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Abstract

We study the problem of checking for the existence of
constrained pure Nash equilibria in a subclass of polyma-
trix games defined on weighted directed graphs. The pay-
off of a player is defined as the sum of nonnegative ratio-
nal weights on incoming edges from players who picked the
same strategy augmented by a fixed integer bonus for pick-
ing a given strategy. These games capture the idea of coordi-
nation within a local neighbourhood in the absence of glob-
ally common strategies. We study the decision problem of
checking whether a given set of strategy choices for a sub-
set of the players is consistent with some pure Nash equi-
librium or, alternatively, with all pure Nash equilibria. We
identify the most natural tractable cases and show NP or
coNP-completness of these problems already for unweighted
DAGs.

1 Introduction

Identifying subclasses of games where equilibria is tractable
is an important problem in algorithmic analysis of multi-
player games. Pure Nash equilibria (NEs) may not exist in
games and checking whether a game has a pure NE is in
general a hard problem. Even for subclasses of games in
which a pure NE is guaranteed to exists (for instance, po-
tential games) computing one remains PLS-hard (Fabrikant,
Papadimitriou, and Talwar 2004). Although, Nash’s theo-
rem guarantees the existence of mixed strategy NE in all
finite games, computing one is still a hard problem. There-
fore, identifying restricted classes of games where equilib-
rium computation is tractable and also precisely identifying
the borderline between tractability and hardness in such re-
stricted classes is of obvious interest. In this paper, we study
the borderline of tractability in a natural subclass of games
where the utilities of players are restricted to be pairwise
separable. These are called polymatrix games (Janovskaya
1968) and they form an abstract model that is useful to anal-
yse strategic behaviour of players in games formed via pair-
wise interactions. In polymatrix games, the payoff for each
player is the sum of the payoffs he gets from individual two

∗Supported by the Research-I Foundation, IIT Kanpur and the
Liverpool-India fellowship, University of Liverpool.

†Supported by EPSRC grant EP/M027651/1.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

player games he plays against every other player. Polyma-
trix games are well-studied in the literature. They include
game classes with good computational properties like the
two-player zero-sum games. They also have applications in
areas such as artificial neural networks (Miller and Zucker
1991) and machine learning (Erdem and Pelillo 2012).

In terms of tractability, the restriction to pairwise inter-
actions does not immediately ensure the existence of effi-
cient algorithms. Computing a mixed strategy Nash equi-
librium remains PPAD-complete (Cai and Daskalakis 2011)
and checking for the existence of a pure NE is NP-complete
in general. This motivates the need to further analyse the
type of pairwise interactions that would ensure tractability.
In this paper, we argue that another important factor which
influences tractability is the structure of the underlying in-
teraction graph and presence of individual preferences (that
we call bonuses).

The main restriction that we impose on polymatrix games
is that each pairwise interaction forms a coordination game.
Henceforth, we will refer to these games simply as coor-
dination games on graphs. Coordination games are often
used in game theory to model situations where players at-
tain maximum payoff when they agree on a common strat-
egy. The game model that we study, extends coordination
games to the network setting where payoffs need not always
be symmetric and players coordinate within a certain local
neighbourhood. The neighbourhood structure is specified by
a finite directed graph whose nodes correspond to the play-
ers. Each player chooses a colour from a set of available
colours. The payoff of a player is the sum of weights on the
edges from players who choose the same colour and a fixed
bonus for picking that particular colour. This game model
is closely related to various well-studied classes of games.
For instance, coordination games on graphs are graphi-
cal games (Kearns, Littman, and Singh 2001) and they are
also related to hedonic games (Dreze and Greenberg 1980;
Bogomolnaia and Jackson 2002). In hedonic games, the pay-
off of each player depends solely on the set of players that
selected the same strategy. The coalition formation prop-
erty inherent to coordination games on graphs make the
game model relevant to cluster analysis. The problem of
clustering has been studied from a game theoretic perspec-
tive for instance in (Feldman, Lewin-Eytan, and Naor 2012;
Pelillo and Buló 2014).
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Coordination games on graphs constitute a game model
which can be useful for analysing the adoption of a prod-
uct or service within a network of agents interacting with
each other in their local neighbourhoods. For example, con-
sider the selection of a mobile phone operator. The inter-
action between users can be represented by a coordination
game where the weight of the edge from i to j represents
the total cost of calls from j to i. Also, the bonus func-
tion can represent individual preferences of users over the
providers. Now suppose that mobile network operators al-
low free calls among its users. Then each mobile phone user
faces a strategic choice of picking an operator that max-
imises his cost savings or, in the case of unweighted graphs,
maximises the number of people he can call for free. If play-
ers are allowed to freely switch their operator based on their
friends’ choices, then the stable market states correspond to
pure Nash equilibria in this game. One can observe similar
interactions in peer-to-peer networks, social networks and
photo sharing platforms.

A similar game model based on undirected graphs was
introduced in (Apt et al. 2014) and further studied in (Rahn
and Schäfer 2015). The transition from undirected to di-
rected graphs drastically changes the status of the games.
For instance, in the case of undirected graphs, coordination
games are potential games where as in the directed case,
pure NE may not even exist. Moreover, the problem of deter-
mining the existence of pure NEs is NP-complete for coordi-
nation games on directed graphs (Apt, Simon, and Wojtczak
2016). However, pure NE always exists for several natural
classes of graphs (Simon and Wojtczak 2016b).

However, in many practical situations, finding just one
pure Nash equilibrium may not be enough. In fact, there
can be exponentially many Nash equilibria, each with a
different payoff to each player (see Example 2 in (Simon
and Wojtczak 2016a)). Ideally, we would like to ask for
the existence of a Nash equilibrium satisfying some given
constraints. In this paper, we focus on checking whether
a partial strategy profile (i.e. strategy choices for a subset
of the players) is consistent with some pure Nash equilib-
rium or, alternatively, with all pure Nash equilibria. We will
refer to these as ∃NE and ∀NE decision problem, respec-
tively. We identify the most natural tractable cases and show
NP or coNP-completness of these problems already for un-
weighted DAGs.
Related work. The complexity of checking for the exis-
tence of pure Nash equilibria in a game crucially depends
on the representation of the game. Normal form represen-
tation can be exponential in the number of players whereas
graphical games and polymatrix games provide a more con-
cise representation of strategic form games. While checking
for the existence of pure Nash equilibria can be solved in
LOGSPACE for games in normal form, it is NP-complete for
graphical games even when the payoff of each player de-
pends only on the strategy choices of at most three other
players (Gottlob, Greco, and Scarcello 2005). On the other
hand, it is solvable in polynomial time for graphical games
whose dependency graph has a bounded treewidth (Gottlob,
Greco, and Scarcello 2005) or when each player has only
two possible strategies (Thomas and van Leeuwen 2015).

For polymatrix games, checking for the existence of a pure
Nash equilibrium is NP-complete even when all its individ-
ual 2-player games are win-loss ones (Apt, Simon, and Wo-
jtczak 2016).

Gilboa and Zelmel (1989) were the first to study the com-
putational complexity of decision problems for mixed Nash
equilibria with additional constraints for two player games
in normal form. For many natural constraints the corre-
sponding decision problems were shown to be NP-hard. Fur-
ther hardness results were shown in (Conitzer and Sandholm
2008) and (Bilò and Mavronicolas 2012). The existence of
constrained pure NE can be solved in LOGSPACE for normal
form games simply by checking every pure strategy profile.
For graphical games the problem is NP-hard even without
any constraints, but because of the special structure of our
games, this result does not directly apply to our setting. On
the other hand, constrained pure NE can be found in poly-
nomial time for graphical games played on graphs with a
bounded treewidth (Greco and Scarcello 2009). We are not
aware of any prior work on this problem for polymatrix
games. Our paper is the first to identify several subclasses
of polymatrix games for which the existence problem of a
constrainted Nash equilibrium is tractable.

2 Background

A strategic game G = (S1, . . . , Sn, p1, . . . , pn) with n > 1
players consists of a non-empty set Si of strategies and a
payoff function pi : S1 × · · · × Sn → R, for each player
i ∈ {1, 2, . . . , n}. Let S := S1 × · · · × Sn and let us call
each element s ∈ S a joint strategy. Given a joint strategy
s, we denote by s(i) the strategy of player i in s. We abbre-
viate the sequence (s(j))j �=i to s−i and occasionally write
(s(i), s−i) instead of s. We call a strategy s(i) of player i a
best response to a joint strategy s−i of his opponents if for
all x ∈ Si, pi(s(i), s−i) ≥ pi(x, s−i). We do not consider
mixed strategies in this paper.

Given two joint strategies s′ and s, we say that s′ is a
deviation of the player i from s if s−i = s′−i and s(i) �=
s′(i). If in addition pi(s

′) > pi(s), we say that the deviation
s′ from s is profitable for player i. We call a joint strategy s a
(pure) Nash equilibrium if no player can profitably deviate
from s. For any given strategic game G, let NE(G) denote
the set of all (pure) Nash equilibria in G.

We now introduce the class of games we are interested
in. Fix a finite set of colours M . A weighted directed graph
(G,w) is a structure where G = (V,E) is a graph without
self loops over the vertices V = {1, . . . , n} and w is a func-
tion that associates with each edge e ∈ E, a nonnegative
rational weight we ∈ Q≥0. We say that a node j is a succes-
sor of the node i, and i is a predecessor of j, if there is an
edge i → j in E. Let Ni denote the set of all predecessors
of node i in the graph G. By a colour assignment we mean
a function that assigns to each node of G a finite non-empty
set of colours. A bonus is a function β that to each node i
and a colour c assigns an integer β(i, c).

Given a weighted graph (G,w), a colour assignment C :
V → 2M \ {∅} and a bonus function β : V × M → Z, a
strategic game G(G,w,C, β) is defined as follows:
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1 {a, b}

2 {a, c}3{b, c}

4 {a, b}

5 {a, c}

6{b, c}

7 {a}

8 {c}9{b}

Figure 1: Unweighted coordination game with no NE.

• the players are the nodes;
• the set of strategies of player (node) i is the set of colours
C(i);

• the payoff function pi(s) :=
∑

j∈Ni: s(i)=s(j) wj→i +

β(i, s(i)).
So each node simultaneously chooses a colour and its pay-

off is the sum of the weights of the edges from its neighbours
that chose the same colour augmented by a bonus to the node
from choosing this colour. We call these games coordination
games on directed graphs, from now on just coordination
games. When the weights of all the edges are 1, we obtain a
coordination game whose underlying graph is unweighted.
In this case, we simply drop the function w from the de-
scription of the game and the payoff function is defined by
pi(s) := |{j ∈ Ni | si = sj}| + β(i, s(i)). Similarly if all
the bonuses are 0, we obtain a coordination game without
bonuses. Likewise, to denote this game we omit the function
β. Note that positive integer weights or bonuses can be sim-
ulated by adding unweighted edges to the graph. However,
if these values are represented in binary, such an operation
can increase the size of the graph exponentially.

Example 1 Consider the unweighted directed graph and the
colour assignment depicted in Figure 1. Take the joint strat-
egy s that consists of the underlined strategies. Then the
payoffs are as follows: 0 for the nodes 1, 7, 8, and 9; 1
for the nodes 2, 4, 5, and 6; 2 for the node 3. Note that s
is not a Nash equilibrium. For instance, node 1 can prof-
itably deviate to colour a. In fact the coordination game as-
sociated with this graph does not have a Nash equilibrium.
Note that for nodes 7, 8 and 9 the only option is to select
the unique strategy in its strategy set. The best response for
nodes 4, 5 and 6 is to always select the same strategy as
nodes 1, 2 and 3, respectively. Therefore, to show that the
game does not have a Nash equilibrium, it suffices to con-
sider the strategies of nodes 1, 2 and 3. We denote this by
the triple (s1, s2, s3). Below we list all such joint strategies
and we underline a strategy that is not a best response to the
choice of other players: (a, a, b), (a, a, c), (a, c, b), (a, c, c),
(b, a, b), (b, a, c), (b, c, b) and (b, c, c). �

Let Q ⊆ V be a nonempty subset of all the nodes of a
given graph G. A query is a function q : Q → M which
satisfies the following property: for all i ∈ Q, q(i) ∈ C(i).
We say that a query q is consistent with a strategy profile s

Graph Class ∃NE ∀NE

2 colours+monochromatic query O(|G|) O(|G|)
2 colours+polychromatic query NP-comp. O(|G|)

DAGs+3 colours+singleton query NP-comp. coNP-comp.
simple cycles O(|G|) O(m · |G|)

DAGs with out-degree ≤ 1 O(|G|2.5) O(|G|2.5)
colour complete graphs no bonuses O(nm ·m!) O(nm ·m!)

Table 1: Summary of the results. The last two classes are un-
weighted; a simple reduction from the PARTITION problem
and its complement, shows NP and coNP hardness of their
∃NE and ∀NE problems, respectively, in the weighted case.

iff q = s|Q, i.e. q(i) = s(i) for all i ∈ Q. We call a query
q : Q → M monochromatic if for all i, j ∈ Q, q(i) = q(j)
and otherwise we call the query polychromatic. A query q
is said to be singleton if |Q| = 1. Obviously every singleton
query is also a monochromatic one. In this paper, we study
the following decision questions.
Given a graph G = (V,E), weights w, colour assignment
C, bonus function β, and query q.

∃NE problem:
In G(G,w,C, β), is there a Nash equilib-
rium that is consistent with q?

∀NE problem: In G(G,w,C, β), is every Nash equilib-
rium consistent with q?

Formally, ∃NE problem asks if there exists s ∈ NE(G) such
that q = s|Q, while the ∀NE problem asks whether for all
s ∈ NE(G) it is the case that q = s|Q. Note that ∀NE is
not a complement of ∃NE. Actually, any non-singleton ∀NE
query can be reduced to a series of singleton ∀NE queries
q|{i} for every player i ∈ Q. Note that trivially ∃NE ∈ NP
and ∀NE ∈ coNP, because checking whether a joint strategy
is a Nash equilibrium and is consistent with q can be done
in polynomial time.

Given a directed graph G and a set of nodes K, we de-
note by G[K] the subgraph of G induced by K. A (directed)
graph G = (V,E) is a complete graph if for all i, j ∈ V
such that i �= j, we have i → j ∈ E. That is from ev-
ery node there is an edge to every other node. Given the
set of colours M , we say that a directed graph G is colour
complete (with respect to a colour assignment C) if for ev-
ery colour c ∈ M each component of G[Vc] is a complete
graph, where Vc = {i ∈ V | c ∈ C(i)}. In particular, every
complete graph is colour complete, but not vice versa.

Table 1 summarises our results in terms of the number of
arithmetic operations needed. We use binary representation
for all values in w and β. The size of the input game graph
is |G| = O(nm + e), where n is the number of nodes in a
graph, m is the number of colours and e is the number of
edges. Note that the graph classes that we study can occur
naturally in practice: two colours can model duopoly mar-
kets, simple cycles are used in Token ring architectures, and
unweighted DAGs with out-degree ≤ 1 can model indirect
elections. All details of the proofs that had to be omitted due
to the page limit constraints can be found in the full version
of this paper (Simon and Wojtczak 2016a).
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3 Graphs with Two or Three Colours
We start by studying coordination games with two colours
and monochromatic queries. To fix the notation, let G =
(V,E) and the colour set be M = {0, 1}. Let q be a
monochromatic query. Without loss of generality, we can
assume q(i) = 0 for all i ∈ Q, because otherwise we can
rename the colours.

Algorithm 1: Algorithm for ∃NE for graphs with two
colours and monochromatic queries.

Input: A coordination game G((V,E), w, C, β) and
monochromatic query q : Q → M .

Output: YES if there exists a Nash equilibrium
consistent with q and NO otherwise.

1 for i ∈ V do
2 if 0 ∈ C(i) then s(i) = 0 else s(i) = 1

3 stack S := {i | s(i) = 1}
4 while S �= ∅ do
5 remove any element from S and assign it to i
6 for {j ∈ V — i → j ∈ E} do
7 if s(j) = 0 and 1 ∈ C(j) and

pj((1, s−j)) > pj(s) then
8 s(j) = 1
9 add j to S

10 if ∀i∈Q s(i) = 0 return YES else return NO

Theorem 1 The ∃NE problem for coordination games with
two colours and monochromatic queries can be solved in
O(|G|) time using Algorithm 1.

Similarly, Algorithm 2 below solves the ∀NE problem for
monochromatic queries.
Theorem 2 The ∀NE problem for coordination games with
two colours and monochromatic queries can be solved in
O(|G|) time using Algorithm 2.

Algorithm 2: Algorithm for ∀NE on graphs with two
colours and monochromatic queries.

Input: A coordination game G((V,E), w, C, β) and
monochromatic query q : Q → M .

Output: YES if all Nash equilibria are consistent with
q and NO otherwise.

1 Lines 1-9 of Algorithm 1 where every 0 is replaced by 1
and every 1 by 0.

2 if ∀i∈Q s(i) = 0 return YES else return NO

In fact, any polychromatic ∀NE query can be reduced to
two monochromatic ones and so we get the following.
Corollary 1 The ∀NE problem for coordination games with
two colours and polychromatic queries can be solved in
O(|G|) time.

However, we will show that even answering singleton
∀NE queries for unweighted DAGs is coNP-hard in the pres-
ence of three colours and no bonuses. We first analyse the
following gadget.

X1

{�,⊥}
X2

{�,⊥}
· · · Xk

{�,⊥} {x}

Y

{�,⊥}

k − 1

Figure 2: Gadget D(X1, . . . , Xk, x;Y ) where x ∈ {�,⊥}.
Note that one edge has weight k − 1.

{�}
T

{�,⊥} {⊥}
F

{�,⊥} {�}
Φ

{�,⊥}

U{�, �}

W{⊥, �}

X{⊥, �} Y {⊥, �}

{�}

Z

{⊥, �}

2

2

Figure 3: Gadget used in the coNP-hardness proof of ∀NE.
Edges with weight 2 can be simulated by unweighted ones.

Proposition 1 For any Nash equilibrium s in
D(X1, . . . , Xk, x;Y ) from Figure 2: (a) s(Y ) = x iff
∃i s(Xi) = x and (b) s(Y ) = ¬x iff ∀i s(Xi) = ¬x.

Using this gadget we are able to show the following.
Theorem 3 The ∀NE problem for singleton queries is
coNP-complete for unweighted DAGs with three colours and
no bonuses.

Proof. [sketch] We reduce from the tautology problem for
formulae in 3-DNF form. Assume we are given a formula

φ = (a1 ∧ b1 ∧ c1) ∨ (a2 ∧ b2 ∧ c2) ∨ . . . ∨ (ak ∧ bk ∧ ck)

with k clauses and n propositional variables x1, . . . , xn,
where each ai, bi, ci is a literal equal to xj or ¬xj for some
j. We will construct a coordination game Gφ of size O(n+k)
such that a particular singleton ∀NE query is true for Gφ iff
φ is a tautology.

First for every propositional variable xi there are four
nodes Xi, ¬Xi, Li, Li in Gφ, each with two possible
colours � or ⊥. We connect these four nodes using gadgets
D(Xi,¬Xi,�;Li) and D(Xi,¬Xi,⊥;Li). This makes
sure that in any Nash equilibrium, s, we have s(Li) = � and
s(Li) = ⊥ iff Xi and ¬Xi are assigned different colours.
Next, for every clause (ai ∧ bi ∧ ci) in φ we add to the game
graph Gφ node Ci. We use gadget D(ai, bi, ci,⊥;Ci) to con-
nect literals with clauses, where we identify each xi with
Xi and each ¬xi with ¬Xi. Note that Proposition 1 implies
that the colour of Ci is � iff all nodes ai, bi, ci are assigned
�. We add two nodes T and F to gather colours � and ⊥
from the Li and Li nodes. Also, we add an additional node
Φ to gather the values of all the clauses. We connect these
using gadgets D(L1, . . . , Ln,⊥;T ), D(L1, . . . , Ln,�;F ),
and D(C1, . . . , Ck,�; Φ).
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We need to express that for every Nash equilibrium s:
s(T ) = � and s(F ) = ⊥ implies s(Φ) = �. We use the
gadget from Figure 3. It includes three nodes T, F,Φ that we
already defined in Gφ. We claim that ∀NE query q(Z) = �
is true for Gφ iff Φ is a tautology. �

On the other hand, we show that answering polychromatic
∃NE queries is NP-hard for unweighted DAGs even with two
colours and no bonuses. The construction is similar to the
one in the proof of Theorem 3.

Theorem 4 The ∃NE problem is NP-complete for un-
weighted DAGs with two colours and no bonuses.

Building on this we can show the following when there
are three colours to choose from.

Corollary 2 The ∃NE problem for singleton queries is NP-
complete for unweighted DAGs with three colours and no
bonuses.

Note that we can also show NP/coNP-hardness for DAGs
with out-degree at most two, because we can make arbi-
trary number of copies of any given node, e.g. to make three
copies i1, i2, i3 of node i we can add nodes i′, i1, i2, i3 and
edges i → i1, i → i′, i′ → i2, i′ → i3.

4 Simple Cycles

We consider here coordination games whose underlying
graph is a simple cycle. To fix the notation, suppose that
V = {0, 1, . . . , n − 1} and the underlying graph is 0 →
1 → · · · → n − 1 → 0. We assume that the counting is
done in cyclic order within {0, . . . , n − 1} using the incre-
ment operation i ⊕ 1 and the decrement operation i � 1. In
particular, (n− 1)⊕ 1 = 0 and 0� 1 = n− 1.

For i ∈ V , let Zi(w) = {c ∈ C(i) | β(i, c) + w ≥
β(i, c′) for all c′ ∈ C(i)} denote the set of colours available
to player i with the bonus at most w below the maximum
one available to i. For every i ∈ V , define Ai := Zi(0), i.e.
all colours with the maximum bonus, Bi := Zi(wi�1→i −
1), and Ci := Zi(wi�1→i). Obviously ∅ �= Ai ⊆ Bi ⊆
Ci ⊆ C(i) for every i. It is quite easy to see that in any
Nash equilibrium, player i can only select a colour from Ci.
Let us fix a query q : Q → M . In this section, without loss
of generality, we assume that 0 ∈ Q.

Theorem 5 The ∃NE problem for simple cycles can be
solved in O(|G|) time.

Proof. [sketch] We argue that given a simple cycle over the
nodes V = {0, . . . , n − 1} and a query q : Q → M , the
output of Algorithm 3 is YES iff there exists a Nash equi-
librium s∗ which is consistent with q. Suppose there exists
a Nash equilibrium s∗ which is consistent with q. We can
argue by induction on V that on termination of Algorithm 3,
for all i ∈ V , we have s∗(i) ∈ Xi.

Conversely, suppose the output of Algorithm 3 is YES.
From the definition, this implies that for all i ∈ V , Xi �= ∅
and for all j ∈ Q: q(j) ∈ Xj (in fact, Xj = {q(j)}). We
define a Nash equilibrium s∗ as follows. First, let s∗(0) =
q(0). Next we assign values to s∗(i) starting at i = n − 1
and going down to i = 1 as described below.
• If i ∈ Q then s∗(i) = q(i).

Algorithm 3: ∃NE on a simple cycle
Input: A simple cycle on nodes {0, . . . , n− 1}, sets

Ai, Bi, Ci for i ∈ V , a query q : Q → M .
Output: YES if there exists a Nash equilibrium

consistent with q and NO otherwise.
1 Let X0 = {q(0)}.
2 for i = 0 to n− 1 do
3 if Xi �⊆ Bi⊕1 then
4 Xi⊕1 = (Xi ∩ Ci⊕1) ∪Ai⊕1

5 else
6 Xi⊕1 = Xi

7 if i⊕ 1 ∈ Q then
8 if q(i⊕ 1) �∈ Xi⊕1 then
9 return NO

10 else
11 Xi⊕1 = {q(i⊕ 1)}

12 return YES

Algorithm 4: ∀NE on a simple cycle
Input: A simple cycle on nodes {0, . . . , n− 1}, sets

Ai, Bi, Ci for i ∈ V , a query q : Q → M .
Output: YES if all NEs are consistent with q and NO

otherwise.
1 for c ∈ M do
2 if Algorithm 3 for q′ := {0 → c} returns NO then
3 continue with the next c
4 else
5 Consider Xi computed by Algorithm 3 for q′:
6 if exists i ∈ Q such that Xi �= {q(i)} then
7 return NO

8 return YES

• If i �∈ Q and Xi ⊆ Bi⊕1 then by Algorithm 3 we have
Xi = Xi⊕1. Let s∗(i) = s∗(i⊕ 1).

• Assume i �∈ Q and Xi �⊆ Bi⊕1. If s∗(i⊕ 1) ∈ Xi ∩Ci⊕1

set s∗(i) = s∗(i ⊕ 1). Otherwise s∗(i ⊕ 1) ∈ Ai⊕1 and
we set s∗(i) to any element in Xi \Bi⊕1.

Now one can show that s∗, as defined above, is a NE. �

Algorithm 4 reduces the ∀NE problem to m ∃NE queries.
For for unweighted simple cycles ∀NE can solved efficiently
using an adaptation of Algorithm 3.

Theorem 6 The ∀NE problem for simple cycles (un-
weighted simple cycles) can be solved in O(m|G|) time (re-
spectively, O(|G|) time).

5 Colour Complete Graphs

We show that ∃NE and ∀NE problems can be solved in poly-
nomial time for coordination games G((V,E), C) played on
unweighted colour complete graphs with n nodes and a fixed
number of colours, m, and no bonuses.
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Theorem 7 The ∃NE and ∀NE problems for unweighted
colour complete graphs and no bonuses can be solved in
O(nm ·m!) time.
Proof. We claim that the set of total orders on the set of
colours induces a set of joint strategies which contains the
whole set NE(G). Specifically, every total order � on M
will be mapped to a joint strategy SP(�) as follows: as-
sign to each player the highest colour available to him ac-
cording to the total order �. Formally, for all players i:
SP(�)(i) = max
 C(i). For any Nash equilibrium s let
us define a relation �s⊆ M × M : x �s y iff there exists
player i such that {x, y} ⊆ C(i) and s(i) = x.
Lemma 1 The relation �s is acyclic, i.e. for all k ≥ 2 there
is no sequence of colours x1, . . . , xk such that x1 �s x2 �s

. . . �s xk �s x1.
Note Lemma 1 may fail when bonuses are introduced into

the game. We also need the following folk result.
Lemma 2 Any acyclic binary relation on a finite set can be
extended to a total order.

For the relation �s let �∗s be a total order from Lemma 2
such that �s ⊆ �∗s .
Lemma 3 For any Nash equilibrium s, SP(�∗s) = s.

From Lemma 1 and Lemma 3 we know that for every
Nash equilibrium s, there exists at least one total order on
M that induces it. Therefore, for ∃NE problem (∀NE prob-
lem) it suffices to check for all possible total orders � on M ,
whether the induced joint strategy SP(�), is a Nash equi-
librium and if so, whether any (respectively, all) of them is
consistent with q. There are m! total orders on M . Checking
whether an induced strategy profile is a Nash equilibrium
consistent with q takes O(nm) time. This gives O(nm ·m!)
in total. �

Note that there are coordination games on colour com-
plete graphs with one-to-one correspondence between the
set of total orders on colours and the set of all Nash equilib-
ria (see Example 2 in (Simon and Wojtczak 2016a)), and so
with exponentially many different NEs.

6 Directed Acyclic Graphs

In Section 3 we showed that the ∃NE and ∀NE problems
are NP and coNP complete respectively even for unweighted
DAGs with out-degree at most two and no bonuses. We now
show that if the out-degree of each node in an unweighted
DAG is at most 1 (there are no constraints on the in-degree
of nodes) then these problems can be solved efficiently.
Theorem 8 Algorithm 5 solves the ∃NE problem for un-
weighted DAGs with out-degree at most one in O(|G|2.5)
time.
Proof. [sketch] For each node, i, we compute the set, X(i),
of colours that can possibly be assigned to i in any Nash
equilibrium. Such a set is trivial to compute for source nodes
in G, and for the other nodes it can be computed by con-
structing a suitable bipartite graph based on the sets precom-
puted for all its neighbours and running a matching algo-
rithm. In lines 7-10 we remove colours that are dominated
by others. We need the following lemma.

Algorithm 5: Algorithm for ∃NE on unweighted DAGs
with out-degree ≤ 1.

Input: A coordination game G((V,E), C, β) and query
q : Q → M

Output: YES if there exists a Nash equilibrium
consistent with q and NO otherwise.

1 Topologically sort V into a sequence (i1, . . . , in).
2 for j := 1 . . . n do
3 X(ij) := ∅
4 Y := {X(k) | k → ij ∈ E}
5 for c ∈ C(ij) do
6 S := {Z ∈ Y | c ∈ Z}; C ′ := C \ {c};

Y ′ := Y \ S;
7 if exists c′ ∈ C ′ such that

|S|+ β(ij , c)− β(ij , c
′) < 0 then

8 continue with the next c
9 while exists c′ ∈ C ′ such that

|S|+ β(ij , c)− β(ij , c
′) ≥ |Y ′| do

10 C ′ := C ′ \ {c′};
Y ′ := Y ′ \ {Z ∈ Y ′ | c′ ∈ Z}

11 Construct the following bipartite graph
G′ := (V ′ = (Y ′, {{c′} × {1, . . . , |S|+

β(ij , c)− β(ij , c
′)} | c′ ∈ C ′}), E′)

where Z → (c′, x) ∈ E′ iff c′ ∈ Z12

if the maximum bipartite matching in G′ has
size |Y ′| then

13 add c to X(ij)

14 if ij ∈ Q then
15 if q(ij) �∈ X(ij) return NO else

X(ij) := {q(ij)}
16 return YES

Lemma 4 If Algorithm 5 returns YES, then for all i ∈ V ,
for all c ∈ X(i), there exists a Nash equilibrium s∗ such
that s∗i = c and for all j �= i, s∗j ∈ X(j).

Now, if Algorithm 5 returns YES, then from the definition,
for all i ∈ V , Ai �= ∅ and for all j ∈ P , Aj = {q(j)}. By
Lemma 4 it follows that there exists a Nash equilibrium s∗
which is consistent with q.

Conversely, suppose there exists a Nash equilibrium s∗
which is consistent with q. Let θ = (i1, . . . , in) be the
topological ordering of V chosen in line 1 of Algorithm
5. We argue that for all j ∈ {1, . . . , n}, s∗(ij) ∈ X(ij).
The claim follows easily for i1. Consider a node im and
suppose for all j < m, s∗(ij) ∈ X(ij). For c ∈ C, let
Nim(s∗, c) = {ik ∈ Nim | s∗(ik) = c}. Since s∗ is a Nash
equilibrium, s∗(im) is a best response to the choices made
by all nodes ik ∈ Nim . This implies that for all c �= s∗im ,
|Nim(s∗, c)|+β(ij , c) ≤ |Nim(s∗, s∗im)|+β(ij , s

∗
im
). Note

that |S| ≥ |Nim(s∗, s∗im)| and so c is not discarded in line 8.
Also, it guarantees the existence of a matching of size |Y ′|
at line 12 and thus s∗(im) ∈ X(im).

We claim that if the Hopcroft-Karp algorithm is used
for each matching at line 11, then Algorithm 5 runs in
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O(|G|2.5). First, for each node k, X(k) is in Y at most once
and so is matched at most once for each colour. We claim
that the worst case running time is for |Y | = |V |. Now, due
to lines 9-10 we have |S| + β(ij , c) − β(ij , c

′) ≤ |Y ′| =
O(n), so G′ at line 11 has O(nm) nodes and O(n · nm)
edges thus its matching takes O(

√
nm · n2m) time. �

Similarly Algorithm 6 solves the ∀NE problem.

Algorithm 6: Algorithm for ∀NE on unweighted DAGs
with out-degree ≤ 1.

Input: A coordination game G((V,E), C, β) and query
q : Q → M .

Output: YES if all Nash equilibria are consistent with
q and NO otherwise.

1 Topologically sort V into a sequence (i1, . . . , in).
2 for j := 1 . . . n do
3 X(ij) := the set of colours player ij can play in

any Nash equilibrium (lines 3-13 of Algorithm 5)
4 if ij ∈ Q and X(ij) �= {q(ij)} then
5 return NO

6 return YES

Theorem 9 Algorithm 6 solves the ∀NE problem for DAGs
with out-degree at most one in O(|G|2.5) time.

7 Conclusions

We presented coordination games on directed graphs, a nat-
ural subclass of polymatrix games. We focused on checking
whether a given partial colouring of a subset of the nodes is
consistent with some pure Nash equilibrium or, alternatively,
with all pure Nash equilibria. We showed these problems to
be NP-complete and coNP-complete, respectively, in gen-
eral. However, we also identified several natural cases when
these decision problems are tractable.

In the case of weighted DAGs with out-degree at most
one and colour complete graphs with no bonuses a sim-
ple reduction from the PARTITION problem and its comple-
ment, shows NP and coNP-hardness of their ∃NE and ∀NE
problems, respectively. This does not exclude the possibil-
ity that pseudo-polynomial algorithms exist for these prob-
lems. We conjecture that even for unweighted colour com-
plete graphs these problems are NP/coNP-hard in the pres-
ence of bonuses or when the set of colours, M , is not fixed.

There are several ways our results can be extended further.
One is to study other constraints, e.g. uniqueness of Nash
equilibrium or checking maximum payoff for a given player.
Another is to look at different solution concepts, e.g. strong
equilibria. And yet another is to look for more classes of
graphs that can be analysed in polynomial time. Given that
these decision problems are already computationally hard
for DAGs with three colours, the possibilities for such new
classes are rather limited.

Finally, we only focused on pure Nash equilibria in this
paper, which may not exist for general graphs. On the other
hand, mixed Nash equilibria always exist due to Nash’s theo-
rem. It would be interesting to know whether the complexity

of finding one is PPAD-complete problem just like it is for
general polymatrix games (Cai and Daskalakis 2011).
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