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Abstract

In the late 19th century, Lars Edvard Phragmén proposed
a load-balancing approach for selecting committees based
on approval ballots. We consider three committee vot-
ing rules resulting from this approach: two optimization
variants—one minimizing the maximal load and one mini-
mizing the variance of loads—and a sequential variant. We
study Phragmén’s methods from an axiomatic point of view,
focussing on justified representation and related properties
that have recently been introduced by Aziz et al. (2015a) and
Sánchez-Fernández et al. (2017). We show that the sequential
variant satisfies proportional justified representation, making
it the first known polynomial-time computable method with
this property. Moreover, we show that the optimization vari-
ants satisfy perfect representation. We also analyze the com-
putational complexity of Phragmén’s methods and provide
mixed-integer programming based algorithms for computing
them.

1 Introduction

An important part of multiagent systems research con-
cerns the study of preference aggregation mechanisms (e.g.,
Conitzer 2010). Recent years have witnessed an increasing
interest in committee voting rules (e.g., Elkind et al. 2014;
Skowron, Faliszewski, and Lang 2015; Aziz et al. 2015a;
Caragiannis et al. 2016). In this setting, a fixed-size subset
of alternatives has to be selected based on the preferences of
a group of agents. In this paper, we assume that the pref-
erences of individual agents are given by approval ballots,
specifying which alternatives are “approved” by the agents.

An important issue in group decision making is (propor-
tional) representation. Informally, an outcome of a decision
making process is representative if it reflects the preferences
of the members of the group. In the context of approval-
based committee elections, reasoning about representation
is non-trivial. Since approval sets may overlap arbitrarily,
there are many different ways in which the set of agents can
be split into more or less “cohesive” subgroups. Whether a
given subgroup has a justified claim to be represented in the
committee depends on the size of the subgroup as well as on
its level of cohesiveness.
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Aziz et al. (2015a) and Sánchez-Fernández et al. (2016;
2017) have identified axiomatic properties capturing the in-
tuitive notion that subgroups that are “large enough” and
“cohesive enough” deserve to be represented in the com-
mittee: justified representation (JR), proportional justified
representation (PJR), and extended justified representation
(EJR). While a number of standard committee voting rules
have been shown to satisfy the basic requirement of JR, it
turns out that the more demanding properties PJR and EJR
are much harder to satisfy. Essentially, the only rule that
is known to satisfy PJR and EJR is Proportional Approval
Voting (PAV), which was proposed by Danish polymath
Thorvald N. Thiele in the late 19th century (Thiele 1895;
Janson 2016). Unfortunately, PAV is NP-hard to compute.
It has therefore remained an open question whether com-
putationally tractable rules satisfying the more demanding
representation properties exist.

In this paper, we consider committee voting rules that
are due to Swedish mathematician Lars Edvard Phragmén
(1894; 1895; 1896; 1899). Although Phragmén’s methods
were proposed in the same era as PAV, they have received
considerably less attention. Variants of both Phragmén’s
methods and PAV have been used in Swedish parliamen-
tary elections (for distribution of seats within parties), and
a version of one of Phragmén’s methods is still part of the
election law, although in a minor role (Janson 2016).

Phragmén phrases committee elections as load balancing
problems: Adding a candidate to the committee incurs some
load, and this load should be shared among the agents ap-
proving this candidate. Phragmén suggests choosing com-
mittees in such a way that the corresponding load distri-
butions are as balanced as possible, and different ways of
measuring balancedness result in different optimization ob-
jectives. This approach yields two optimization variants, one
minimizing the maximal load and one minimizing the vari-
ance of loads, and one sequential variant, which proceeds by
greedily selecting candidates so as to keep the maximal load
as small as possible.

After briefly reviewing related work in Section 2 and in-
troducing some basic notation in Section 3, we formally
define Phragmén’s rules in Section 4. In Section 5, we
analyze the computational complexity of Phragmén’s rules
and we provide algorithms for computing them. The al-
gorithms for the optimization variants are based on mixed-
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integer linear and quadratic programming. In Section 6, we
consider the representation axioms mentioned above. We
show that the sequential variant satisfies PJR, making it the
first known polynomial-time computable method with this
property.1 Moreover, we show that the optimization variants
satisfy perfect representation (PR), a further representation
axiom introduced by Sánchez-Fernández et al. (2017). The
latter result provides a contrast to PAV, which is known to
violate PR. Omitted proofs can be found in the full version
of this paper.

2 Related Work

Proportional representation is an important issue in commit-
tee voting (see the influential paper by Monroe, 1995, and
the references therein) and methods ensuring representation
often lead to interesting computational problems (Potthof
and Brams 1998; Procaccia, Rosenschein, and Zohar 2008;
Lu and Boutilier 2011; Betzler, Slinko, and Uhlmann 2013).
In the setting of approval-based committee voting (Kil-
gour 2010), Aziz et al. (2015a) proposed two representa-
tion axioms: justified representation (JR) and its strengthen-
ing extended justified representation (EJR). Later, Sánchez-
Fernández et al. (2017) observed that EJR is not compatible
with what they call perfect representation (PR) and proposed
an axiomatic property, proportional justified representation
(PJR), that is. EJR implies PJR, which in turn implies JR.

Aziz et al. (2015a) and Sánchez-Fernández et al. (2017)
showed that most common committee voting rules fail EJR
and PJR. A notable exception is Thiele’s PAV, which satsfies
EJR (and thus PJR). Interestingly, variants of PAV based on
different weight vectors fail both EJR and PJR. The same is
true for a greedy approximation algorithm for PAV known
as sequential PAV or reweighted approval voting.

Computing the outcome of PAV is NP-hard (Skowron,
Faliszewski, and Lang 2015; Aziz et al. 2015b) and thus not
feasible in polynomial time unless P = NP. Therefore, it has
remained an open question whether there exist polynomial-
time computable rules satisfying EJR or PJR. Sánchez-
Fernández et al. (2017) have shown that the polynomial-time
computable Greedy Monroe rule satisfies PJR in the special
case where the committee size divides the number of voters
(but fails PJR in the general case).

3 Preliminaries

We consider a social choice setting with a finite set N =
{1, . . . , n} of voters and a finite set C of candidates.
Throughout the paper we let m = |C| denote the number
of candidates and n = |N | the number of voters. The pref-
erences of each voter i ∈ N are given by a subset Ai ⊆ C,
representing the subset of candidates that the voter approves
of. We refer to the list A = (A1, . . . , An) as the preference
profile. For a candidate c ∈ C, we let Nc denote the set of
voters approving c, i.e., Nc = {i ∈ N : c ∈ Ai}. To avoid
trivialities, we assume that Nc �= ∅ for all c ∈ C.

1In simultaneous and independent work, Sánchez-Fernández,
Fernández, and Fisteus (2016) have introduced another method that
satisfies PJR and is computable in polynomial time.

We want to select a subset consisting of exactly k candi-
dates, for a given natural number k ≤ m. An approval-
based multi-winner voting rule (henceforth simply rule)
maps an instance (A, k) to a subset S ⊆ C of size k, the
committee. In general, there may be ties, and we then allow
the rule to yield several choices, so formally the rule is a
map from instances to non-empty sets of committees.

Finally, for a tuple of real numbers z = (z1, . . . , zn), we
let z(�) denote the �-th largest element in z.

4 Phragmén’s Methods

The main idea behind Phragmén’s methods is to identify
committees whose “support” is distributed as evenly as pos-
sible among the electorate. Phragmén used different formu-
lations for explaining his methods; we refer the reader to the
survey by Janson (2016) for an overview and more details.
In this paper, we adopt the formulation from the 1899 paper
(Phragmén 1899). In this formulation, every candidate in
the committee is thought of as incurring one unit of “load,”
and the load incurred by candidate c needs to be distributed
among the voters in Nc. The goal is to find a committee
of size k for which the corresponding load distribution is as
balanced as possible.

Formally, a load distribution is a two-dimensional array
x = (xi,c)i∈N,c∈C satisfying the following four conditions:

0 ≤ xi,c ≤ 1 for all i ∈ N and c ∈ C (1)
xi,c = 0 if c /∈ Ai (2)∑
i∈N

∑
c∈C

xi,c = k (3)

∑
i∈N

xi,c ∈ {0, 1} for all c ∈ C (4)

Here, xi,c corresponds to the load that voter i receives from
candidate c. Condition (2) ensures that the load incurred
by candidate c is distributed among voters in Nc only, and
Conditions (3) and (4) ensure that x corresponds to a size-k
committee {c ∈ C :

∑
i∈N xi,c = 1}.

For a load distribution x, we let x̄i denote the total load
of voter i ∈ N , i.e., x̄i =

∑
c∈C xi,c, and we refer to

(x̄1, . . . , x̄n) as the vector of voter loads. Using this no-
tation, Condition (3) reads

∑
i∈N x̄i = k. Note that Condi-

tion (3) implies that the average voter load is k
n .

There are different ways to measure how balanced a given
load distribution is, each giving rise to a different optimiza-
tion objective. One such objective is to minimize the max-
imal load assigned to a voter, i.e., minx maxi∈N x̄i. (This
is equivalent to minimizing the maximal difference between
a voter load and the average voter load.) Obviously, the av-
erage voter load k

n is a lower bound on the maximal voter
load, and we call a load distribution x perfect if x̄i =

k
n for

all i ∈ N . Another objective is to minimize the variance of
voter loads, i.e., the sum of squared distances from the aver-
age voter load. Again, a perfect load distribution is optimal
for this objective.

We further distinguish between “optimization” methods,
where we solve a global optimization problem to find a load
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distribution optimizing the objective, and “sequential” meth-
ods, where we iteratively construct a load distribution, in
each round greedily choosing a candidate optimizing the ob-
jective at that iteration.

In this paper, we consider three rules: the optimization
methods max-Phragmén and var-Phragmén—minimizing
the maximal voter load and the variance of voter loads,
respectively—and the sequential method seq-Phragmén,
which greedily minimizes the maximal voter load. The
method seq-Phragmén was introduced by Phragmén (1894;
1895; 1896; 1899), and it is the variant that he proposed to
be used in actual elections. Phragmén defined this method
as a generalization of D’Hondt’s apportionment method to
the case without party lists: for every instance of the party-
list setting, seq-Phragmén and D’Hondt’s method coincide
(Phragmén 1895; Janson 2016; Brill, Laslier, and Skowron
2017). Optimization variants and the objective of minimiz-
ing the variance are discussed in the 1896 paper (Phragmén
1896). Despite their intuitive appeal, Phragmén’s methods
have received little attention in the social choice literature.2

4.1 Optimization Variants

We first define the optimization variants.
max-Phragmén: The rule max-Phragmén selects commit-
tees minimizing the maximal voter load. In case that two
or more committees have the same (minimal) maximal load,
we employ a specific tie-breaking. This is because it might
be the case that for two load distributions x and y, although
maxi∈N x̄i = maxi∈N ȳi, one load distribution is clearly
preferable to the other.

Example 1. Consider A = ({a}, {a}, {b}, {c}) and k = 2.
Any committee of size 2 contains either b or c, which are
approved by only one voter each, so the maximum load is
1 for all committees. Thus, all subsets of size 2 minimize
the maximal voter load, although arguably the committees
containing a are preferable to the committee {b, c}.

Thus, to refine the set of winning committees, we com-
pare two committees in the following way.

Definition 1. For y = (y1, . . . , yn) and z = (z1, . . . , zn),
y is leximax-smaller than z, denoted y <̇ z, if there exists
j ≤ n such that y(j) < z(j) and y(i) = z(i) for all i ≤ j− 1.

max-Phragmén selects all committees corresponding to
load distributions (x̄1, . . . , x̄n) that are leximax-optimal,
i.e., minimal with respect to <̇. As we will see in Sec-
tion 6.3, this tie-breaking is necessary in order to guarantee
strong representation properties.

Rather than minimizing the maximum load, one could
also aim to (lexicographically) maximize the minimal voter
load. This variant of Phragmén’s method would select
committees minimizing the number of unrepresented voters,
even in the face of large cohesive groups of voters. There-
fore, this method will not do well in terms of the representa-
tion axioms considered in Section 6. For this reason, we do
not consider it further in this paper.

2Notable exceptions are a survey by Janson (2012) (in Swedish)
and a paper by Mora and Oliver (2015) (in Catalan).

var-Phragmén: The rule var-Phragmén selects committees
corresponding to load distributions minimizing

∑
i∈N x̄ 2

i .
Minimizing the sum of squares of (x̄1, . . . , x̄n) indeed min-
imizes the variance of (x̄1, . . . , x̄n), as is well-known.

The following example demonstrates that the maximal
voter load under var-Phragmén may indeed be greater than
under max-Phragmén.
Example 2. Let C = {a, b, c, d}, k = 3, and consider the
profile A = ({a}, {b}, {b, c}, {a, b, c}, {d}). For this in-
stance, max-Phragmén selects the committee {a, b, c} and
var-Phragmén selects the committee {a, b, d}. Optimal load
distributions corresponding to these committees are illus-
trated in Figure 1. Load distributions minimizing the maxi-
mal voter load (like the one illustrated by the first diagram in
Figure 1) satisfy maxi∈N x̄i =

3
4 and

∑
i∈N x̄2

i = 4( 34 )
2 =

9
4 , and the load distribution minimizing the variance of voter
loads (illustrated by the second diagram in Figure 1) satis-
fies maxi∈N x̄i = 1 and

∑
i∈N x̄2

i = 4( 12 )
2 + 12 = 2.

4.2 Sequential Method

We now introduce the sequential method.
seq-Phragmén: The rule seq-Phragmén starts with an
empty committee and iteratively adds candidates, always
choosing the candidate that minimizes the (new) maximal
voter load. Let x̄(j)

i denote the voter loads after round j. At
first, all voters have a load of 0, i.e., x̄(0)

i = 0 for all i ∈ N .
As a first candidate we select one that is supported by most
voters as it is the one that increases the maximal load the
least. In the next round, we again choose a candidate that
induces a (new) maximal voter load that is as small as pos-
sible, but now we have to take into account that some voters
already have a non-zero load. The new maximal load if c is
chosen as the (j + 1)-st committee member is calculated as

s(j+1)
c =

1 +
∑

i∈Nc
x̄
(j)
i

|Nc| . (5)

This is because we distribute the load of 1 among all vot-
ers in Nc in such a way that all these voters have the same
voter load afterwards. Let c be the candidate that minimizes
s
(j+1)
c among those that are not yet in the committee.3 Then

we add c to the committee and set

x̄
(j+1)
i =

{
s
(j+1)
c if i ∈ Nc

x̄
(j)
i otherwise.

(6)

It follows that
∑

i∈N x̄
(j+1)
i = j + 1. After k iterations, we

have obtained a load distribution and a committee.
The definitions ensure that voter loads never decrease, i.e.,

x̄
(j+1)
i ≥ x̄

(j)
i for all i ∈ N and all j < k. This is because

a candidate minimizing the new maximal load is selected in
each round. If the selection of candidate c in round j+1 led
to a load distribution x(j+1) with s

(j+1)
c = x̄

(j+1)
i < x̄

(j)
i

for some i ∈ Nc, then candidate c would have been selected
in an earlier round, a contradiction. (See also Lemma 5(i).)

3If there are several candidates minimizing s
(j+1)
c , we use a

fixed tie-breaking rule to decide which candidate to add.

408



a

b
c

a b c

0 1
4

1
2

3
4

A1 = {a}
A2 = {b}

A3 = {b, c}
A4 = {a, b, c}

A5 = {d}

a

b

b
a

d

0 1
2

1

a

b

b c

b a c

1
3

2
3

0 1

a

b

b

b a

d

1
3

2
3

0 1

Figure 1: Illustration of Examples 2 and 3. From left to right: The first diagram illustrates a load distribution minimizing the
maximal voter load maxi∈N x̄i; the second diagram illustrates the unique load distribution minimizing

∑
i∈N x̄2

i ; the third and
fourth diagrams illustrate the load distributions obtained by seq-Phragmén with ties broken in favor of c or d, respectively.

Phragmén (1899) illustrates his sequential method by
imagining the different groups of ballots as represented by
cylindrical vessels, with base area proportional to the num-
ber of ballots in each group. The already elected candidates
are represented by a liquid that is fixed in the vessels, and
the additional unit of load incurred by adding another can-
didate to the committee is represented by pouring 1 unit of
a liquid into the vessels representing voters approving this
candidate. The liquid then distributes among these vessels
such that the height of the liquid is the same in all vessels.
This is to be tried for each candidate; the candidate that re-
quires the smallest height is elected, and the corresponding
amounts of liquid are added to the vessels and fixed there.

The sequential method seq-Phragmén can be seen as a
(polynomial-time computable) heuristic to approximate the
optimization method max-Phragmén. Unsurprisingly, the
load distribution constructed by seq-Phragmén might not be
optimally balanced.
Example 3. Consider again the instance from Example 2.
We have s

(1)
b = 1

3 , s(1)a = s
(1)
c = 1

2 , and s
(1)
d = 1. There-

fore, candidate b is chosen in the first round. In the sec-
ond round, we have s

(2)
a = 2

3 , s(2)c = 5
6 and s

(2)
d = 1, so

candidate a is chosen. In the third round, there is a tie be-
tween c and d because s(3)c = s

(3)
d = 1. Thus, the final com-

mittee is either {a, b, c} or {a, b, d}, depending on which
tie-breaking method is used. Figure 1 illustrates the result-
ing load distributions, both of which are suboptimal for the
optimization problems corresponding to max-Phragmén and
var-Phragmén.

One can also define a sequential version of var-Phragmén,
by in each iteration selecting a candidate minimizing the
variance of the resulting load distribution (Mora 2016). This
variant does not fare well in terms of the representation ax-
ioms considered in Section 6, and we therefore do not con-
sider it any further.

5 Computational Aspects
In this section, we study the computational complexity of
Phragmén’s methods, and we provide algorithms for finding
winning committees. Sánchez-Fernández et al. (2017) have
shown that every rule satisfying perfect representation (see
Section 6) is NP-hard; this essentially follows from earlier
work by Procaccia, Rosenschein, and Zohar (2008). Since
we show that max-Phragmén and var-Phragmén both satisfy

this condition (Theorems 8 and 11), it follows that there do
not exist polynomial-time algorithms for computing a com-
mittee for either of these rules, unless P = NP.

We complement these hardness results by consider-
ing two basic decision problems. MAX-PHRAGMÉN asks
whether an instance allows a load distribution x such
that (x̄1, . . . , x̄n) <̇ (y1, . . . , yn) for some given n-tuple
(y1, . . . , yn). And VAR-PHRAGMÉN asks whether an in-
stance allows a load distribution x such that

∑
i∈N x̄ 2

i < α
for some given threshold value α > 0. Both problems can
be interpreted as asking whether a given load distribution is
optimal. We show that both problems are NP-complete even
for rather restricted instances. For a preference profile A, let
s(A) denote the maximum number of candidates a voter ap-
proves, and let d(A) denote the maximum number of voters
that approve a candidate.

Theorem 1. MAX-PHRAGMÉN, and VAR-PHRAGMÉN are
NP-complete, even restricted to instances with s(A) = 2
and d(A) = 3.

We now turn to algorithms for computing Phragmén’s
rules. First, we show how the outcome of max-Phragmén
can be computed with the help of mixed-integer linear pro-
grams (MILPs). We start by formulating an MILP that
solves the decision problem MAX-PHRAGMÉN. We use the
variables xi,c (for i ∈ N , c ∈ C), ei,j (for i, j ∈ N ), si
(for i ∈ N ), tj (for j ∈ N ), and ε. For a given n-tuple
y = (y1, . . . , yn) of real numbers, let P(y) be the MILP
that maximizes ε under the constraints (1)–(4) and (7)–(14).

ei,j ∈ {0, 1} for all i, j ∈ N (7)
si ∈ {0, 1} for all i ∈ N (8)
tj ∈ {0, 1} for all j ∈ N (9)

si +
∑
j∈N

ei,j = 1 for all i ∈ N (10)

tj +
∑
i∈N

ei,j ≤ 1 for all j ∈ N (11)

∑
j∈N

tj = 1 for all i ∈ N (12)

x̄i − k(1− ei,j) ≤ yj for all i, j ∈ N (13)
x̄i − k(2− si − tj) ≤ yj − ε for all i, j ∈ N (14)
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The main idea of this MILP is as follows: The variables
ei,j encode a partial bijection π from a subset of N to a sub-
set of N ; the variables si encode the subset S ⊆ N where π
is not defined; and the variables tj encode t ∈ N , an index
of an element in {yj : j /∈ range(π)}. Constraint (10) en-
codes the relation between π and S: for every i ∈ N , either
si = 1 or ei,j = 1 for some j ∈ N . In a similar fashion,
constraint (11) encodes the relation between π and t: for ev-
ery i ∈ N , ti = 1 only if ei,j = 0 for all j ∈ N . Together
with constraint (12), we enforce that there exists exactly one
j ∈ N such that tj = 1. Hence at least one voter has a load
strictly smaller than yt and (x̄1, . . . , x̄n) <̇ (y1, . . . , yn).

The final two constraints ensure that indeed
(x̄1, . . . , x̄n) <̇ (y1, . . . , yn). From constraint (13) it
follows that x̄i ≤ yj whenever π(i) = j. This is
because if ei,j = 0 (i.e., π(i) �= j), constraint (13)
reduces to x̄i − k ≤ yj , which is trivially satisfied
because every load distribution x satisfies x̄i ≤ k for
all i ∈ N . If ei,j = 1 (i.e., π(i) = j), however, con-
straint (13) reads x̄i ≤ yj . Similarly, constraint (14)
enforces that xi ≤ yt − ε ≤ maxj∈N\range(π) yj − ε for
i ∈ S. As we maximize ε, we look for a solution where
xi < maxj∈N\range(π) yj . We conclude that a feasible
solution with objective function value ε > 0 encodes a load
distribution x with (x̄1, . . . , x̄n) <̇ (y1, . . . , yn). Observe
that P(y) solves the MAX-PHRAGMÉN decision problem:
given voter loads y, P(y) returns ε > 0 if and only if
MAX-PHRAGMÉN with input y is a Yes-instance.

We now present an MILP-based algorithm that computes
the outcome of max-Phragmén. Our algorithm solves a se-
quence of at most 2n instantiations of the MILP P, using
the optimal solutions of previously solved instances as con-
straints for subsequent calls. We assume that P returns the
load distribution x and the objective function value ε. For an
overview of the procedure, see Algorithm 1.

Algorithm 1: Computing max-Phragmén

y ← (k, 0, . . . , 0)

for � = 1 . . . n do

x, ε ← P(y)
x̄ ← (x̄1, . . . , x̄n) // x̄(1), . . . , x̄(�) optimal

if ε = 0 then // no improvement

x′, ε′ ← P(x̄)
if ε′ = 0 then // x̄ optimal

return {c ∈ C :
∑

i∈N xi,c = 1}
y ← (x̄(1), . . . , x̄(�+1), 0, . . . , 0)

return {c ∈ C :
∑

i∈N xi,c = 1}

We start with y = (k, 0, . . . , 0), an n-tuple consist-
ing of one k and n − 1 zeroes. We employ P to find a
strictly better solution. The only entry of y that can be im-
proved is y(1) = k and hence the solution x returned by
P minimizes the largest load; let x̄(1) be the largest load
and x̄(2) the second-largest. We repeat this procedure with

y = (x̄(1), x̄(2), 0, . . . , 0). We already know that x̄(1) is
optimal and cannot be further decreased (and 0 cannot be
improved), hence the next P instance minimizes the second-
largest load. We iterate this process and in step � guarantee
that the �-th largest load is optimal. If at some point P re-
turns ε = 0, we verify whether the current solution is op-
timal: if P(x̄) also returns ε = 0, the load distribution x is
indeed optimal and the algorithm terminates. In any case Al-
gorithm 1 returns {c ∈ C :

∑
i∈N xi,c = 1}, the committee

corresponding to the load distribution x.
We have therefore proven the following result.

Theorem 2. max-Phragmén can be computed by solving at
most 2n mixed-integer linear programs with O(nm + n2)
variables.

To compute var-Phragmén, we solve a mixed-integer
quadratic program, i.e., a program consisting of linear con-
straints and a quadratic optimization statement.

Theorem 3. var-Phragmén can be computed by solving one
mixed-integer quadratic program with O(nm) variables.

Finally, we study the runtime for computing seq-
Phragmén. A naive estimate is that seq-Phragmén can be
computed in O(kmn) time. This estimate ignores the cost
of computing the quantities s

(j)
c , i.e., numerical operations

are assumed to require constant time. While this is a sensi-
ble assumption in many cases, here it is questionable since
computing s

(j)
c exactly requires fractions with large numer-

ators and denominators. Indeed, the denominator of s(j)c can
grow exponentially with j. Hence, the following theorem
also takes the complexity of these operations into account.

Theorem 4. The output of seq-Phragmén can be computed
in O(k3mn(log n)2) time.

6 Phragmén’s Methods and Representation

In this section, we study which representation axioms are
satisfied by Phragmén’s methods. Our results are summa-
rized in Table 1. Particularly noteworthy are the results that
seq-Phragmén satisfies PJR and that max-Phragmén and var-
Phragmén satisfy PR.

6.1 Justified Representation Axioms

We start by restating the definitions of Aziz et al. (2015a)
and Sánchez-Fernández et al. (2017).

Definition 2. A committee S ⊆ C with |S| = k provides

• justified representation (JR) if there does not exist a set
N∗ ⊆ N of voters with |N∗| ≥ n

k , |⋂i∈N∗ Ai| ≥ 1 and
|S ∩Ai| = 0 for all i ∈ N∗.

• proportional justified representation (PJR) if there does
not exist an integer � > 0 and a set N∗ ⊆ N of voters with
|N∗| ≥ �nk , |⋂i∈N∗ Ai| ≥ � and |S ∩ (

⋃
i∈N∗ Ai)| < �.

• extended justified representation (EJR) if there does not
exist an integer � > 0 and a set N∗ ⊆ N of voters with
|N∗| ≥ �nk , |⋂i∈N∗ Ai| ≥ � and |S ∩ Ai| < � for all
i ∈ N∗.
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JR PJR EJR PR

seq-Phr. �(Cor. 7) �(Th. 6) – (Ex. 5) – (Ex. 4)
max-Phr. �(Cor. 10) �(Th. 9) – (Ex. 4) �(Th. 8)
var-Phr. �(Th. 12) – (Ex. 6) – (Ex. 4) �(Th. 11)

Table 1: Phragmén’s methods and representation axioms

A rule f satisfies JR (respectively, PJR or EJR) if, for every
instance (A, k), every committee S ∈ f(A, k) provides JR
(respectively, PJR or EJR).

It follows immediately from the definitions that a rule sat-
isfying EJR also satisfies PJR, and that a rule satisfying PJR
also satisfies JR.

The following definition is due to Sánchez-Fernández et
al. (2017).
Definition 3. Consider an instance (A, k) so that k divides
n = |N |. A committee S = {c1, . . . , ck} ⊆ C provides per-
fect representation if there exists a partition of the set N of
voters into k pairwise disjoint subsets N1, . . . , Nk such that,
for all j ∈ {1, . . . , k}, |Nj | = n

k and cj ∈ ⋂
i∈Nj

Ai. Let
PR(A, k) denote the set of all committees providing perfect
representation for the instance (A, k). A rule f satisfies per-
fect representation (PR) if, for every instance (A, k) where k
divides n and PR(A, k) �= ∅, we have f(A, k) ⊆ PR(A, k).

The following example, which also appears in the papers
by Aziz et al. (2015a) and Sánchez-Fernández et al. (2017),
illustrates the requirements of the different axioms.
Example 4. Let C = {a, b, c, d, e, f} and consider the 8-
voter preference profile given by A1 = {a}, A2 = {b},
A3 = {c}, A4 = {d}, A5 = {a, e, f}, A6 = {b, e, f},
A7 = {c, e, f}, A8 = {d, e, f}. Let k = 4 and assume
that ties are broken alphabetically. Then, seq-Phragmén
chooses e, f , a, and b (in this order). The final loads are
(x̄1, . . . , x̄8) = ( 34 ,

3
4 , 0, 0,

3
4 ,

3
4 ,

1
2 ,

1
2 ). This is indeed not

optimal as there is a perfect load distribution y with ȳi =
1
2

for all i ∈ N . The corresponding committee {a, b, c, d} is
selected by both max-Phragmén and var-Phragmén.

Consider the group of voters N∗ = {5, 6, 7, 8}, of size
�nk = 2 8

4 = 4, where � = 2. Since the voters all approve
candidates e and f , a set of size � = 2, the conditions for
JR, PJR, and EJR all bind. JR requires that at least one
candidate approved by at least one voter in N∗ is chosen.
PJR requires that at least 2 candidates are chosen that are
each supported by at least one voter from N∗, while EJR re-
quires that some voter from N∗ is represented twice. Thus,
EJR dictates that either e or f is chosen. On the other hand,
the only committee providing PR is {a, b, c, d}. As a con-
sequence, no rule can satisfy both PR and EJR. Note that
max-Phragmén and var-Phragmén both violate EJR in this
example, and that seq-Phragmén violates PR.

The incompatibility of PR and EJR was first observed by
Sánchez-Fernández et al. (2017).

6.2 Results for seq-Phragmén

In this section we establish our main result: seq-Phragmén
satisfies proportional justified representation.

We need the following notation. For the commit-
tee S that is selected by seq-Phragmén (using a fixed tie-
breaking rule), we can relabel the candidates such that S =
{c1 . . . , ck} and candidate cj was chosen in round j. Then,
we have cj = argminc∈C\{c1,...,cj−1} s

(j)
c . Using this con-

vention, we define s(j) = s
(j)
cj . That is, s(j) is the new load

of all voters in Ncj after candidate cj is added to the com-
mittee in round j. We call (s(1), . . . , s(k)) the max-load se-
quence. (Note that different tie-breaking rules can lead to
different max-load sequences.)

The following lemma has two parts. The first part states
that the max-load sequence is monotonically increasing.
The second part states that, when computing the optimal
distribution of the load of a candidate c among its voters,
it never helps to restrict attention to a subset N ′ ⊂ Nc.

Lemma 5. Fix an instance (A, k).

(i) The max-load sequence satisfies s(1) ≤ . . . ≤ s(k).
(ii) For a candidate c ∈ C, a subset N ′ ⊆ Nc, and j ≤ k,

let s(j)c [N ′] denote the maximal voter load after opti-
mally distributing the load of c among all voters in N ′.
Then, s(j)c [Nc] ≤ s

(j)
c [N ′] for all N ′ ⊆ Nc.

We are now ready to prove our main theorem.

Theorem 6. seq-Phragmén satisfies PJR.

Proof. PJR requires that |S∩(⋃i∈N∗ Ai)| ≥ � for all groups
N∗ ⊆ N of voters satisfying |N∗| ≥ �nk and |⋂i∈N∗ Ai| ≥
� for some integer � > 0. We show that seq-Phragmén satis-
fies a strictly stronger property by weakening the constraint
|N∗| ≥ �nk to |N∗| > � n

k+1 .
Consider an instance (A, k) and let S be the committee

selected by seq-Phragmén. Assume for contradiction that
there exists a group N∗ ⊆ N of voters and an integer � > 0
with |N∗| > � n

k+1 such that |⋂i∈N∗ Ai| ≥ � and |S ∩
(
⋃

i∈N∗ Ai)| ≤ �− 1.
Let c ∈ (

⋂
i∈N∗ Ai) \ S and consider round k (the last

round) of the seq-Phragmén procedure. Adding candidate c
to the committee would have caused a maximal voter load
of

s(k)c =
1 +

∑
i∈Nc

x̄
(k−1)
i

|Nc| ≤ 1 +
∑

i∈N∗ x̄
(k−1)
i

|N∗|
≤ 1 + (�− 1)

|N∗| =
�

|N∗| <
k + 1

n
.

Here, the first inequality follows from part (ii) of Lemma 5
(observe that N∗ ⊆ Nc), the second inequality follows from
|S ∩ (

⋃
i∈N∗ Ai)| ≤ �− 1, and the strict inequality follows

from |N∗| > � n
k+1 .

Let ck be the candidate that was chosen in round k. Since
candidate c was not chosen, we have c �= ck and s

(k)
ck ≤ s

(k)
c .

Using part (i) of Lemma 5, we have s(1) ≤ . . . ≤ s(k) =

s
(k)
ck ≤ s

(k)
c < k+1

n . In particular, this implies that at the end
of round k, every voter i ∈ N has a load x̄

(k)
i that is strictly
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less than k+1
n . Summing the loads over all voters, we get∑

i∈N

x̄
(k)
i =

∑
i∈N∗

x̄
(k)
i +

∑
i∈N\N∗

x̄
(k)
i

≤ (�− 1) + |N \N∗| · s(k)

< �− 1 +
n

k + 1
(k + 1− �)

k + 1

n
= k,

where we have used the fact that |N \N∗| ≤ n
k+1 (k+1−�).

But
∑

i∈N x̄
(k)
i < k is a contradiction, because the sum of

all voter loads (at the end of the seq-Phragmén procedure)
must equal k. This completes the proof.

A consequence of Theorem 6 is that a committee provid-
ing PJR can be computed in polynomial time. We note that
the proof of Theorem 6 shows that seq-Phragmén satisfies a
property that is strictly stronger than PJR, because the con-
straint on the size of group N∗ has been relaxed.

As an immediate corollary of Theorem 6, we obtain that
seq-Phragmén satisfies JR.

Corollary 7. seq-Phragmén satisfies JR.

However, seq-Phragmén violates EJR, as the following
example demonstrates.

Example 5. Consider the following instance with n = 24,
k = 12, and C = {a, b, c1, c2, . . . , c12}.

2× {a, b, c1} 6× {c1, c2, . . . , c12}
2× {a, b, c2} 5× {c2, c3, . . . , c12}

9× {c3, c4, . . . , c12}
seq-Phragmén selects S = {c1, c2, . . . , c12}. To see that S
does not provide EJR, consider the group N∗ consisting of
the four voters on the left. We have |N∗| = 4 = 2n

k and
|⋂i∈N∗ Ai| = |{a, b}| = 2. Therefore, EJR requires that at
least one voter in N∗ approves at least 2 candidates in S,
which is not the case.

Therefore, it remains an open problem whether an com-
mittee providing EJR can be computed in polynomial time.

Note that seq-Phragmén also fails PR (see Example 4).
This is not surprising, considering that PR is computation-
ally intractable (Sánchez-Fernández et al. 2017).

6.3 Results for max-Phragmén

In Example 4, max-Phragmén selects the committee pro-
viding perfect representation. We now show that max-
Phragmén satisfies PR in general.

Theorem 8. max-Phragmén satisfies PR.

The proof consists of (1) observing that the existence of
a committee providing PR implies the existence of a perfect
load distribution, and (2) showing that every perfect load dis-
tribution corresponds to a committee providing PR. For the
latter, we invoke the Birkhoff–von-Neumann theorem.

Since EJR is incompatible with PR (see Example 4), max-
Phragmén fails EJR. However, it satisfies property PJR.

Theorem 9. max-Phragmén satisfies PJR.

The proof is by contradiction. Assuming that there is a co-
hesive group N∗ such that not enough candidates approved
by voters in N∗ are in the committee, the corresponding load
distribution can be improved upon (with respect to leximax
comparisons) by shifting load from N \N∗ to N∗.
Corollary 10. max-Phragmén satisfies JR.

We note that Example 1 shows that simply minimizing
the maximal voter load (without leximax tie-breaking; see
Definition 1) does not even yield committees satisfying JR.

6.4 Results for var-Phragmén

The proof of Theorem 8 directly applies to var-Phragmén.
Theorem 11. var-Phragmén satisfies PR.

Unlike max-Phragmén, var-Phragmén fails PJR.
Example 6. Consider the following example with 100 vot-
ers, C = {a, b, c, d, e, f, g}, and k = 6. 67 voters ap-
prove {a, b, c, d}, 12 voters approve {e}, 11 voters approve
{f}, and 10 voters approve {g}. Let N∗ be the set of vot-
ers approving {a, b, c, d}. We have |N∗| = 67 ≥ 4n

k and
|⋂i∈N∗ Ai| = 4. Thus, PJR requires that all four candi-
dates in

⋂
i∈N∗ Ai = {a, b, c, d} are selected. However,

var-Phragmén selects {a, b, c, e, f, g}.
Example 6 also shows that the sequential version of var-

Phragmén violates PJR. Example 6 is an instance of the
party-list setting (with four disjoint parties). An alterna-
tive proof that var-Phragmén violates PJR consists in not-
ing that in the party-list setting, var-Phragmén reduces to
Sainte-Laguë’s apportionment method (Sainte-Laguë 1910),
and PJR is equivalent to lower quota (Brill, Laslier, and
Skowron 2017; Sánchez-Fernández, Fernández, and Fisteus
2016). It is well known that Sainte-Laguë’s method violates
lower quota (Balinski and Young 1982).

Finally, we prove that var-Phragmén satisfies JR.
Theorem 12. var-Phragmén satisfies JR.

7 Conclusion
We have shown that Phragmén’s load-balancing methods
satisfy interesting representation axioms. In particular, the
polynomial-time computable variant seq-Phragmén satisfies
PJR. Moreover, we have shown that both max-Phragmén
and var-Phragmén satisfy PR and that max-Phragmén ad-
ditionally satisfies PJR. Arguably, max-Phragmén is the first
known example of a “natural” rule satisfying both PR and
PJR—the only other rule known to satisfy these two prop-
erties is an artificial construct that returns a PR committee
if one exists and otherwise runs PAV (Sánchez-Fernández et
al. 2017). The Monroe rule (i.e., the optimization variant
of Greedy Monroe) satisfies PR by definition, but fails PJR
if the committee size does not divide the number of voters
(Sánchez-Fernández et al. 2017).

Since seq-Phragmén violates EJR, it remains an open
problem whether committees providing EJR can be com-
puted efficiently. The intricate nature of Example 5 seems
to suggest that instances on which seq-Phragmén violates
EJR are rare. It would be interesting to see whether seq-
Phragmén satisfies EJR for realistic distributions of prefer-
ences and/or for reasonable domain restrictions.
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