is said to provide �-justified representation
(�-JR) for (A, k) if there does not exist an �-cohesive set of
voters N∗ such that |Ai ∩W | < � for each i ∈ N∗. We say
that W provides justified representation (JR) for (A, k) if it
provides 1-JR for (A, k); it provides extended justified rep-
resentation (EJR) for (A, k) if it provides �-JR for (A, k) for
all � ∈ [k]. An approval-based voting rule satisfies �-JR if
for every ballot profile A and every target committee size k
it outputs a committee that provides �-JR for (A, k). A rule
satisfies JR (respectively, EJR) if it satisfies �-JR for � = 1
(respectively, for all � ∈ [k]).

By definition, EJR implies JR. Aziz et al. (2015a; 2017)
show that PAV satisfies EJR (and hence JR), Monroe satis-
fies JR, but fails EJR, and RAV fails JR for sufficiently large
values of k; they do not consider Greedy Monroe in their
work.

3 Justified Representation and RAV

Aziz et al. (2015a; 2017) prove that RAV satisfies JR for
k = 2, but fails it for k ≥ 10. Whether RAV satisfies JR
for k = 3, . . . , 9 was left an open problem. The following
theorem provides a complete answer.

Theorem 1. RAV satisfies JR for k ≤ 5 but fails it for k ≥ 6.

Proof. For each k ∈ N, we construct a linear program LPk

whose value is the maximum possible ‘relative’ approval
weight of a yet unelected candidate (i.e., the ratio between
her approval weight and the total number of voters) after
k − 1 steps of RAV. Fix a k ∈ N. We can assume without
loss of generality that RAV elects a committee {c1, . . . , ck},
where for i ∈ [k] candidate ci is added to the committee
in round i; our linear program includes constraints that im-
pose this order. Moreover, as non-elected candidates do not
have any influence on the approval weight under RAV, we
may assume that C = {c1, . . . , ck}. For i ∈ [k], we write
Ci = {c1, . . . , ci}.
LPk has a variable xA for each nonempty candidate sub-

set A ⊆ Ck; this variable corresponds to the fraction of vot-
ers that submit the approval ballot A. The objective function
of LPk is the ratio of the approval weight of candidate ck and
the total number of agents n after candidates {c1, . . . , ck−1}
have already been elected. The constraints say that all vari-
ables should be non-negative and sum up to 1, and that RAV
can select ci in round i, for i ∈ [k − 1].

maximize
∑

A:ck∈A

xA

1 + |Ck−1 ∩A| subject to

xA ≥ 0 for all A ⊆ Ck; (1)
∑

A⊆C

xA = 1; (2)

∑

A:ci∈A

xA

1 + |Ci−1 ∩A| ≥
∑

B:cj∈B

xB

1 + |Ci−1 ∩B| (3)

for i = 1, . . . , k − 1 and for j = i+ 1, . . . , k.

The number of variables in LPk grows exponentially with
k, but this is not an issue, because we only have to solve
this linear program for small values of k. Solving LPk for
k = 3, 4, 5, 6, we obtain the following result.

Lemma 1. For k = 6 the value of LPk is 0.204 > 1
k−1 . For

k = 3, 4, 5 the value of LPk is smaller than 1
k−1 .

Consider an optimal solution (xA)A⊆C6 of LP6. We can
find a positive integer n such all values nA = xA ·n for A ⊆
C6 are integer, and construct an n-voter ballot profile A =
(A1, . . . , An) where each ballot A ⊆ C6 occurs exactly nA

times; moreover, we can pick n so that n/5 is an integer.
Lemma 1 implies that when we execute RAV on (A, k), in
each round RAV selects a candidate whose approval weight
is at least 0.204n.

Now, consider the ballot A′ = (A′
1, . . . , A

′
6n/5) over

C7 = C6 ∪ {c7} where A′
i = Ai for i ∈ [n] and each of the

the additional n/5 voters has Ai = {c7}. Suppose that we
run RAV on A′ with k = 6. As we have 1

6 · (6n/5) = n/5,
the JR axiom requires that c7 is elected. However, this does
not happen: at each point the approval weight of c7 is n/5,
whereas by Lemma 1 in each round RAV can find a candi-
date whose approval weight is at least 0.204n > n/5. In the
full version of the paper (Sánchez-Fernández et al. 2016),
we provide a concrete implementation of this idea: we de-
scribe an election with 5992 candidates on which RAV fails
JR for k = 6. We also explain how to extend this example
to k > 6.

We will now show that RAV satisfies JR for k = 3, 4, 5.
Suppose for the sake of contradiction that RAV violates JR
for some n-voter ballot profile A and some k ∈ {3, 4, 5}.
That is, for some way of breaking ties RAV outputs a win-
ning set W and there exists a set of voters N∗ of size at least
n
k such that all voters in N∗ approve some candidate c, yet
no voter in N∗ approves any candidate in W . Let w be the
candidate that is added to W during the k-th round.

Consider a ballot profile A′ obtained from A by remov-
ing all voters in N∗, and suppose that we execute RAV on
(A′, k). It is possible to break intermediate ties in the ex-
ecution of RAV so that RAV outputs W on (A′, k), and,
moreover, candidates are added to W in the same order on
both inputs. Indeed, as none of the candidates in W is ap-
proved by the voters in N∗, removing these voters does not
change the approval weights of the candidates in W in each
round of RAV, and can only lower the scores of the other
candidates. Thus, we can assume that RAV selects W , and,
moreover, adds w to W at the k-th step.

We can now apply Lemma 1 to A′, which contains at most
n′ = n − n

k = nk−1
k voters; by the lemma, when w is

added to W , its approval weight is strictly less than n′
k−1 =

n
k . Since none of the removed voters approved w, when
RAV is executed on A, candidate w’s approval weight in
the k-th round is also strictly less than n

k . But this means
that RAV should have favored c over w in the k-th round, a
contradiction.

672



4 Perfect Representation

A key application of multi-winner voting is parliamentary
elections, where an important goal is to select a commit-
tee that reflects as fairly as possible the different opinions or
preferences that are present in a society. Fairness in this con-
text means that each committee member should represent
approximately the same number of voters and as many vot-
ers as possible should be represented by a committee mem-
ber that they approve. From this perspective, the best-case
scenario is when each voter is represented by a candidate
that she approves and each winning candidate represents ex-
actly the same number of voters. Thus, we may want our
voting rules to output committees with this property when-
ever they exist. This motivates the following definition.

Definition 2. Perfect representation (PR) Consider a bal-
lot profile A = (A1, . . . , An) over a candidate set C, and a
target committee size k, k ≤ |C|, such that k divides n. We
say that a set of candidates W , |W | = k, provides perfect
representation (PR) for (A, k) if it is possible to partition N
into k pairwise disjoint subsets N1, . . . , Nk of size n

k each
and assign a distinct candidate from W to each of these sub-
sets in such a way that for each � ∈ [k] all voters in N� ap-
prove their assigned member of W . An approval-based vot-
ing rule satisfies PR if for every profile A and every target
committee size k the rule outputs a committee that provides
PR for (A, k) whenever such a committee exists.

An example of a voting rule that satisfies PR is the Mon-
roe rule: a committee that provides perfect representation
for an n-voter ballot profile has the Monroe score of n, i.e.,
the maximum possible score, whereas the Monroe score of
any committee that does not provide perfect representation
is at most n− 1.

We note that the PR axiom is quite demanding from a
computational perspective: the problem of deciding whether
there exists a committee that provides PR for a given pair
(A, k) is NP-complete.

Theorem 2. Given a ballot profile A and a target committee
size k, it is NP-complete to decide whether there exists a
committee that provides PR for (A, k).

Proof sketch. To show containment in NP, we reduce the
problem of checking whether a given committee W provides
perfect representation for (A, k) to the problem of finding a
b-matching in a bipartite graph that can be associated with
A and W ; the latter problem admits a polynomial-time algo-
rithm (Anstee 1987). To prove NP-hardness, we adapt a re-
duction of Procaccia, Rosenschein, and Zohar (2008), which
shows that finding a winning committee under the Monroe
rule is NP-hard. The details can be found in the full version
of the paper (Sánchez-Fernández et al. 2016).

Remark 1. Theorem 2 immediately implies that, unless
P=NP, RAV and Greedy Monroe fail PR; it is also not hard
to construct specific examples on which these rules fail PR.
As for PAV, Theorem 3 below implies that it also fails PR.

Viewed from a different perspective, PR is a rather weak
axiom: it only constrains the behavior of a voting rule on in-
puts that admit a committee that provides PR. In particular,

this axiom has no bite if k does not divide n. Also, un-
like EJR, PR does not engage with the idea that a voter may
benefit from being represented by more than one candidate.
Thus, we may want a voting rule to satisfy both PR and an-
other representation axiom, such as, e.g., EJR. However, this
turns out to be impossible: PR and EJR are incompatible.

Theorem 3. There exists a ballot profile A and a target
committee size k such that the set of committees that pro-
vide PR for (A, k) is non-empty, but none of the committees
in this set provides EJR.

Proof. Let C = {c1, . . . , c6}, and consider a ballot profile
A = (A1, . . . , A8) where Ai = {ci}, Ai+4 = {ci, c5, c6}
for i = 1, . . . , 4. Observe that W = {c1, c2, c3, c4} is
the unique committee of size 4 that provides PR for (A, 4).
However, W fails to provide EJR: {A5, A6, A7, A8} is a 2-
cohesive set of voters, but each of these voters only approves
one candidate in W .

This motivates the following question: can we find a
weakening of the EJR axiom that still provides meaningful
guarantees to large cohesive groups of voters, yet is compat-
ible with PR? We address this question in the next section.

5 Proportional Justified Representation

The EJR axiom provides the following guarantee: at least
one member of an �-cohesive group has at least � represen-
tatives in the committee. This focus on a single group mem-
ber does not quite reflect our intuition of what it means for
a group to be well-represented. A weaker and perhaps more
natural condition is to require that collectively the members
of an �-cohesive group are allocated at least � representa-
tives. This idea is captured by the following definition.

Definition 3. Proportional justified representation (PJR)
Given a ballot profile A = (A1, . . . , An) over a candidate
set C and a target committee size k, k ≤ |C|, we say that
a set of candidates W , |W | = k, provides proportional jus-
tified representation (PJR) for (A, k) if for every � ∈ [k]
and every �-cohesive set of voters N∗ ⊆ N it holds that
|W ∩ (

⋃
i∈N∗ Ai)| ≥ �. We say that an approval-based vot-

ing rule satisfies proportional justified representation (PJR)
if for every ballot profile A and every target committee size
k it outputs a committee that provides PJR for (A, k).

It is immediate that every committee that provides PJR
also provides JR: the PJR condition for � = 1 is exactly JR.
Also, it is easy to see that every committee that provides EJR
also provides PJR: the condition “|Aj ∩ W | ≥ � for some
i ∈ N∗” in the definition of EJR implies the condition “|W∩
(
⋃

i∈N∗ Ai)| ≥ �” in the definition of PJR. To summarize,
we obtain the following proposition.

Proposition 1. EJR implies PJR, and PJR implies JR.

Moreover, unlike EJR, PJR is compatible with PR.

Theorem 4. For every profile A = (A1, . . . , An) and every
target committee size k, if a set of candidates W , |W | = k,
provides PR, then W also provides PJR.
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Proof. Observe that because W provides PR, k divides n.
Let W = {w1, . . . , wk}. As W provides PR, there exist
k pairwise disjoint subsets N1, . . . , Nk of size n

k each such
that all voters in Ni approve wi for each i ∈ [k]. Consider
a set of agents N∗ ⊆ N and a positive integer � such that
|N∗| ≥ �nk . By the pigeonhole principle, N∗ has a non-
empty intersection with at least � of the sets N1, . . . , Nk. As
each voter in N∗ ∩ Ni approves wi, it follows that the the
number of candidates in W approved by some voter in N∗
must be greater than or equal to �.

Another advantage of PJR is that a committee that pro-
vides PJR can be computed in polynomial time as long as the
target committee size k divides the number of voters n; in-
deed, under this condition both the Monroe rule and Greedy
Monroe (the latter of which is polynomial-time computable)
provide PJR. We note that PAV satisfies EJR and hence PJR
even if k does not divide n; however, computing the output
of PAV is NP-hard.

Theorem 5. Consider a ballot profile A = (A1, . . . , An).
If the target committee size k divides n then the outputs of
Monroe and Greedy Monroe on (A, k) satisfy PJR.

Proof. We provide a proof for Greedy Monroe; the proof
for Monroe can be found in the full version of the paper
(Sánchez-Fernández et al. 2016).

Let s = n
k ; note that s ∈ N. Suppose for the sake of

contradiction that the set W output by Greedy Monroe fails
PJR for some � ∈ [k] and some �-cohesive set of voters N∗;
we can assume that |N∗| = � · s. Consider a candidate
c ∈ C \W that is approved by all voters in N∗.

By the pigeonhole principle N∗ has a non-empty inter-
section with at least � of the sets N1, . . . , Nk constructed
by Greedy Monroe (the integrality of s is crucial here); let
the first � of these sets be Ni1 , . . . , Ni� with i1 < · · · < i�.
For each t = 1, . . . , �, pick a voter in Nit ∩ N∗; note
that all these voters are assigned to different candidates in
W . Now, if each of these � voters approves the candidate
she is assigned to, we are done, as we have identified
� distinct candidates in W each of which is approved
by some voter in N∗. Otherwise, let j = min{it :
the voter we chose in Nit ∩N∗ does not approve of cit}.
By our choice of j, not all voters in Nj approve cj , yet
the pair (Nj , cj) was chosen at step j. Among the sets
N1, . . . , Nj−1 there are at most �− 1 sets of size s each that
have a non-empty intersection with N∗, so at step j at least
s voters in N∗ are present in N ′ (N ′ is the set of unsatisfied
voters; see the definition of Greedy Monroe in section 2).
Now, candidate c, together with s voters from N∗ ∩ N ′,
would be a better choice for Greedy Monroe than (Nj , cj),
a contradiction.

We remark that if n
k is not an integer, the proof of Theo-

rem 5 breaks down, because N∗ may be covered by fewer
than � sets among N1, . . . , Nk. The following example
shows that both of these rules may fail PJR in this case.

Example 1. Let n = 10, k = 7, C = {c1, . . . , c8}. Suppose
that Ai = {ci} for i = 1, . . . , 4 and Ai = {c5, c6, c7, c8}
for i = 5, . . . , 10. Let � = 4. Then � · nk = 40

7 < 6, so the set

of voters {5, 6, 7, 8, 9, 10} “deserves” four representatives.
However, under both Monroe and Greedy Monroe only three
candidates from {c5, c6, c7, c8} will be selected.

It is then natural to ask if there is a polynomial-time com-
putable voting rule that satisfies PJR for all values of n and
k. Interestingly, it turns out that the answer to this ques-
tion is ‘yes’: in a very recent paper, Brill et al. (2017) de-
scribe an approval-based multi-winner rule developed by the
Swedish mathematician Lars Edvard Phragmén more than
100 years ago, and show that a sequential variant of this rule,
which they refer to as seq-Phragmen, is polynomial-time
computable and provides PJR. Another voting rule with this
combination of properties is the ODH rule, which has been
proposed by Sánchez-Fernández, Fernández, and Fisteus in
a recent arXiv preprint (Sánchez-Fernández, Fernández, and
Fisteus 2016). Interestingly, both rules are extensions of the
D’Hondt seat allocation method (Farrell 2011) to approval-
based multi-winner elections.

Moreover, PJR inherits a useful feature of EJR: it charac-
terizes PAV within the class of w-PAV rules.

Proposition 2. The rule w-PAV satisfies PJR if and only if
w = (1, 1

2 ,
1
3 , . . . ).

Proof sketch. If w = (1, 1
2 ,

1
3 , . . . ) then w-PAV satisfies

EJR (as shown by Aziz et al. (2015a; 2017)) and hence PJR.
The converse statement is proved by reusing the key lem-
mas from the respective proof for EJR in the work of Aziz et
al. (2015a; 2017); see the full version of our paper (Sánchez-
Fernández et al. 2016) for details.

In contrast, all w-RAV rules fail PJR.

Proposition 3. The rule w-RAV fails PJR for each weight
vector w.

Proof sketch. The proof is similar to the proof that w-RAV
fails EJR (Aziz et al. 2015a; 2017) and is relegated to the full
version of the paper (Sánchez-Fernández et al. 2016).

6 Average Satisfaction

A useful measure in the context of justified representa-
tion is that of average satisfaction: given a ballot pro-
file (A1, . . . , An), a committee W , and a group of voters
N∗ ⊆ N , we define the average satisfaction of the voters
in N∗ as 1

|N∗|
∑

i∈N∗ |Ai ∩ W |. While it is maybe impos-
sible to ensure that every group of voters has high average
satisfaction, it is natural to ask if we can provide some guar-
antees with respect to this measure to groups of voters that
are large and cohesive.

Our first observation is that if a committee W provides
JR, we can derive a lower bound on the average satisfaction
of such groups.

Proposition 4. Consider a ballot profile (A1, . . . , An), and
suppose that the target committee size k divides n. Let W be
a committee of size k that provides JR, and let � be a positive
integer. For every �-cohesive group of voters N∗ we have

1

|N∗|
∑

i∈N∗
|Ai ∩W | ≥ 1− 1

�
+

1

�n
.
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Proof. Let s = n
k . Since W provides JR, we can find a

voter i1 ∈ N∗ with |Ai ∩W | ≥ 1. If |N∗| > s then the set
N∗\{i1} satisfies |N∗\{i1}| ≥ s, |⋂i∈N∗\{i1} Ai| ≥ �, so,
applying the JR condition to this set, we can conclude that
there is another voter i2 �= i1 that approves some candidate
in W . By repeating this argument, we conclude that at most
s− 1 voters in N∗ approve no candidate in W . Hence,

1

|N∗|
∑

i∈N∗
|Ai ∩W | ≥ |N∗| − s+ 1

|N∗|

= 1− s− 1

|N∗| ≥ 1− s− 1

�s
≥ 1− 1

�
+

1

�n
.

However, for voting rules that satisfy EJR we can obtain
a much stronger guarantee.

Theorem 6. Consider a ballot profile (A1, . . . , An), and
suppose that the target committee size k divides n. Let W
be a committee of size k that provides EJR, and let � be a
positive integer. Then for every �-cohesive group of voters
N∗ ⊆ N it holds that

1

|N∗|
∑

i∈N∗
|Ai ∩W | ≥ �− 1

2
.

Proof. Let s = n
k and let |N∗| = n∗. EJR implies that every

subset of N∗ of size � · s contains a voter who approves
� candidates in W . Let i1 be some such voter. If n∗ >
� · s then the set N∗ \ {i1} satisfies |N∗ \ {i1}| ≥ � · s,
|⋂i∈N∗\{i1} Ai| ≥ �, so, applying the EJR condition to this
set, we can conclude that there is another voter i2 �= i1 that
approves � candidates in W . By repeating this argument, we
can construct a subset N� ⊆ N∗ of size n∗ − � · s+ 1 such
that each voter in N� approves at least � candidates in W .

Now, consider the set N∗ \ N�. We have |N∗ \ N�| =
� · s− 1 = (�− 1) · s+ (s− 1), |⋂i∈N∗\N�

Ai| ≥ �. Thus,
by the same argument, the set N∗ \ N� contains at least s
voters each of which approves at least � − 1 candidates in
W ; let N�−1 be a set of exactly s such voters.

Continuing inductively, we partition N∗ into � + 1 pair-
wise disjoint sets N�, . . . , N1, N0 so that we have |N�| =
|N∗| − �s+ 1, |N�−1| = · · · = |N1| = s, |N0| = s− 1 and
for 0 ≤ j ≤ � each voter in Nj approves at least j candidates
in W .

The average satisfaction of voters in N∗ \N� is at least

1

|N∗ \N�|
∑

i∈N∗\N�

|Ai ∩W | ≥ 1

�s− 1
·
�−1∑

j=1

|Nj | · j

≥ 1

�s
· s(�− 1)�

2
=

�− 1

2
,

whereas the average satisfaction of the voters in N� is at least
�. As the average satisfaction of voters in N∗ is a convex
combination of these two quantities, it is at least �−1

2 .

In contrast, the worst-case guarantee provided by PJR is
not any stronger than the one provided by JR alone.

Example 2. Consider a ballot profile (A1, . . . , An) over a
candidate set C = {c1, . . . , cn, d1, . . . , dn} where Ai =
{d1, . . . , dn, ci} for i ∈ [n]. For k = n, the committee
{c1, . . . , cn} provides PJR (and PR), but the average satis-
faction of the voters in N (which form an n-cohesive group)
is only 1.

We remark, however, that when the group of voters is
“very cohesive” (that is, when all the voters approve ex-
actly the same set of candidates), the average satisfaction
that is guaranteed by PJR and EJR is the same, and much
higher than what is guaranteed by JR. In particular, con-
sider an election in which there is a group of voters N∗,
|N∗| ≥ � · n

k , who all approve precisely the same set of
candidates S, |S| ≥ �. Then every committee that provides
PJR (or EJR) for this election elects at least � members of
S, thereby ensuring that the average satisfaction of voters in
N∗ is at least �. In contrast, a committee that provides JR
may select just one member of S, in which case the average
satisfaction of voters in N∗ will be just 1.

7 Discussion

We consider JR to be an important axiom in a variety of ap-
plications of multi-winner voting. Thus, the result of Sec-
tion 3 shows that RAV should not be ruled out on these
grounds if the target committee size is small. In some appli-
cations, such as, e.g., shortlisting candidates for a job, k ≤ 5
may be a reasonable assumption (Barberà and Coelho 2008;
Elkind et al. 2017). We find it surprising that the threshold
value of k turns out to be 5 rather than 2 or 3; it would be
interesting to see a purely combinatorial proof of this fact.

Our results also highlight a difficulty with the notion of
EJR: this axiom is incompatible with perfect representation,
which is a very desirable property in parliamentary elec-
tions and other settings where fairness is of paramount im-
portance. We therefore propose an alternative to this ax-
iom, Proportional Justified Representation, which is moti-
vated by similar considerations (namely, ensuring that large
cohesive groups of voters are allocated several representa-
tives), but does not conflict with PR. PJR also has further
attractive properties: it is satisfied by several well-known
multi-winner rules (for some of these rules we have to ad-
ditionally require that k divides n), some of which are effi-
ciently computable, and, just like EJR, it provides a justifi-
cation for using the harmonic weight vector (1, 1

2 ,
1
3 , . . . ) as

the default weight vector for PAV.
However, the results of Section 6 can be viewed as an

argument in favor of EJR: every committee that provides
EJR guarantees high levels of average satisfaction to mem-
bers of large cohesive groups, whereas the guarantee of-
fered by committees that provide PJR is, in general, much
weaker. Thus, one can think of EJR as a more prag-
matic requirement: for every ballot profile a committee
that provides EJR (and, as shown by Aziz et al. (2015a;
2017), such a committee is guaranteed to exist) ensures that
members of large cohesive groups are happy on average, at
the cost of possibly ignoring other agents. In some applica-
tions of multi-winner voting such a tradeoff may be accept-
able. Consider, for instance, an academic department where
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members of different research groups pool their funding to
run a departmental seminar. Faculty members have pref-
erences over potential speakers, with members of each re-
search group agreeing on a few candidates from their field.
Choosing speakers so as to please the members of large re-
search groups may be a good strategy in this case, even if
this means that some members of the department will not be
interested in any of the talks. Indeed, if very few talks are of
interest to members of a large group, this group may prefer
to withdraw its contribution to the funding pool and run its
own event series.

The relationship between PR and PJR is more subtle than
it may seem at the first sight: while PR implies PJR at the
level of committees (Theorem 4), this is not the case at the
level of voting rules. Indeed, a voting rule that satisfies PR
may behave arbitrarily when the committee size k does not
divide the number of voters n, whereas the PJR axiom re-
mains applicable in such scenarios. Of course, a voting rule
can satisfy PJR, but not PR: Greedy Monroe, restricted to
instances where k divides n, is a case in point. Thus, these
two axioms are only loosely related. Indeed, none of the vot-
ing rules we consider always satisfies both PJR and PR: the
Monroe rule comes closest, but even this rule only satisfies
PJR when k divides n (see Example 1). We can, however,
construct an artificial voting rule that satisfies both axioms:
given (A, k), this rule checks if there is a committee that pro-
vides PR for (A, k) and, if so, outputs some such committee
(which, by Theorem 4, also provides PJR), and otherwise it
runs PAV. This voting rule can be seen as an analogue of the
Black rule, which is a single-winner rule that outputs a Con-
dorcet winner if one exists and a Borda winner otherwise.
Very recently, Brill et al. (2017) identified a voting rule that
provides both PR and PJR for all values of n and k, namely,
a maximization version of the Phragmén’s rule, which they
refer to as max-Phragmen.

We conclude the paper by mentioning some open ques-
tions that are raised by our work. First, we do not know
what is the complexity of checking whether a given commit-
tee provides PJR; we note that this problem is polynomial-
time solvable for PR (the first part of Theorem 2) and coNP-
complete for EJR (Theorem 11 of Aziz et al.). Also, it would
be useful to derive bounds on average satisfaction provided
by committees that are produced by the voting rules con-
sidered in this paper, both theoretically and empirically. In
particular, it would be interesting to see whether PAV, which
satisfies EJR, performs better in this regard than Monroe or
Greedy Monroe, which only satisfy PJR.
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