
Multiwinner Approval Rules as Apportionment Methods

Markus Brill
University of Oxford
mbrill@cs.ox.ac.uk

Jean-François Laslier
CNRS and Paris School of Economics

jean-francois.laslier@ens.fr

Piotr Skowron
University of Oxford

piotr.skowron@cs.ox.ac.uk

Abstract

We establish a link between multiwinner elections and ap-
portionment problems by showing how approval-based mul-
tiwinner election rules can be interpreted as methods of ap-
portionment. We consider several multi-winner rules and
observe that some, but not all, of them induce apportion-
ment methods that are well established in the literature and
in the actual practice of proportional representation. For in-
stance, we show that Proportional Approval Voting induces
the D’Hondt method and that Monroe’s rule induces the
largest remainder method. We also consider properties of ap-
portionment methods and exhibit multiwinner rules that in-
duce apportionment methods satisfying these properties.

1 Introduction

The study of preference aggregation mechanisms—in par-
ticular, voting rules—is an important part of multiagent sys-
tems research (e.g., Conitzer 2010). Recent years have wit-
nessed an increasing interest in multiwinner elections. In
this setting, there is a set of agents who entertain prefer-
ences over a set of alternatives. Based on these prefer-
ences, the goal is to select a committee, i.e., a (fixed-size)
subset of the alternatives. Preferences are usually specified
either as rankings, i.e., complete linear orders over the set
of all alternatives (e.g., Elkind et al. 2014), or as approval
votes, i.e., yes/no assessments of all the alternatives (e.g.,
Kilgour 2010). We are particularly interested in the latter
variant, in which each agent can be thought of as specifying
a subset of alternatives that are “acceptable” for that agent.

The decision scenario modeled by multiwinner
elections—selecting a subset of objects from a poten-
tially much larger pool of available objects—is ubiquitous:
consider, e.g., picking players to form a sports team,
selecting items to display in an online shop, choosing
the board of directors of a company, etc. Many of these
scenarios are reminiscent of parliamentary elections, a topic
that has been studied in great detail by political scientists.
In a parliamentary election, the candidates are traditionally
organized in political parties and the election determines
how many parliamentary seats a party is allocated.

Under so-called proportional representation systems with
“closed party lists,” a voter is allowed to give her vote to one
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and only one party.1 In a sense, this forces the voter to ap-
prove all candidates from one party and no candidates from
any other party. Counting such ballots, and deciding how
many candidates are elected from each list, is an apportion-
ment problem. Any apportionment problem can thus be seen
as a very simple approval voting instance: all voters approve
all the candidates from their chosen party, and only those.

The present paper formally establishes and explores this
analogy between multiwinner elections and apportionment
problems. We show how an apportionment problem can
be phrased as an instance of an approval-based multiwinner
election, thereby rendering multiwinner rules applicable to
the apportionment setting. As a result, every approval-based
multiwinner rule induces a method of apportionment. Ex-
ploring this link between multiwinner rules and apportion-
ment methods is interesting for at least two reasons. First,
observing what kind of apportionment method a given mul-
tiwinner rule induces yields new insights into the nature of
the rule. Second, every multiwinner rule inducing a given
apportionment method can be seen as an extension of the
apportionment method to a more general setting where can-
didates have no party affiliations (or party affiliations are ig-
nored in the election process).

After formally establishing the link between approval-
based multiwinner rules and apportionment methods, we
consider several multiwinner rules and observe that they
induce (and extend) apportionment methods that are well-
established in the apportionment literature. For instance,
Proportional Approval Voting induces the D’Hondt method
(aka Jefferson method) and Monroe’s rule induces the
largest remainder method (aka Hamilton method). We
also consider properties of apportionment methods (such as
lower quota or the Penrose condition) and exhibit multiwin-
ner rules that induce apportionment methods satisfying these
properties.

The paper is organized as follows. Section 2 introduces
both the apportionment problem and the multiwinner elec-
tion setting. Section 3 shows how approval-based multiwin-

1Some countries use “open-list” systems, leaving some flexi-
bility to the voters by allowing them to vote for specific candidates
inside the chosen party list. In some (rare) cases, voters are given
even more freedom. Under so-called “panachage” systems, some-
times used in Luxembourg and in France, voters can vote for can-
didates from different parties.
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ner rules can be employed as apportionment methods, and
contains several results related to proportional representa-
tion. Section 4 is devoted to non-proportional representation
in the form of degressive proportionality and thresholds, and
Section 5 concludes. All proofs can be found in the full ver-
sion of this paper (Brill, Laslier, and Skowron 2016).

2 The Apportionment Problem and

Approval-Based Multiwinner Elections

In this section we provide the formal setting of the appor-
tionment problem and of approval-based multiwinner elec-
tions, and we define several apportionment methods and
multiwinner rules. (Examples illustrating these methods can
be found in the full version of this paper.) For a natural num-
ber t ∈ N = {1, 2, . . .}, let [t] denote the set {1, 2, . . . , t}.

2.1 Apportionment Methods

In the apportionment setting, there is a finite set of voters
and a finite set of p parties P1, . . . , Pp. Every voter votes
for exactly one party, and for each i ∈ [p], we let vi denote
the number of votes that party Pi receives, i.e., the number
of voters who voted for Pi. The goal is to allocate h (parlia-
mentary) seats among the parties. Formally, an instance of
the apportionment problem is given by a tuple (v, h), where
v = (v1, . . . , vp) ∈ N

p is the vote distribution and h is the
number of seats to distribute. We use v+ to denote the total
number of votes, v+ =

∑p
i=1 vi. Throughout this paper, we

assume that vi > 0 for all i ∈ [p] and h > 0. An apportion-
ment method M maps every instance (v, h) to a nonempty
set2 M(v, h) of seat distributions. A seat distribution is a
vector (x1, . . . , xp) ∈ N

p
0 with

∑p
i=1 xi = h. Here, xi cor-

responds to the number of seats allocated to party Pi.

Divisor Methods A rich and very well-studied class of ap-
portionment methods is defined via divisor sequences.

Definition 1. Let d = (d(0), d(1), d(2), . . .) be a sequence
with 0 < d(j) ≤ d(j + 1) for all j ∈ N0. The divisor
method based on d is the apportionment method that maps a
given instance (v, h) to the set of all seat allocations that can
result from the following procedure: Start with the empty
seat allocation (0, . . . , 0) and iteratively assign a seat to a
party Pi maximizing vi

d(si)
where si is the number of seats

that have already been allocated to party Pi.

Divisor methods are often defined in a procedurally dif-
ferent, but mathematically equivalent way (see Balinski and
Young 1982, Proposition 3.3).3 Two prominent divisor
methods are due to D’Hondt and Sainte-Laguë.

Definition 2 (D’Hondt method). The D’Hondt method (aka
Jefferson method or Hagenbach-Bischoff method) is the di-
visor method based on d = (1, 2, 3, . . .). Therefore, in each

2In order to accomodate for symmetric instances, apportion-
ment methods are allowed to output several seat distributions.

3Divisor methods with d(0) = 0 can also be defined. For such
methods, which Pukelsheim (2014) calls impervious, the conven-
tions vi

0
= ∞ and vi

0
≥ vj

0
⇔ vi ≥ vj are used. Examples of

impervious divisor methods are the methods due to Huntington and
Hill, Adams, and Dean (see Balinski and Young 1982).

round, a seat is allocated to a party Pi maximizing vi
si+1 ,

where si is the number of seats that have already been allo-
cated to party Pi.
Definition 3 (Sainte-Laguë method). The Sainte-Laguë
method (aka Webster method, Schepers method, or method
of major fractions) is the divisor method based on d =
(1, 3, 5, . . .). Therefore, in each round, a seat is allocated
to a party Pi maximizing vi

2si+1 , where si is the number of
seats that have already been allocated to party Pi.

Largest Remainder Method The largest remainder
method is the most well-known apportionment method that
is not a divisor method. Recall that v+ =

∑p
i=1 vi denotes

the total number of votes.
Definition 4 (Largest remainder method). The largest re-
mainder method (aka Hamilton method or Hare-Niemeyer
method) is defined via two steps. In the first step, each party
Pi is allocated � vih

v+
� seats. In the second step, the remain-

ing seats are distributed among the parties so that each party
gets at most one of them. The parties are sorted according
to the remainders vih

v+
− � vih

v+
� and the remaining seats are

allocated to the parties with the largest remainders.

Properties of Apportionment Methods The literature on
fair representation has identified a number of desirable prop-
erties of apportionment methods (Balinski and Young 1982;
Pukelsheim 2014). In this paper, we focus on properties re-
quiring that the proportion of seats in the resulting appor-
tionment should reflect, as close as possible, the proportion
of the votes cast for respective parties.
Definition 5. An apportionment method respects lower
quota if, for every instance (v, h), each party Pi gets at
least � vih

v+
� seats. An apportionment method respects quota

if each party Pi gets either � vih
v+

� or � vih
v+

� seats.

Clearly, any apportionment method respecting quota also
respects lower quota. It is well known that the largest re-
mainder method respects quota, but no divisor method does.
Moreover, the D’Hondt method is the only divisor method
respecting lower quota (Balinski and Young 1982).

2.2 Approval-Based Multiwinner Election Rules

We now introduce the setting of approval-based multiwinner
elections. We have a finite set N = {1, 2, . . . , n} of voters
and a finite set C = {c1, c2, . . . , cm} of candidates. Each
voter expresses their preferences by approving a subset of
candidates, and we want to select a committee consisting of
exactly k candidates. We will refer to k-element subsets of
C as size-k committees, and we let Ai ⊆ C denote the set
of candidates approved by voter i ∈ N . Formally, an in-
stance of the approval-based multiwinner election problem
is given by a tuple (A, k), where A = (A1, A2, . . . , An) is
a preference profile and k is the desired committee size. An
approval-based multiwinner election rule (henceforth multi-
winner rule) R is a function that maps every instance (A, k)
to a nonempty set4 R(A, k) of size-k committees. Every

4In order to accomodate for symmetric instances, multiwinner
rules are allowed to output multiple committees.

415



element of R(A, k) is referred to as a winning committee.

OWA-Based Rules A remarkably general class of multi-
winner election rules is defined via ordered weighted aver-
aging (OWA) operators (Thiele 1895; Yager 1988; Skowron,
Faliszewski, and Lang 2015). A weight sequence is an infi-
nite sequence of real numbers w = (w1, w2, . . .).

Definition 6 (OWA-based rules). Consider a weight se-
quence w = (w1, w2, . . .), a subset S ⊆ C of candidates,
and a voter i. The satisfaction of i from S given w is de-
fined as uw

i (S) =
∑|Ai∩S|

j=1 wj . Given an instance (A, k)
of the multiwinner election problem, the w-based OWA rule
selects all size-k committees S maximizing the total satis-
faction

∑
i∈N uw

i (S).

Note that multiplying a weight sequence w by a positive
constant does not change the way in which a rule operates.
Several established multiwinner election rules can be de-
scribed as OWA-based rules.

Definition 7. The Chamberlin–Courant rule is the OWA-
based rule with weight sequence wCC = (1, 0, 0, . . .).

The Chamberlin–Courant rule is usually defined in the con-
text of elections where voter preferences are given by ranked
ballots (Chamberlin and Courant 1983); our definition is a
straightforward adaption to the approval setting.

Definition 8. Proportional Approval Voting (PAV) is the
OWA-based rule with weight sequence wPAV = (1, 1

2 ,
1
3 , . . .).

Though sometimes attributed to Forest Simmons, PAV
was already proposed and discussed by the Danish poly-
math Thorvald N. Thiele in the 19th century (Thiele 1895;
Janson 2016). According to PAV, each voter cares about the
whole committee, but the marginal gain of satisfaction of an
already satisfied voter from an additional approved commit-
tee member is lower than the gain of a less satisfied voter.
The reason for using the particular weight sequence wPAV
is not obvious. Aziz et al. (2017) and Sánchez-Fernández
et al. (2017) provide compelling arguments by showing that
wPAV is the unique weight sequence w such that the w-based
OWA rule satisfies certain axiomatic properties. Theorem 2
in the present paper can be viewed as an additional—though
related—argument in favor of the weight sequence wPAV.

Definition 9. The top-k rule is the OWA-based rule with
weight sequence wtop-k = (1, 1, 1, . . .).

According to the top-k rule, the winning committee con-
tains the k candidates that have been approved by the great-
est number of voters.

Sequential OWA-Based Rules Another interesting class
of multiwinner election systems consists of sequential vari-
ants of OWA-based rules.

Definition 10. The sequential w-based OWA rule selects
all committees that can result from the following procedure.
Starting with the empty committee (S = ∅), in k consecutive
steps add to the committee S a candidate c that maximizes∑

i∈N uw
i (S ∪ {c})− uw

i (S).

Just like OWA-based rules, sequential OWA-based rules
have already been considered by Thiele (1895).

Monroe’s Rule The optimization problem underlying the
Chamberlin–Courant rule can be thought of in terms of max-
imizing representation: every voter is assigned to a sin-
gle candidate in the committee and this “representative”
completely determines the satisfaction that the voter derives
from the committee. The rule proposed by Monroe (1995)
is based on the same idea; however, Monroe requires each
candidate to represent the same number of voters. For the
sake of simplicity, when considering the Monroe rule we as-
sume that the number of voters n is divisible by the size of
the committee k.
Definition 11. Consider an instance (A, k) such that k di-
vides n and let S be a size-k committee. A balanced al-
location of the voters to the candidates in S is a function
τS : N → S such that |τ−1

S (c)| = n
k for all c ∈ S. The

satisfaction ui(τS) of a voter i from τS is equal to one
if i approves of τS(i), and zero otherwise. The total sat-
isfaction of voters provided by S, denoted u(S), is defined
as the satisfaction from the best balanced allocation, i.e.,
u(S) = maxτS

∑
i∈N ui(τS). The Monroe rule selects all

size-k committees S maximizing u(S).

’́s Rules In the late 19th century, Swedish mathematician
Lars Edvard Phragmén proposed a load-balancing approach
for selecting committees (Phragmén 1894; Janson 2016).
Here, we formulate two particularly interesting variants (see
Brill et al. 2017).

The motivation behind Phragmén’s rules is to find a com-
mittee whose “support” is distributed as evenly as possible
among the electorate. For every candidate in the committee,
one unit of “load” needs to be distributed among the voters
approving this candidate. The goal is to find a committee of
size k for which the maximal load of a voter (or the variance
of the load distribution) is as small as possible.
Definition 12. Consider an instance (A, k) of the multi-
winner election problem. A load distribution for (A, k)
is a matrix L = (�i,c)i∈N,c∈C ∈ R

|N |×|C| such that
(i)

∑
i∈N

∑
c∈C �i,c = k, (ii)

∑
i∈N �i,c ∈ {0, 1} for all c ∈

C, and (iii) �i,c = 0 if c /∈ Ai. Every load distribution L cor-
responds to a size-k committee {c ∈ C :

∑
i∈N �i,c = 1}.

The multiwinner election rules max-Phragmén and var-
Phragmén are defined as optimization problems over the set
of all load distributions.
Definition 13. The rule max-Phragmén selects all size-k
committees corresponding to load distributions L minimiz-
ing maxi∈N

∑
c∈C �i,c. The rule var-Phragmén selects all

size-k committees corresponding to load distributions L
minimizing

∑
i∈N (

∑
c∈C �i,c)

2.

3 Apportionment Via Multiwinner Rules

In this section we demonstrate how approval-based multi-
winner rules can be employed as apportionment methods.
For a given instance (v, h) of the apportionment problem
and a multiwinner rule R, this procedure involves three
steps:
1. Translate (v, h) into an instance (A, k) of the multiwin-

ner election problem.
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2. Apply the multiwinner rule R to (A, k).

3. Translate committee(s) in R(A, k) into seat distribu-
tion(s) for (v, h).

We now describe each step in detail.

Step 1. Given an instance (v, h) of the apportionment prob-
lem, we construct an instance (A, k) of the multiwinner elec-
tion problem as follows. For each i ∈ [p], we introduce a
set Ci consisting of h candidates, and a set Ni consisting
of vi voters. Each voter in Ni approves of all candidates
in Ci (and of no other candidates). Furthermore, we define
C =

⋃p
i=1 Ci, N =

⋃p
i=1 Ni, and k = h. Intuitively, Ci

is the set of members of party Pi and Ni is the set of voters
who voted for party Pi.

Step 2. We can now apply multiwinner rule R to (A, k) in
order to find the set R(A, k) of winning committees.

Step 3. For every winning committee S ∈ R(A, k), we
can extract a seat distribution x for the instance (v, h) in the
following way: the number xi of seats of a party Pi is given
by the number of candidates from Ci in the committee S,
i.e., xi = |Ci ∩ S|.

The next example illustrates this three-step procedure.

Example 1 (Sequential PAV as an apportionment method).
Consider the instance (v, h) = ((20, 40, 30, 10), 10) of the
apportionment problem. We construct an instance of the
multiwinner election setting with 40 candidates; each party
Pi has a set Ci consisting of 10 candidates. Further, there
are

∑4
i=1 vi = 100 voters: 20 voters approve the ten candi-

dates in C1, 40 voters approve the ten candidates in C2, 30
voters the ten candidates in C3, and 10 voters the ten candi-
dates in C4. The Sequential PAV method selects the winning
committee by selecting in 10 consecutive steps candidates
from C2, C3, C1, C2, C3, C2, C1, C2, C3, C4. Thus, the cor-
responding seat allocation is (x1, x2, x3, x4) = (2, 4, 3, 1).

For a given multiwinner rule R, we let MR denote the
apportionment method defined by steps 1 to 3. We say that
a multiwinner election rule R satisfies (lower) quota if the
corresponding apportionment method MR satisfies the re-
spective property.

3.1 OWA-Based Apportionment Methods

In this section, we consider apportionment methods induced
by OWA-based rules. Fix a weight sequence w and let R de-
note the w-based OWA rule. For every instance (v, h) of the
apportionment setting, MR(v, h) contains all seat distribu-
tions x maximizing the total voter satisfaction u(x), which
is given by

u(x) =
∑
i∈[p]

viu
w
i (x) =

∑
i∈[p]

vi

⎛
⎝ xi∑

j=1

wj

⎞
⎠ .

Here, uw
i (x) =

∑xi

j=1 wj denotes the satisfaction of a voter
voting for party Pi.

Whenever the weight vector w is non-increasing, the w-
based OWA rule induces the same apportionment method as
its sequential variant.5

Proposition 1. Let w be a weight sequence with wj ≥
wj+1 ≥ 0 for all j ∈ N. The apportionment method induced
by the w-based OWA rule coincides with the apportionment
method induced by the sequential w-based OWA rule.

An immediate corollary is that OWA-based rules with a
non-increasing weight sequence can be computed efficiently
in the apportionment setting.

Further, we can use Proposition 1 to show that every
OWA-based rule with a non-increasing positive weight se-
quence induces a divisor method. For a weight sequence
w = (w1, w2, . . .), let dw = (dw(0), dw(1), . . .) be the se-
quence defined by dw(s) =

1
ws+1

for all s ∈ N0. For exam-
ple, wPAV = (1, 1

2 ,
1
3 , . . .) yields dwPAV = (1, 2, 3, . . .).

Theorem 1. Let w be a weight sequence such that
wj ≥ wj+1 > 0 for all j ∈ N. The apportionment method
induced by the w-based OWA rule coincides with the divisor
method based on dw = ( 1

w1
, 1
w2

, 1
w3

, . . .).

The proof consists in comparing the divisor method based
on dw with the sequential w-based OWA rule (which by
Proposition 1 coincides with the w-based OWA in the ap-
portionment setting). In each iteration, the former assigns
a seat to a party Pi maximizing vi

dw(si)
, and the latter as-

signs a seat to a party maximizing the marginal increase∑
i∈N uw

i (S ∪ {c}) − uw
i (S) = viwsi+1. Setting dw(s) =

1
ws+1

exactly aligns the two maximization problems.

3.2 PAV and the D’Hondt Method

A particularly interesting consequence of Theorem 1 is that
Proportional Approval Voting, the OWA rule with wPAV =
(1, 1

2 ,
1
3 , . . .), induces the D’Hondt method.

Corollary 2. The apportionment method induced by PAV
coincides with the D’Hondt method.

The observation that PAV reduces to the D’Hondt method
in the party-list setting occasionally occurs (without proof)
in the literature (e.g., see Plaza 2004, Pereira 2016, Sánchez-
Fernández, Fernández, and Fisteus 2016).6 Theorem 1
shows that this is just one special case of the general rela-
tionship between OWA-based multiwinner rules and divisor
methods.

Since the D’Hondt method satisfies lower quota, the same
holds for PAV and Sequential PAV.

Corollary 3. PAV and Sequential PAV satisfy lower quota.

5OWA-based rules with non-increasing weight sequences are
very natural, especially when viewed in the context of apportion-
ment. OWA-based rules with increasing sequences induce appor-
tionment methods that allocate all seats to the single party that re-
ceives the most votes. The same seat distribution can be also ob-
tained by using the OWA-based rule with a constant weight vector
(see Proposition 5).

6In fact, already Thiele (1895) stated this equivalence, but only
in the special case when perfect proportionality is possible; see the
survey by Janson (2016).
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The fact that PAV satisfies lower quota can also be estab-
lished by observing that every multiwinner rule satisfying
extended justified representation (Aziz et al. 2017) or pro-
portional justified representation (Sánchez-Fernández et al.
2017) also satisfies lower quota; see the full version of this
paper for details.

Further, we show that PAV is the only OWA-based rule
satisfying lower quota.7

Theorem 2. PAV is the only OWA-based rule satisfying
lower quota.

Theorem 2 characterizes PAV as the only OWA-based rule
respecting lower quota. Since PAV does not respect (exact)
quota, it follows that no OWA-based rule respects quota.

The load-balancing rule max-Phragmén also induces the
D’Hondt method. Indeed, Phragmén formulated his rule as
a generalization of the D’Hondt method (Mora and Oliver
2015; Janson 2016).

Theorem 3. The apportionment method induced by max-
Phragmén coincides with the D’Hondt method.

There is also a sequential variant of Phragmén’s rule
(Phragmén 1894).8 It is straightforward to verify that, in
the apportionment setting, this variant coincides with max-
Phragmén and thus also induces the D’Hondt method.

3.3 Phragmén’s Variance-Minimizing Rule and
the Sainte-Laguë method

Since the Sainte-Laguë method is the divisor method based
on (1, 3, 5, . . .), Theorem 1 implies that it is induced by the
w-based OWA rule with weight sequence (1, 1/3, 1/5, . . .).9
However, this is not the only multiwinner rule inducing the
Sainte-Laguë method. Recall that var-Phragmén is the vari-
ant of Phragmén’s load-balancing methods that minimizes
the variance of the loads.

Theorem 4. The apportionment method induced by var-
Phragmén coincides with the Sainte-Laguë method.

The proof consists in observing that, as already Sainte-
Laguë (1910) and Owens (1921) have shown, the Sainte-
Laguë method selects exactly those seat distributions x min-
imizing ∑

i∈[p]

vi

(
xi

vi
− h

v+

)2

(see also Balinski and Young 1982, pages 103–104). It is
not hard to check that the apportionment method induced by
var-Phragmén minimizes the same function.

7This result also follows from Theorem 1 together with the
characterization of the D’Hondt method as the only divisor method
satisfying lower quota (Balinski and Young 1982, Proposition 6.4).
In the full version of this paper, we give a direct proof.

8In fact, the sequential variant is the main method that
Phragmén proposed to be used in actual elections; see the survey
by Janson (2016) for details.

9The fact that the variant of PAV based on weight sequence
(1, 1/3, 1/5, . . .) reduces to the Sainte-Laguë method in the party-
list setting is also stated (without proof) by Pereira (2016).

3.4 Monroe’s Rule and the Largest Remainder
Method

We now turn to Monroe’s multiwinner rule. It turns out that
it induces the largest remainder method.

Theorem 5. Assume that the number of seats divides the
total number of voters. Then, Monroe’s rule induces the
largest remainder method.

An immediate consequence of Theorem 5 is that Mon-
roe’s rule respects quota.

3.5 Other Multiwinner Rules in the Context of
Apportionment

In this section we examine two further OWA-based rules, the
Chamberlin–Courant rule and the top-k rule, in the context
of apportionment. Since wCC = (1, 0, 0, . . .) and wtop-k =
(1, . . . , 1, 0, 0, . . .), Proposition 1 applies to both rules.

The Chamberlin–Courant apportionment method pro-
duces lots of ties, because it does not strive to give more than
one seat even to parties with a large support. In the special
case where the number p of parties exceeds the number h
of seats, the Chamberlin–Courant rules assigns one seat to
each of the h largest parties.10

Proposition 4. Consider an instance (v, h) of the appor-
tionment problem. If p > h, the apportionment method in-
duced by the Chamberlin–Courant rule assigns one seat to
each of the h parties with the greatest number of votes.

Proposition 4 gives an interesting insight into the nature of
the Chamberlin–Courant apportionment method: it selects
an assembly having one representative from each of the h
largest groups of a given society.

The top-k rule is on the other end of the spectrum of ap-
portionment methods.

Proposition 5. The apportionment method induced by the
top-k rule assigns all seats to the party (or parties) receiving
the highest number of votes.

Thus, the top-k rule induces the apportionment method
M∗ in Proposition 4.5 of Balinski and Young (1982).

We conclude this section by mentioning two further rules
that are often studied in the context of multiwinner elections.
Satisfaction Approval Voting (Brams and Kilgour 2014) in-
duces the same apportionment methods as the top-k rule.
And Minimax Approval Voting (Brams, Kilgour, and San-
ver 2007) induces the apportionment method that assigns
the seats in a way that maximizes the number of seats of
the party with the fewest seats.

4 Degressive Proportionality and Election

Thresholds

In this section, we show that OWA-based multiwinner rules
can also be used to induce apportionment methods with ap-
pealing properties other than lower quota. We do this by
exploring degressive proportionality, the concept suggesting

10In this special case, the apportionment method induced by the
Chamberlin–Courant rule coincides with impervious divisor meth-
ods (see Footnote 3).
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that smaller populations should be allocated more represen-
tatives in comparison to the divisor methods, and election
thresholds, the concept saying that a party should only be
represented in parliament if it receives at least a certain num-
bers of votes. To the best of our knowledge, the OWA-based
rules considered in this section have not been studied before.

4.1 Degressive Proportionality

Despite its mathematical elegance and apparent simplicity,
the proportionality principle is not always desirable. For in-
stance, in an assembly where decisions are taken under sim-
ple majority rule, a cohesive group of 51% has obviously
more than a “fair” share. Principles of justice indicate that,
for decisions bodies governed by majority rule, fair appor-
tionment should follow a norm of degressive proportional-
ity (Laslier 2012; Koriyama et al. 2013). In fact, degressive
proportional apportionments can often be observed in parlia-
ments that gather districts, regions, or states of very different
sizes, such as the European Parliament.11

The Penrose apportionment method (aka square-root
method and devised by Penrose, 1946; see also the work of
Słomczyński and Życzkowski 2006) allocates seats in such
a way that the number of seats allocated to a party is pro-
portional to the square root of the votes for that party. It has
been proposed for the United Nations Parliamentary Assem-
bly and for allocating voting weights in the Council of the
European Union.12

Let us say that an apportionment method M satisfies the
Penrose condition if, for every instance (v, h) and for every
x ∈ M(v, h), it holds that xi ≥ �h

√
vi∑

�

√
v�
� for all i ∈ [p].

Interestingly, the Penrose condition can be satisfied by using
an OWA-based rule. The weight sequence w achieving this
is given by wj =

1
j2 for all j ∈ N.

Theorem 6. The apportionment method induced by the
OWA-based rule with weight sequence w = (1, 1/4, 1/9, . . .)
satisfies the Penrose condition.

Degressive proportionality is also an important feature of
the so-called Cambridge Compromise, which proposes an
apportionment method for the European Parliament based
on an affine formula: each member state should be endowed
with a fixed number (5) of delegates plus a variable number,
proportional to the population of the state (Grimmett et al.
2011). We show that such an apportionment method can be
implemented via an OWA-based multiwinner rule.
Proposition 6. Consider an instance (v, h) of the appor-
tionment setting with h ≥ 5p and let Z be a constant with
Z > 5v+. Let R denote the w-based OWA rule with weight
sequence w = (0, 0, 0, 0, Z, 1, 1/2, 1/3, . . .). Then, for every
x ∈ MR(v, h) and for every i ∈ [p],

xi ≥ 5 +

⌊
vi(h− 5p)

v+

⌋
.

11Even though the composition of the European Parliament is
not the result of the application of a well-defined rule, it is inter-
esting to note that the history of successive negotiations produced
such a result (see Rose 2013).

12The problem of allocating voting weights to representatives is
formally equivalent to the apportionment problem.

4.2 Election Thresholds

OWA-based multiwinner rules also provide an interesting
way for implementing election thresholds. Thresholds in the
form of percentage hurdles are often encountered in parlia-
mentary elections (see Pukelsheim 2014, Section 7.6). For
a weight sequence w = (w1, w2, . . .), let w[t] be the weight
sequence obtained from w by replacing the first t elements
of w with zeros. The w[t]-based OWA rule induces an ap-
portionment method that allocates seats to a party only if the
number of votes the party receives exceeds a certain fraction
of the total number of votes received by parties with allo-
cated seats.13 Proposition 7 formalizes this behavior for the
weight sequence wPAV.
Proposition 7. Consider an instance (v, h) of the appor-
tionment problem and fix an integer t with 1 ≤ t < h. Let
R denote the OWA-based rule with weight sequence wPAV[t].
Then, for all seat distributions x ∈ MR(v, h),

xi > 0 only if
vi∑

�∈[p]:x�>0 v�
>

t

h
.

5 Conclusion

In legislative procedures, proportional representation is typi-
cally achieved by employing party-list apportionment meth-
ods such as the D’Hondt method or the largest remainder
method. These methods impose proportionality by assuring
that each party in a representative body is allocated a num-
ber of representatives that is proportional to the number of
received votes. Nevertheless, party-list systems have many
drawbacks—for instance, they provide very weak links be-
tween elected legislators and their constituents.

In this paper we have proposed a simple and natural for-
mal framework that allows us to view approval-based mul-
tiwinner election rules as apportionment methods. Some
multiwinner rules (such as PAV, Monroe’s rule, Phragmén’s
rules, and the rules considered in Section 4) induce appor-
tionment methods that are used—or have been proposed—
for parliamentary apportionment. The apportionment meth-
ods that are induced by other multiwinner rules (such as the
Chamberlin–Courant rule, the top-k rule, Satisfaction Ap-
proval Voting, and Minimax Approval Voting) are, however,
less appealing. These results give interesting insights into
the nature of the analyzed multiwinner rules, and they show
how traditional apportionment methods can be extended to
settings where voters can vote for individual candidates.

Further, our methodology allowed us to discover a new
interesting multiwinner election rule which, if applied to the
apportionment setting, satisfies Penrose’s (square root pro-
portionality) condition.

13The thresholds implemented by OWA-based apportionment
methods differ from real-world election thresholds in one impor-
tant aspect: Rather than requiring a certain fraction (say, 5%) of
all votes, the thresholds we consider here require a certain frac-
tion of those votes that are received by parties with allocated seats.
An advantage of the latter kind of threshold requirement is that it
can always be satisfied. By contrast, requiring a certain fraction
of all votes can lead to situations in which no party reaches the re-
quired number of votes and, therefore, no seat allocation satisfies
the threshold requirement.
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