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Abstract

We investigate Pareto stability in Social Distance Games,
that are coalition forming games in which agents utilities are
proportional to their harmonic centralities in the respective
coalitions, i.e., to the average inverse distance from the other
agents. Pareto optimal solutions have been already consid-
ered in the literature as outcomes arising from the strategic
interaction of the agents. In particular, they are stable un-
der the deviation of the grand coalition, as they do not per-
mit a simultaneous deviation by all the agents making all of
them weakly better off and some strictly better off. We first
show that, while computing a Pareto stable solution maximiz-
ing the social welfare is NP-hard in bounded degree graphs,
a 2min{Δ,

√
n}-approximating one can be determined in

polynomial time, where n is the number of agents and Δ
the maximum node degree. We then determine asymptotically
tight bounds on the Price of Pareto Optimality for several
classes of social graphs arising from the following combina-
tions: unbounded and bounded node degree, undirected and
directed edges, unweighted and weighted edges.

1 Introduction

Coalition forming games have been largely investigated in
the scientific literature (Drèze and Greenberg 1980; Bogo-
molnaia and Jackson 2002; Elkind and Wooldridge 2009;
Olsen 2012). Hedonic games (HG) (Drèze and Green-
berg 1980) are coalition forming games in which the out-
comes are coalitions and agents have preferences over these
coalitions. HGs where agents are part of a social graph
and utilities depend on agents’ centralities have also been
studied (McSweeney, Mehrotra, and Oh 2012; Elkind and
Wooldridge 2009; Olsen 2012). Fractional Hedonic Games
(FHGs) are a subclass of HGs in which each agent’s utility
is her average value for the members of her coalition (Aziz,
Brandt, and Harrenstein 2014).

Two remarkable centrality measures considered in this
setting are degree and harmonic centrality. Among the var-
ious notions (degree, harmonic, closeness, betweenness,
eigenvector, . . . ), harmonic centrality has been identified as
one of the best indexes, as it is the unique one satisfying a set
of desirable properties (Boldi and Vigna 2014). Harmonic
centrality induces another important class of games related
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to FHGs, called Social Distance Games (SDGs) (Brânzei
and Larson 2011). SDGs are a family of coalitional games
where the agent utility is measured in terms of closeness to
the other members of the coalition. They can be seen as an
extension of FHGs in which agents not directly connected
to an agent i in a given coalition still contribute to her util-
ity according to a properly defined measure proportional to
the inverse of their distances from i. More precisely, given
a social graph G where nodes are agents and edges express
preferences, the utility of agent i in a given coalition P is de-
fined as u(i, P ) = 1

|P |
∑

vj∈P\{vi}
1

dP (i,j) , where dP (i, j)

is the shortest path distance between i and j in the subgraph
of G induced by P . If i and j are disconnected in P , then
dP (i, j) = ∞. Thus, the utility of an agent is given by her
harmonic centrality divided by the size of the coalition, or
in other words by the average inverse distance from all the
other nodes in her coalition.

Stable solutions in general induce suboptimal outcomes.
In this respect, two measures of decrease of performance due
to Nash dynamics are well established in the research com-
munity: the Price of Anarchy (Koutsoupias and Papadim-
itriou 1999) and the Price of Stability (Correa, Schulz, and
Moses 2004; Anshelevich et al. 2008).

As far as Pareto stability is concerned, an analogous mea-
sure has been defined in (Elkind, Fanelli, and Flammini
2016), called Price of Pareto Optimality (PPO for short),
which represents the ratio between the optimal social wel-
fare and the social welfare of the worst Pareto optimal out-
come of that game. While the PPO is the analogue of the
price of anarchy for Nash equilibria, a corresponding mea-
sure related to the price of stability is meaningless, since an
optimal solution is also Pareto optimal.

The various fundamental notions of stability such as core
stability, Nash stability, Pareto stability and individual stabil-
ity have been already investigated in the context of HGs and
FHGs (Brandl, Brandt, and Strobel 2015; Aziz et al. 2015;
Suryapratim, Hideo, and Tayfun 2001; Bogomolnaia and
Jackson 2002; Brânzei and Larson 2009; Gairing and Savani
2010; Elkind, Fanelli, and Flammini 2016; Bilò et al. 2014;
Bilò et al. 2015).

Surprisingly, despite the privileged role of harmonic cen-
trality with respect to the other centrality indices remarked
in (Boldi and Vigna 2014) which elects it as the best central-
ity measure, to the best of our knowledge SDGs have been
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investigated only in the context of core stability (Brânzei and
Larson 2011). In this paper, we investigate Pareto stability in
SDGs.

Related Work Pareto optimality in coalition formation
games has been considered in (Aziz, Brandt, and Harren-
stein 2013), where the authors proved that computing and
verifying Pareto optimal partitions in Hedonic Games is in-
tractable and gave some conditions to achieve tractablity.

Pareto optimality has also been recently pointed out as a
reasonable stability concept in coalition games in (Elkind,
Fanelli, and Flammini 2016). In fact, Pareto optimality in-
duces stable solutions, in the sense that agents feel satisfied
by the fact that there is no other solution in which none of
them is worse off, and some strictly improve. In other words,
Pareto optimal solutions are resilient versus a simultaneous
deviation of the grand coalition.
Elkind et al. focused on Pareto stability in Hedonic Games.
They explicitly defined the Price of Pareto Optimality (PPO)
and estimated it in different classes of HGs: Additively Sepa-
rable Hedonic Games, Fractional Hedonic Games, Modified
Fractional Hedonic Games.

Social Distance Games have been investigated and intro-
duced in (Brânzei and Larson 2011). In particular, it has
been proved that the price of anarchy in this context is
Θ(

√
n), and that the diameter of stable coalitions is upper

bounded by a constant factor of 14. Thus, core stable parti-
tions divide agents into small world coalitions. Moreover, it
is shown that finding an optimal solution is NP-hard, while a
2-approximation can be achieved by decomposing the graph
into diameter two subgraphs.

Our Contribution In this paper we investigate Pareto sta-
bility in Social Distance Games. We show that, while find-
ing a Pareto optimal solution maximizing the social wel-
fare is NP-hard in bounded degree graphs, a 2min{Δ,

√
n}-

approximating one can be determined in polynomial time,
where n is the number of agents and Δ the maximum node
degree. We then provide asymptotically tight bounds on the
PPO for several classes of social graphs, and in particular
for all the following combinations: unbounded and bounded
node degree, undirected and directed edges, unweighted and
weighted edges (see Tables 1 and 2). All the bounds are
asymptotically tight, with the unique exception of weighted
bounded degree undirected graphs.

Undirected Unweighted Weighted
General Θ(n) Θ(nW )

Δ-bounded Θ(Δ) Ω(ΔW ),
O(min{nW,ΔW 2})

Table 1: PPO bounds for undirected graphs, Δ-bounded
stands for max degree Δ and W is the max edge weight.

1.1 Definitions and Notation

We consider coalition formation games characterized by a
finite set of agents V = {1, . . . , n} and an underlying so-

Directed Unweighted Weighted
General Θ(n) Θ(nW )

(1, 1) bounded Θ( n
logn ) Θ( nW

W+logn +W )

(Δ, 1) bounded Θ( n
log logΔ n ) Θ( nW

log logΔ n )

Table 2: PPO bounds for undirected graphs, (Δi,Δo)
bounded stands for max in-degree Δi and max out-degree
Δo, W is the max edge weight.

cial relationship weighted directed graph G = (V,E,w),
where nodes represent agents and arcs (i, j) ∈ E of weight
w(i, j) the degree of preference or friendship that agent i
has for agent j. Without loss of generality we assume that
1 ≤ w(i, j) ≤ W for every arc (i, j) ∈ E, W ≥ 1. We say
that G is unweighted and write G = (V,E) if w(i, j) = 1
for every (i, j) ∈ E, otherwise we say that G is weighted.
Moreover, we say that G is undirected if G is symmetric, that
is if (i, j) ∈ E if and only if (j, i) ∈ E and w(i, j) = w(j, i)
for all (i, j) ∈ E. In such a case we denote each pair of op-
posite arcs (i, j) and (j, i) simply as the edge {i, j}.

A coalition is a non-empty subset of V . The set of all
agents V is called the grand coalition; a coalition of size
1 is called a singleton coalition and its node isolated or a
singleton; a coalition containing at least two agents is called
a proper coalition.

Given a coalition P , we denote by G(P ) the subgraph of
G induced by the agents in P . In the following, for the sake
of simplicity, we will often identify G(P ) directly with the
corresponding coalition P and an agent with its node in G.

A solution or outcome of the game is a partition P =
{P1, . . . , Pk} of the nodes in k ≥ 1 coalitions. Given an
agent i ∈ V , P(i) is the coalition P that contains i.

Let μ(i, G′) be a node centrality measure of node i in a
graph G′ = (V ′, E′). Two basic notions of centrality have
been largely investigated in the literature, called degree cen-
trality and harmonic centrality, respectively. In the former,
μ(i, G′) is given by the node degree of i in G′, while in the
latter also nodes not directly connected to i contribute to her
utility in an inverse manner with respect to their distances.
Namely, μ(i, G′) =

∑
j∈V ′\{i}

1
dG′ (i,j) , where dG′(i, j) is

the distance between i and j in G′.
The utility of an agent i ∈ V in a given coalition P is a

suitable function of her node centrality μ(i, G(P )) (or sim-
ply μ(i, P )) in the subgraph G(P ) induced by P . More pre-
cisely, u(i, P ) = μ(i,P )

|P | . With abuse of notation we also de-
note the utility of i in a given solution P simply as u(i,P)
instead of u(i,P(i)).

According to the considered centrality measure, different
classes of coalition formation games arise. Fractional Hedo-
nic Games (FHG) defined in (Aziz, Brandt, and Harrenstein
2014) correspond to the degree centrality, while Social Dis-
tance Games (SDG) of (Brânzei and Larson 2011) to the har-
monic centrality. We denote by SDG(G) (resp. FHG(G)
the Social Distance Game (resp. Fractional Hedonic Game)
instance induced by graph G.

Although degree and harmonic centralities are strongly
related, there can be substantial differences, even in a sim-
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ple star graph G = (V,E) with V = {1, . . . , n}, E =
{(1, i)|2 ≤ i ≤ n}. In fact, in FHG(G) each leaf has util-
ity 1/n, while in SDG(G) each leaf has utility 1/2, that is
comparable to the one in complete graphs.

The social welfare of a partition P is defined as
SW (P) =

∑n
i=1 u(i,P). A partition P∗ is optimal if

SW (P∗) ≥ SW (P) for every other partition P . We say
that P Pareto dominates P ′ if u(i,P) ≥ u(i,P ′) for every
i ∈ V and u(i,P) > u(i,P ′) for some i ∈ V . A partition P
is Pareto optimal if there is no partition P ′ that Pareto dom-
inates P . Clearly an optimal partition is also Pareto optimal,
but the opposite does not hold in general.

We call a Pareto optimal solution stable, as it can be seen
as an outcome of the game that is stable under the deviation
of the grand coalition. More precisely, it does not allow a si-
multaneous deviation by all the agents that makes all agents
weakly better off and some agents strictly better off.

Let PO be the set of all Pareto optimal partitions and let
P∗ be an optimal partition.

Definition 1.
Given a social graph G, the Price of Pareto Optimality
(PPO) of G is defined as PPO(G) = maxP∈PO

SW (P∗)
SW (P) .

Given a family of graphs G, the Price of Pareto Optimality
of G is PPO(G) = maxG∈G PPO(G).

In the following we will always implicitly assume that the
social graph G is weakly connected, otherwise SDG(G) can
be split in independent games defined on its weakly con-
nected components.

Starting from the above assumption, the following facts
concerning SDGs will be often exploited in the next sec-
tions.

Fact 1. Let P be a stable partition for SDG(G). Then the
following properties hold:

1. P must contain at least one proper coalition;
2. every proper coalition of P induces a weakly connected

subgraph;
3. 1

2W ≤ SW (P) < n; moreover, if G is undirected,
SW (P) ≥ 1

W ;
4. the isolated nodes in P form an independent set in G.

Proof. Properties 1, 2 and 4 can be easily checked, thus we
focus only on the third property. P has at least a proper
weakly connected coalition P (by properties 1, 2). Then, P
contains at least |P | − 1 arcs and since every arc (i, j) in P
increases the utility of i at least by 1

W |P | , the overall social
welfare of P , which is at least equal to the sum of the utili-
ties of the agents in P , is at least (|P |−1)

W |P | ≥ 1
2W . Similarly, if

G is undirected, then SW (P) ≥ 1
W holds by observing that

an edge {i, j} increases at least by 1
W |P | the utilities both

of i and j, so that SW (P) ≥ 2(|P |−1)
W |P | ≥ 1

W . Moreover, in
every case SW (P) < n, as every agent i is at distance at
least 1 from all the other agents in P(i), so that her utility is
u(i,P) ≤ |P(i)|−1

|P(i)| < 1.

Notice that Definition 1 is well posed, as for any stable
solution SW (P) > 0 always holds.

In the following we will denote by G (resp. −→G ) the family
of all the unweighted undirected (resp. directed) graphs, by
G(Δ) the family of the unweighted undirected graphs with
maximum node degree bounded by Δ ≥ 1, by −→G (Δi,Δo)
the family of the undirected graphs with in-degree bounded
by Δi ≥ 1 and out-degree bounded by Δo ≥ 1. The cor-
responding families for weighted graphs with arc weights
between 1 and W are denoted by GW , −→G W , GW (Δ) and−→G W (Δi,Δo). Again, we implicitly assume that all the
graphs in such families are weakly connected.

2 Computational Complexity Results

As shown in (Brânzei and Larson 2011), determining an op-
timal solution P∗, i.e., maximizing SW (P∗), is NP-hard.
We now extend such a result to bounded degree graphs (due
to space limitations the proof is omitted).

Theorem 1. The problem of determining an optimal solu-
tion for any G ∈ G(6) is NP-hard.

Notice that, since the optimum is also stable, this also
implies the hardness of finding the best stable solution in
bounded degree graphs.

Stable solutions suitably approximating optimal ones can
be determined according to the following algorithm:

P ← ∅, X = V , G(X) subgraph induced by X , i = 1;
while X 
= ∅ do

ui ← node of maximum degree in G(X);
Nui ← set containing ui and its neighbors in G(X);
P ← P ∪ {Nui

}, X ← X \Nui
, i← i+ 1;

G(X) subgraph induced by X;
end

Theorem 2. Given any G ∈ G(Δ), Δ ≥ 1, the above algo-
rithm constructs a r-approximating stable solution P with
r = 2min{Δ,

√
n}, i.e., with SW (P∗)

SW (P) ≤ r.

Proof. In the i-th iteration of the algorithm, once the node
ui of maximum degree xi in the residual graph is selected,
a new proper coalition Pi of size xi + 1 is formed, in which
ui is called center. Such a coalition contributes xi

2 + xi

xi+1

to the social welfare. Let then P be the solution determined
by the algorithm, and P1, . . . , Pk be the proper coalitions
in P . The formation of Pi in iteration i might leave some
agents disconnected, that is alone in a singleton coalition, as
their neighbors belong only to Pi or to the previously formed
coalitions. Since centers are chosen in non-increasing de-
gree, the number of disconnected agents created by Pi is at
most xi(xi − 1). The overall number of nodes that are in Pi

or that are disconnected by Pi, that is belonging to Nui
, is

thus at most x2
i + 1. Since the sets Nui

form a partition of
V , we thus have that

∑k
i=1(x

2
i + 1) = n.

As the optimal social welfare is trivially upper bounded
by n, it is enough to show that the algorithm achieves social
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welfare is at least max
{√

n
2 , n

2Δ

}
. By the above remarks,

SW (P) =
∑k

i=1(
xi

2 + xi

xi+1 ), subject to
∑

(x2
i + 1) = n.

It is possible to show that SW (P) is minimized for
k = 1, achieving a social welfare at least

√
n− 1/2 +√

n− 1/(
√
n− 1 + 1) ≥ √

n/2.
Considering also the degree bound, we have that∑k
i=1(

xi

2 + xi

xi+1 ) is minimized when xi = Δ. In this case,
the number of iterations is at least �n/(Δ2 + 1)
, hence
SW (P) ≥ n

Δ2+1 (
Δ
2 + Δ

Δ+1 ) ≥ n
2Δ .

As far as stability of the returned solution is concerned,
notice that in any other solution the utility of the center xi

with minimum i having a different coalition has a strictly
smaller utility.

Notice that, if stability is not a concern, it is possible to
efficiently determine a solution that could possibly be un-
stable, in which every agent has utility at least 1/2. We can
obtain such a solution according to the following procedure.
Consider each connected component P . We can construct a
tree T spanning the nodes of P . Such a tree can be parti-
tioned in stars by means of the following iterative process:
i) if T is a star we are done; ii) if T is not a star consider the
deepest leaves (starting from a given root node) that have a
common parent and form a star with all such nodes, delete
the star from the current tree T and iterate from step i). In
this way, all the agents in the new subcoalitions identified by
the stars have utility at least 1

2 .
Notice also that this guarantees the existence of a

stable solution, dominating the above one, that is a
2−approximation of the optimal one and guarantees a nice
level of fairness, that is in which all the agents have utility
at least 1/2. However, its determination in polynomial time
remains an open question.

As a final remark, although we can achieve a
2min{Δ,

√
n}-approximating stable solution, as we will

see, if agents are allowed to freely form their coalitions, they
can end up in stable solutions achieving a worse approxima-
tion.

3 Undirected Graphs

In this section we provide an asymptotically tight bound of
Θ(Δ) on the PPO for the family of the bounded degree
graphs G(Δ) for any Δ ≥ 1, showing that the maximum de-
gree Δ is the crucial parameter in determining the price of
Pareto optimality of SDGs. Notice that this also gives a cor-
responding Θ(n) result for general undirected graphs, just
considering Δ = n− 1 and observing that G = G(Δ).

Let us first introduce some useful lemmas.

Lemma 1. Given G ∈ G(Δ) and a stable solution P for
G, in every proper coalition P of P there exists at least one
agent i having utility u(i,P) ≥ 1

2 .

Proof. If every node of a given coalition P has utility < 1
2 ,

then P is not be stable, as it is possible to obtain a strictly
dominating solution by using the 2−approximation algo-
rithm shown before, that guarantees utility at least 1

2 to each
node of the coalition.

Let i be an agent with utility at least 1/2. We suitably
bound agent utilities according to their distances from i.

Lemma 2. Given G ∈ G(Δ), a Pareto stable solution P
and any proper coalition P of P , let i be an agent in P with
utility at least 1

2 . Then, every agent j ∈ P at distance t from
i has utility at least 1

2(t+1) .

Proof. Let j be a generic node in P at distance t from i, D
be the diameter of P and nd be the number of nodes at dis-
tance d from i in P . Since all the nodes at distance d from
i are at distance at most d + t from j, and i is at distance t

from j, u(j,P)
u(i,P) ≥

∑D
d=1

nd
d+t

|P |
∑D

d=1
nd
d

|P |

=
∑D

d=1

nd
d+t∑D

d=1

nd
d

≥ 1
t+1 , that im-

plies u(j,P) ≥ u(i,P)
t+1 ≥ 1

2(t+1) .

As a consequence, the following lemma holds.

Lemma 3. Given a stable solution P and a proper coalition
P of P , the overall utility of the nodes in P is at least |P |

8 .

Proof. By Lemma 1,
∑D

d=1

nd
d

1+
∑D

d=1 nd
= u(i,P) ≥ 1

2 , that is∑D
d=1

nd

d >
1+

∑D
d=1 nd

2 . Therefore, by applying Lemma 2,
SW (P) ≥ 1

2 +
∑D

d=1(nd · 1
2 · 1

d+1 ) ≥ 1
2 + 1

4 ·∑D
d=1

nd

d ≥
1
2 + 1

4 · 1+
∑D

d=1 nd

2 ≥ |P |
8 .

We are now able to prove the final theorem.

Theorem 3. PPO(G(Δ)) = Θ(Δ).

Proof. Consider any graph G ∈ G(Δ) and a stable partition
P for G. Let I be the set of the isolated nodes in P , that
is belonging to singleton coalitions, and P1, ...., Pk be the
proper coalitions in P . By Lemma 3 the social welfare of P
is SW (P) ≥ |P1|+...+|Pk|

8 .
On the other hand, since every non isolated node can

be adjacent to at most Δ − 1 isolated nodes in I , |I| ≤
(Δ − 1) · (|P1| + . . . + |Pk|), so that by Fact 1 the so-
cial welfare of any optimal solution P∗ is SW (P∗) <
|I|+ |P1|+ . . .+ |Pk| ≤ Δ(|P1|+ . . .+ |Pk|). Therefore,
SW (P∗)
SW (P) ≤ Δ(|P1|+...+|Pk|)

|P1|+...+|Pk|
8

= 8Δ.

In order to derive a corresponding lower bound, we ob-
serve that there exists a Δ-bounded degree graph G ∈ G(Δ)
for which PPO(G) > 3

10Δ = Ω(Δ). Such a graph is de-
picted in Figure 1, the number of nodes is Δ+ 2.

a) b) c)

123 123 123

Figure 1: PPO lower bound in undirected graphs: a) original
graph, b) a Pareto stable solution, c) optimal solution.
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4 Directed Graphs

We now analyze the price of Pareto optimality of SDGs for
the family −→G of the directed graphs.

In the general case the following theorem holds.

Theorem 4. PPO(
−→G ) = Θ(n).

Proof. The undirected lower bound of Ω(n) for the fam-
ily of the undirected graphs G directly applies to directed
graphs, as an undirected graph corresponds to a special case
of directed graph, that is to a symmetric directed graph, so
that G ⊆ −→G . For what concerns the upper bound, by Fact 1,
given any stable solution P and optimal partition P∗ for a
graph G ∈ −→G , SW (P∗)

SW (P) < n
1/2 = 2n.

Unfortunately, unlike the undirected case, the price of Pa-
reto optimality can be very high even in the very restricted
scenario of directed graphs with in-degree and out-degree
bounded by 1.

Theorem 5. PPO(
−→G (1, 1)) = Θ( n

logn ).

Proof. As far as the lower bound is concerned, notice that
a connected (1, 1)-bounded degree directed graph G ∈−→G (1, 1) can be either a ring or a path. In both cases, a sta-
ble solution is given by the partition Pg consisting only of
the grand coalition. In fact, as every node has out-degree 1,
any other partition P would yield a null utility to at least
one node having non null utility in Pg , and thus would not
dominate Pg . Since in Pg every node i can have at most one
node at any given distance d, 1 ≤ d ≤ n−1, the achieved so-
cial welfare is SW (Pg) =

∑n
i=1 u(i,Pg) ≤ n

∑n−1
d=1

1
d

n =
Hn−1 ≤ 1 + lnn, where Hn is the n-th harmonic number.

Assuming an even number n of agents, consider the so-
lution constructed by selecting a perfect matching M in G
and forming for each arc e in M a coalition containing the
two endpoints of e. Since every coalition has an overall util-
ity of 1/2, yielding an overall social welfare n/4, we obtain
(SW (P∗))/(SW (Pg)) ≥ (n/4)/(Hn), proving the lower
bound.

For what concerns the upper bound, consider any stable
solution P and let P1, . . . Pk be the proper coalitions in P .
By Fact 1, each Pj induces a weakly connected subgraph
and thus it is a directed path or a directed cycle. Then, since
at least � |Pj |

2 
 nodes in Pj have one node at distance d for
every fixed d such that 1 ≤ d ≤ � |Pj |

2 �, the overall utility

of Pj is at least (� |Pj |
2 
 · H� |Pj |

2 �)/|Pj | ≥ H|Pj |
4 . Now let

I be the set of the isolated nodes in P . Agents in I form
an independent set in G (Fact 1), hence |I| ≤ k + 1. Then,
SW (P) ≥ H|P1|

4 + . . .+
H|Pk|

4 ≥ Hn−(k+1)

4 > Hn

8 , and the
claim follows by observing that the optimal social welfare is
at most n/4.

An even worse result holds as soon as the maximum in-
degree increases, even if bounded by 2.

Lemma 4. For any Δ > 1, PPO(
−→G (Δ, 1)) =

Ω( n
log logΔ n ).

Δ

Δ2

Δh−1

(a)

Δ

Δ2

Δh−1

(b)

Figure 2: PPO lower bound in bounded directed graphs. (2a)
Pareto stable (2b) optimal solution

Proof. Consider the directed tree in Figure 2.
A stable solution is represented in Figure 2a and corre-

sponds to the partition P with a coalition P containing all
the nodes except the leaves, plus a singleton coalition for
each leaf. In fact, consider any other partition P ′. Since ev-
ery node has out-degree 1, if P ′ has a coalition intersecting
P and not containing P , at least a node with non null utility
in P would have utility 0 in P ′. Moreover, if P has a coali-
tion containing P and some leaves, all the nodes in P have
strictly smaller utility in P ′. Thus P ′ does not dominate P .

Let then h be the height of the tree. Each node (except the
leaves) has Δ children. This means that at level 1 we have
Δ nodes, at the second level Δ2 nodes and so forth, so that
the number of leaves, which is equal to the number of nodes
in the previous level h− 1 is Δh−1.

Therefore, the total number of nodes is n =
∑h−1

l=0 (Δ)l+
Δh−1 ≥ Δh−1, so that h ≤ 1 + logΔ n.

Thus, the social welfare of P is SW (P) ≤
∑h−1

l=1 ΔlHl

n−Δh−1 ≤
(n−Δh−1)(1+lnh)

n−Δh−1 = 1 + lnh < 2 + ln logΔ n, where for
every integer l, l ≥ 1, Hl is the l-th harmonic number.

Consider then the partition shown in Figure 2b, where the
Δh−1 leaves achieve utility 1

2 and all the other nodes utility
0. Then, the optimal social welfare is at least Δh−1

2 ≥ n
6 ,

and we can conclude that the lower bound on the PPO in
bounded degree directed graphs is Ω( n

log logΔ n ).

We now provide an asymptotically matching upper bound
exploiting the following lemma, whose proof is omitted.

Lemma 5. Given any G ∈ −→G (Δ, 1), a stable solution P
and a coalition Pj ∈ P , the overall utility of Pj is at least
equal to the one of a Δ-ary complete directed tree Tj defined
on the nodes in Pj .

Theorem 6. For any Δ > 1, PPO(
−→G (Δ, 1)) =

Θ( n
log logΔ n ).
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Proof. By Lemma 4, it suffices to determine an asymptoti-
cally matching upper bound. To this aim, consider any sta-
ble solution P and let P1, . . . Pk be the proper coalitions in
P . By the stability of P and Fact 1, every Pj is weakly
connected. By Lemma 5, the overall utility of each Pj is
at least equal to the one of the tree Tj in the claim, that
is at least the overall utility reached by the at least |Pj |/2
nodes in the last 2 levels (recall that Δ ≥ 2), i.e., at least
|Pj |Hh−1

2|Pj | ≥ lnh
2 ≥ ln logΔ |Pj |

2 .

Let q be the number of isolated nodes in P . Then q +
|P1|+. . .+|Pk| = n, and since by Fact 1 isolated nodes form
an independent set in G and every non isolated node is adja-
cent to at most Δ isolated nodes, q ≤ Δ · (|P1|+ . . .+ |Pk|),
so that |P1| + . . . + |Pk| = n − q ≥ n −Δ · (|P1| + . . . +
|Pk|), i.e. |P1| + . . . + |Pk| ≥ n

Δ+1 . Finally, SW (P) ≥
ln logΔ |P1|

2 + . . . + ln logΔ |Pk|
2 ≥ ln logΔ(|P1|+...+|Pk|)

2 ≥
ln logΔ

n
Δ+1

2 = Ω(log logΔ n).
The claim then follows by observing that the social

welfare of an optimal solution P∗ is at most n, so that
SW (P∗)
SW (P) = O

(
n

log logΔ n

)
.

We now prove a counterintuitive property concerning
SDGs in directed graphs. In particular, one might think that,
as in undirected graphs, the worst case stable solution, that is
yields the highest price of Pareto optimality, can be achieved
when a large number of nodes remains isolated. The follow-
ing lemma states that instead this is not the case, as the ex-
istence of such stable solutions immediately implies a lower
PPO for the corresponding instances.

Theorem 7. Given any Δ > 1, a (Δ, 1)-bounded degree di-
rected graph G ∈ −→G (Δ, 1) and a stable solution P having
α ·n isolated nodes, 0 ≤ α < 1, the price of Pareto optimal-
ity of SDGs on G is PPO(G) = O

(
(1− α) · n

ln logΔ n

)
.

Proof. Consider any stable solution P for G. As shown in
the previous theorem, SW (P) ≥ Ω(log logΔ n).

In order to prove the claim, it is then sufficient to show
that an optimal partition P∗ for G has social welfare
SW (P∗) = O((1 − α) · n). Let P ∗

1 , . . . , P
∗
k be the proper

coalitions of P∗.
If α ≤ 1

2 then the theorem trivially holds. Assume then
α > 1

2 . Let I (resp. N ) be the set of the isolated (resp. non
isolated) nodes in P . By Fact 1, nodes in I form an inde-
pendent set, and since the node out-degree is at most 1, the
number of nodes of in-degree 0 in I is at least |I|−|N | = α·
n−(1−α)n = (2α−1)n. Let I ′ ⊆ I be such a subset of the
nodes in I of in-degree 0, and let Ij = I ′ ∩ P ∗

j , 1 ≤ j ≤ k,
be the subset of the nodes of I ′ contained in coalition P ∗

j of
P . Since no node in P ∗

j can reach any node in Ij , the over-

all utility of P ∗
j is at most

|P∗
j |·(|P∗

j |−|Ij |)
|P∗

j | = |P ∗
j | − |Ij |. Let

I0 = I ′\(I1∪ . . .∪Ik). Then, since P ∗
1 ∪ . . .∪P ∗

k = V −I0,
SW (P∗) ≤ ∑k

j=1(|P ∗
j | − |Ij |) = n− |I0| −

∑k
j=1 |Ij | =

n−∑k
j=0 |Ij | = n− |I ′| ≤ n− (2α− 1)n = 2(1−α)n =

O((1− α)n), hence the claim.

5 Weighted Graphs

Due to space limitations, in this section we briefly sketch
how to extend our results to the weighted case.

For general undirected bounded degree weighted graphs,
an Ω(ΔW ) lower bound can be obtained by extending the
unweighted worst case instance in Figure 1, setting the
weights of edges (2, 3) and (1, 2) to W and 1

2W + ε, ε < 3
4 ,

respectively. As in the unweighted case, this result can be ad-
apted to general graphs, showing a lower bound of Ω(nW ).

It is also possible to extend the unweighted case proof to
show an upper bound of O(min{ΔW 2, nW}) when Δ > 1,
which provides also an asymptotically matching result for
general graphs.

In the directed case, the proofs for unbounded degree
weighted graphs can be suitably adapted to get a PPO of
Θ(nW ) in the general case. In fact, the lower bound of
the undirected weighted case directly applies, as an undi-
rected graph is a special case of directed graph, and the up-
per bound derives by applying Fact 1.

For bounded degree graphs, the following theorem holds.

Theorem 8. PPO(
−→G W (Δ, 1)) = Θ( nW

W+logn +W ) if Δ =

1 and PPO(
−→G W (Δ, 1)) = Θ( nW

log logΔ n ) if Δ > 1.

Proof. (Sketch) The proof of the (1, 1) case is rather tech-
nical. The lower bound is given by a directed path in which
arc weights are alternatively equal to 1 and W . For the up-
per bound, first of all the optimal social welfare can be suit-
ably bounded by showing that, given any G ∈ −→G W (1, 1)
and optimal partition P∗ for G, SW (P∗) ≤ ∑

e∈E
1
we

,
where we is the weight arc e ∈ E. Then, since every proper
coalition Pi of a stable solution P induces a directed path
or a directed cycle, it is possible to derive that u(Pi) =

Ω
(
(
∑

e∈Ei

1
we

)W+log |Pi|
|Pi|W

)
, where Ei is the set of the arcs

of the subgraph induced by Pi. Finally, if P1, . . . , Pk are the
proper coalitions of P , SW (P) = u(P1) + · · · + u(Pk) ≥
1
W ·∑k

i=1

(
ci · W+log |Pi|

|Pi|
)

, where ci =
∑

e∈Ei

1
we

, and af-

ter some mathematical steps, SW (P) = Ω

( ∑
e∈E

1
we

nW
W+log n+W

)
.

The lower bound for the (Δ, 1)-bounded case with Δ > 1
is given by the same construction of Figure 2, letting all the
weights of the arcs outgoing from the leaves be equal to 1,
while all the others equal to W . An asymptotically match-
ing upper bound comes strictly mimicking the correspond-
ing proof of the unweighted case.

6 Conclusions and Open Questions

We investigated the price of Pareto optimality SDGs, prov-
ing asymptotically tight bounds for several topologies.

An interesting open question concerns the determination
of the PPO for the family of the directed graphs with in- and
out-degree bounded by Δ. In the unweighted case it would
be nice to determine the minimum value of Δ leading to the
worst possible Ω(n) lower bound on the PPO, and similarly
to Ω(nW ) in the weighted case. Finally, it would be nice to
see if we can achieve a constant factor approximation of the
stable optimal solution in general graphs.
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