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Abstract

In various matching market settings, such as hospital-doctor
matching markets (Hatfield and Milgrom 2005), the existence
of stable outcomes depends on substitutability of preferences.
But can these stable matchings be computed efficiently, as in
the one-to-one matching case? The algorithm of (Hatfield and
Milgrom 2005) requires efficient implementation of a choice
function over substitutable preferences. We show that even
given efficient access to a value oracle or preference relation
satisfying substitutability, exponentially many queries may be
required in the worst case to implement a choice function. In-
deed, this extends to examples where a stable matching re-
quires exponential time to compute.
We characterize the computational complexity of stable
matchings by showing that efficient computation of a choice
function is equivalent to efficient verification—determining
whether or not, for a given set, the most preferred subset is
the entire set itself. Clearly, verification is necessary for com-
putation, but we show that it is also sufficient: specifically,
given a verifier, we design a polynomial-time algorithm for
computing a choice function, implying an efficient algorithm
for stable matching. We then show that a verifier can be im-
plemented efficiently for various classes of functions, such as
submodular functions, implying efficient stable matching al-
gorithms for a broad range of settings. We also investigate the
effect of ties in the preference order, which causes complica-
tions both in defining substitutes and in computation. In this
case, we tightly connect the computational complexity of the
choice function to a measure on the number of ties.

Introduction

Ever since the seminal work of (Gale and Shapley 1962), sta-
ble matching has been intensively studied in both economics
and algorithms. Applications have ranged from school
matching (Abdulkadiroglu and Sönmez 2003; Abdulka-
diroğlu, Pathak, and Roth 2005; Gale and Shapley 1962),
hospital-resident matching (Irving and Manlove 2009; Irv-
ing, Manlove, and Scott 2000; Roth 1996), to kidney ex-
change programs (Abraham, Blum, and Sandholm 2007;
Roth, Sonmez, and Unver 2003; Roth, Sönmez, and Ünver
2005).

In the standard one-to-one stable matching model (Gale
and Shapley 1962), there is a set of pianists and a set of
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violinists looking to form duets. Each agent has a prefer-
ence relation over a subset of the other instrument’s play-
ers and prefers to stay unmatched rather than be matched
with an agent outside this subset. An algorithm takes every
agent’s preference list as input and outputs a matching. A
matching generated by the algorithm is stable if no pair of
agents prefer to match with each other over their designated
partners and no matched agent prefers being unmatched.
Gale and Shapley (1962) proposed the deferred-acceptance
or “Gale-Shapley” algorithm to compute a stable matching
in quadratic time. The algorithm (violinist-proposing ver-
sion) proceeds in multiple rounds. In each round, each vi-
olinist makes a proposal to her favorite pianist who has not
rejected her yet; and each pianist keeps her favorite proposal
and rejects all others. The algorithm iterates until no further
proposal can be made.

A more complex setting is many-to-one matching such
as in hospital-doctor matching markets (Roth and Peranson
1997; Roth and Xing 1997; Niederle and Roth 2005). Here,
there is a set of hospitals and a set of doctors. Each hos-
pital has a preference list over the subsets of doctors while
each doctor has a preference list over the set of hospitals. A
matching is stable if for each hospital, there exists no subset
of doctors that the hospital prefers over its currently allo-
cated subset such that all those doctors prefer to move to
that hospital over their assigned one. Unlike in one-to-one
settings, the existence of a stable matching is not generally
guaranteed in a many-to-one scenario. Substitutable prefer-
ences, introduced by Roth (1984), have been shown to be a
necessary and sufficient condition to guarantee the existence
of a stable outcome in many-to-one settings (Roth 1984;
Hatfield and Kojima 2008; Hatfield and Kominers 2011).
Substitutes, intuitively, imply that each doctor can become
only less desirable when more choices become available.
It is a natural assumption when, for instance, doctors have
overlapping skill sets. Substitutability has also been studied
extensively in consumer theory (Hanemann 1984) and auc-
tion theory (Milgrom and Strulovici 2009).

Choice functions and many-to-one matchings. Under sub-
stitutable preferences, Hatfield and Milgrom (2005) de-
signed a generalized Gale-Shapley algorithm to compute a
stable many-to-one matching and proved the induced mech-
anism is incentive-compatible for doctors in the doctor-
proposing version of the algorithm.
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This landmark work initiated a chain of related research
in Internet advertising (Edelman, Ostrovsky, and Schwarz
2007), supply chain networks (Ostrovsky 2008), and school
admissions (Abdulkadiroglu et al. 2006). The algorithm
(doctor-proposing version) proceeds in multiple rounds. In
each round, each doctor makes an offer to her favorite hos-
pital that has not rejected her yet; and each hospital keeps its
favorite subset of doctors from its previous set and the new
proposals, rejecting all others. The algorithm iterates until
no further offer can be made. Hatfield and Milgrom (2005)
showed that under substitutable preferences of hospitals,
this algorithm converges to a stable matching in quadrati-
cally many iterations in the number of doctors and hospitals.
However, they assume that an oracle to the choice function
exists: in every iteration, each hospital can query the ora-
cle to determine its favorite subset of doctors among those
currently proposing to it.

In this paper, we analyze the computational complexity
of implementing the choice function for a single hospital
under substitutable preferences in order to understand the
complexity of the generalized Gale-Shapley algorithm. We
make the minimum assumption that a preference relation
can be accessed such that the relative order between two sets
of doctors can be compared efficiently. The complexity of
the implementation is measured by the number of queries
to the preference relation. Unfortunately, in the worst case,
we show that evaluating a choice function requires exponen-
tial queries to a substitutable preference relation, even rep-
resented as a valuation function over the subsets of doctors.

A natural question arises: when can a choice function for
substitutable preferences be computed efficiently? We show
that computation is equivalent to the seemingly-simpler task
of verification: deciding whether or not a given set of doctors
is preferred to all of its subsets. We choose this terminology
because such an algorithm can verify, given a set of doctors
D, whether or not D is the most-preferred set among all sub-
sets of D. Further, note that efficient verification is clearly
necessary for efficient computation; we show that it is also
sufficient. Given access to a verifier, we design an efficient
algorithm for computing the choice set using O(n3) queries
to the verifier and O(n2) queries to preference order when
there are n doctors (hence, 2n possible subsets). We further
demonstrate how to implement the verifier efficiently for
various classes of valuation functions, including submodu-
lar functions and monotone functions with efficiently check-
able downward-closed constraints, e.g., matroid constraints,
knapsack constraints, and various graph properties. When
combined with (Hatfield and Milgrom 2005), this gives an
efficient algorithm for many-to-one matching in the corre-
sponding settings.

The key idea in our algorithm is to repeatedly search for
a doctor who cannot be in the choice set, remove that doctor
from consideration, and repeat. To do so, we will use substi-
tutability: a doctor who is not in the choice set of a subset
of doctors cannot be in the choice set of the entire set of
doctors either. But, how do we identify such a subset and a
doctor who is not in its choice set? While this cannot be done
directly for all subsets of doctors, we introduce a new notion
of an almost-optimal set: a set A whose choice set has ex-

actly one fewer doctors, i.e. has size |A| − 1. Consequently,
for an almost optimal set, we can identify a doctor who is
not in its choice set efficiently. Finally, using a polynomial
number of calls to an efficient verifier, we design a search
algorithm to find an almost-optimal set.

The main application of our results is in matching, but
they also contribute to a basic algorithmic question: When
can we implement a choice function (aka. a “demand or-
acle”) given access to a preference relation or “value ora-
cle”? We address this question under the assumption of sub-
stitutability as formalized in the matching literature.
Preference relations with ties. Our previous results ap-
ply for preference relations without ties. One might expect
the results to extend naturally to the case with ties. This is
the case in one-to-one matching, where Irving (1994) ex-
tended the Gale-Shapley algorithm to preference relations
with ties and provided a quadratic time algorithm to com-
pute a weakly stable matching in which no pair of agents
strictly prefer to match with each other than their designated
partners.

However, some subtle challenges arise in many-to-one
matching settings. In particular, if the result of the choice
function is not well defined (i.e. if two different subsets of
doctors are equally preferred), it is not a priori obvious how
to repair the definition of substitutability to match. In par-
ticular, there are two intuitive conditions for substitutability
that one might impose (Sotomayor 1999). These conditions
are equivalent without ties—hence the definition of substi-
tutability is unambiguous in this case—but distinct if there
are ties. We show that these two conditions have very differ-
ent implications on complexity of choice functions.

For the first condition, the equivalence of verification and
computation continues to hold. As an interesting special
case, we consider the widely studied class of gross substi-
tute preferences (Kelso Jr and Crawford 1982). Leme (2014)
showed that for gross substitute valuations, a demand oracle
can be implemented via an “ascending greedy” algorithm. In
contrast, we show that gross substitutability satisfies the first
condition (indeed, both conditions) for substitutability with
ties, and has an efficient verifier. This provides a new method
for efficient implementation of the demand oracle: our “de-
scending” algorithm, that removes elements and maintains a
superset of the choice set, takes an interesting opposite ap-
proach to the existing ascending greedy algorithm.

In contrast to the first condition, we show that if only the
second condition is satisfied, then efficient verification does
not necessarily imply efficient computation of the choice
function. We introduce the notion of a critical set as a mea-
sure of the ambiguity introduced by ties in this case, and
obtain a separation of complexity via the number of criti-
cal sets in a preference relation. Intuitively, a critical set of
doctors is one that a verifier denies being preferred to all of
its subsets, yet due to ties, our search algorithm cannot effi-
ciently pick a doctor to remove from candidates. When the
number of critical sets is large, no algorithm implementing
a choice function can avoid exponentially many queries; but
when it is small, our algorithm runs efficiently. In this sense,
the number of critical sets exactly captures the complexity
of the choice function.
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We note that our work complements the line of work fo-
cusing on the computational complexity of testing substi-
tutability of a preference relation. In that line of research,
Hatfield, Immorlica, and Kominers (2012) provided an effi-
cient algorithm to test the substitutability of preference re-
lations without ties, which was later extended to preference
relations with ties by (Aziz, Brill, and Harrenstein 2013).

Preliminaries

Let D be a finite set of doctors. A hospital’s preferences are
specified by a preference relation {�,≺} defining a transi-
tive and complete relation on 2D, where 2D is the set of all
subsets of X . For now, we assume the preference relation
has no ties: for every A,B ∈ 2D, either A ≺ B or A � B.
(Ties are discussed separately later.) If M ⊆ 2D, let maxM
be the most preferred subset in M:

maxM = Y ∈ M : ∀Z ∈ M s.t. Z �= Y, Y � Z.

The preference relation induces a choice function C such
that, for each X ⊆ D, C(X) = max 2X . It will also be
useful to define the neighbor set N (A) to be

N (A) = {B ⊂ A : |B| = |A| − 1}.
We are interested in the complexity of computing the

choice function:

Definition 1 (Choice function problem without ties). In the
choice function problem, an algorithm is given D and oracle
access to a preference relation without ties, i.e., an oracle
call compare(A,B) with A,B ⊆ D and A �= B returns
either A ≺ B or A � B. The algorithm must output C(D).

One can also consider a special case of this model where
preferences are given by a “value oracle” f : 2D → R with
A ≺ B ⇐⇒ f(A) > f(B). Both our positive and neg-
ative results will apply to either model. We will focus on
complexity in terms of number of queries to the oracle.

Next, we define the notion of substitutable preferences.

Definition 2 (Substitutable preferences without ties). A
preference relation without ties is substitutable if and only
if for all non-empty sets A,B ⊆ D with B ⊆ A, the choice
function C(·) satisfies C(A) ∩B ⊆ C(B).

Intuitively, property (1) of this definition is that if the hos-
pital accepts a doctor, it continues to do so when fewer doc-
tors are available. An equivalent condition is: if the rejection
function is defined as R(X) := X \ C(X), then a prefer-
ence relation is substitutable if and only if, for all A ⊆ B,
R(B) ⊆ R(A). This implies the equivalent property (2):
if the hospital rejects a doctor, it continues to do so when
more doctors are available (Sotomayor 1999). (We will see
that these conditions are not equivalent when the preference
relation has ties.)

Verification and Computation

In this section, we will first show that the choice function
C cannot be computed efficiently in general, even assuming
substitutable preferences. Then, we will give an algorithm
to efficiently compute C given access to a verifier. We later

discuss cases where a verifier can be efficiently implemented
and implications for many-to-one stable matching.

First, we give a class of substitutable preferences whose
choice functions require exponentially many queries to com-
pute.
Example 1. Given a fixed S∗ ⊆ D, define fS∗ : 2D → R

by

fS∗(S) =

{|D|+ 1 S = S∗

|S|+Noise(S) otherwise

where Noise(S) is drawn uniformly from (0, 0.5).
Lemma 1. The preference relation induced by valuation
function f in Example 1 is substitutable.

Proof. Notice that, for all non-empty sets A,B ⊆ D with
B ⊆ A, if S∗ �⊆ B, then R(B) = ∅ ⊆ R(A); otherwise
when S∗ ⊆ B, then R(B) = B \ S∗ ⊆ A \ S∗ = R(A).
Therefore, the preference relation induced by the valuation
relation f is substitutable.

We can use this family of functions to construct a choice
function that cannot be efficiently computed by any algo-
rithm.
Theorem 1. There exists a class of substitutable preferences
without ties such that any algorithm requires Ω(2n) queries
to compute its induced choice function.

The proof of this theorem appears in the full version of
this paper. To see the intuition, suppose that an algorithm
is given fS∗ by picking S∗ uniformly at random. No query
to f gives any information about the choice set S∗, except
for f(S∗) itself. So any algorithm must query at least half
the possible sets (2|D|−1) on average before discovering S∗.
Therefore, in the worst case, the algorithm requires expo-
nentially many queries.

Theorem 1 also implies that any stable matching algo-
rithm must make exponentially many queries in the worst
case. Consider a single hospital and set of doctors all of
whom would like to be matched to that hospital; the stable
matching problem is identical to computing the hospital’s
choice function.

In order to tackle the problem, we consider a verifier of
the choice function.
Definition 3 (Verifier). A verifier V(·) of a choice function
is a boolean oracle which when given a set X ⊆ D, outputs
TRUE if X = C(X); otherwise, it outputs FALSE.

In the remainder of this paper, we denote the implemen-
tation of the verifier as a verification problem and the im-
plementation of the choice function as a computation prob-
lem, for convenience. Note that provided an oracle for the
computation problem, one can implement the correspond-
ing verifier efficiently by checking whether X = C(X).
In other words, efficient computation implies efficient ver-
ification. The main contribution in this section is to show
the converse, that efficient verification also implies efficient
computation for choice functions induced by substitutable
preference relations.
Designing the algorithm. First, let us see what algorithmic
power we can get from the substitutes condition. The key

482



property of substitutability is that if the hospital rejects a
doctor given a set of doctors to choose from, then it also re-
jects that doctor when more doctors are available. Formally,
the definition directly implies the following.

Fact 1. If a preference relation with choice function C is
substitutable, then for any A ⊆ D and doctor v ∈ A, if
v �∈ C(A), then v �∈ C(D).

By Fact 1, if we are able to find a doctor v ∈ A such
that A ⊆ D and v �∈ C(A), then it is safe to “reject” v. In
other words, we have that C(D) = C(D \ {v}). To find
C(D \ {v}), we again find a doctor to reject until there is
none. Noticing that the stopping condition can be checked
by the verifier, this gives Algorithm 1, assuming a rejection
algorithm I(·) finds it a doctor we can reject.

Algorithm 1: Implementation of the choice function
Input: A set of doctors D, verifier V, rejection alg. I;
Output: C(D);

1 Set X := D;
2 while V(X) = FALSE do
3 Set v ← I(X); // find a v to reject
4 Set X ← X \ {v};
5 return X;

But how can we implement the rejection algorithm I(·) in
polynomial time? If we can, then we can implement the en-
tire choice function in polynomial time, as Algorithm 1 only
makes at most |D| iterations (there are only |D| elements in
D to reject).

To illustrate our search algorithm for a doctor we can re-
ject, we introduce the notion of an almost-optimal set. Recall
that the “neighbor” set N (A) consists of subsets of A of size
|A| − 1.

Definition 4 (Almost-optimal set). A subset A of doctors is
almost-optimal if V(A) = FALSE and for all subsets B ∈
N (A), V(B) = TRUE.

Almost-optimal sets are useful because their choice sets
can be directly computed. This allows us to find a doctor
to reject in Algorithm 2 that implements I(·), assuming a
subroutine M(·) finds it an almost optimal set. Recall that
maxN (A) returns the most preferred subset in N (A).

Algorithm 2: I(·): Find an element v �∈ C(D)

Input: A set of doctors X such that V(X) = FALSE,
verifier V, almost-optimal alg. M(·);

Output: A v ∈ X with v �∈ C(X);
1 Set A ← M(X); // almost-optimal subset
2 Set B∗ = maxN (A);
3 return A \B∗

We assert the correctness of our implementation of I(·) in
the next lemma.

Lemma 2. For an almost-optimal set A ⊆ D, the unique
element v in A but not in maxN (A) is not in C(D).

Proof. For all B ∈ N (A), V(B) = TRUE, so B � B′ for all
B′ ⊂ B. We also have V(A) = FALSE =⇒ A �= C(A).
This implies that C(A) ∈ N (A). Therefore, by definition
of maxN (A), we have that C(A) = maxN (A). Letting
v = A \ maxN (A), this implies v �∈ C(A). Finally, by
the property of substitutability of Fact 1, we conclude that
v �∈ C(D).

The only remaining problem is to implement M(·) effi-
ciently, i.e., find an almost-optimal subset of X . This is done
in Algorithm 3.

Algorithm 3: M(·): Find an almost optimal set A of X
Input: A set of doctors X such that V(X) = FALSE,

verifier V;
Output: An almost optimal set A ⊆ X;

1 Set A := X;
2 while there exists B ∈ N (A) with V(B) = FALSE do
3 Let B ∈ N (A) such that V(B) = FALSE;
4 Set A ← B;
5 return A;

We assert the correctness of our implementation of M(·)
in the next lemma.
Lemma 3. If V(X) = FALSE, then some almost-optimal
subset A ⊆ X exists; and Algorithm 3 finds one.

Proof. First, notice that V(∅) = TRUE, so if V(A) = FALSE,
then A is nonempty. By induction on |A|: If |A| = 1, then A
is almost optimal, as its only neighbor is ∅. If |A| ≥ 2: Either
A is almost optimal, in which case we are done, or it has a
neighbor B for which V(B) = FALSE. Since |B| = |A|− 1,
we apply the induction hypothesis.

We can now combine the three algorithms to claim that
efficient verification implies efficient computation of choice
functions with substitutable preferences without ties.
Theorem 2. The implementation of a choice function for
substitutable preferences without ties, Algorithm 1, requires
at most |D|3 queries to the verifier and |D|2 queries to the
preference relations.

Proof. Algorithm 1 takes at most |D| iterations, each requir-
ing one call to the verifier and one call to subroutine I(X)
with an X of size at most D. Algorithm 2 makes a single
call to Algorithm 3. Then it queries preferences to find the
most-preferred among a set of at most |D|, which requires
at most |D| comparisons (by maintaining a candidate max-
imum and comparing it to each in sequence). Algorithm 3
loops at most |D| times (as |A| decreases each time) calling
the verifier at most |D| times per loop.

Note that, although Theorem 2 is technically stated in
terms of the number of queries, all computations performed
in the algorithm are efficient, hence they run in polynomial
time when given an efficient verifier. Therefore, in this pa-
per, we do not distinguish between saying that our algorithm
uses a polynomial number of queries and saying that it runs
in polynomial time.
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Efficiently verifiable functions

In the worst case, verification requires an algorithm to ex-
haustively enumerate all possible subsets. In fact, Example
1 provides a concrete example, since without the knowledge
of the optimal subset S∗, given an input X , any algorithm
needs to enumerate every subset of X to determine V(X).
However, for certain classes of valuation functions, verifi-
cation can be done with polynomially many queries to the
preference relation. In these cases, of which we give some
popular examples below, the above theorem implies efficient
computation.
Submodular functions: A submodular function is a set-
valued function f such that for any non-empty subset A,B
with B ⊆ A and an element v �∈ A, f(A ∪ {v}) − f(A) ≤
f(B ∪ {v})− f(B).
Lemma 4. For a submodular function f , V(A) = TRUE if
and only if ∀B ∈ N (A), f(A) > f(B).

Proof. If V(A) = TRUE, then f(A) must be larger than any
other subset of A, and thus, we have ∀B ∈ N (A), f(A) >
f(B).

For the converse, suppose f(A) > f(B) for all B ∈
N (A); we show f(A) > f(B′) for any B′ ⊆ A. Con-
sider v ∈ A, v �∈ B′. The “marginal improvement” of v
is positive: 0 < f(A) − f(A \ {v}). By submodularity,
f(A)−f(A\{v}) ≤ f(B′∪{v})−f(B′). This implies that
B′ �= C(A), since B′ can be improved by adding v.

Thus, given a set A, verification only requires checking
the submodular function’s value on A and all its neighbors.
Corollary 1. Implementing a verifier V(A) for a submodu-
lar function requires only |A|+ 1 function evaluations.

Monotone functions with efficiently checkable
downward-closed constraints: A function f is said
to be monotone with efficiently checkable downward-closed
constraints if there exists a set H of subsets of D such
that (1) if X ∈ H , then for all X ′ ⊆ X , X ′ ∈ H; (2)
for all B ⊆ A with A ∈ H , f(B) < f(A); (3) for all
X �∈ H , f(X) < maxX′⊆X,X′∈H f(X ′). According to our
construction, note that V(A) = TRUE if and only if A ∈ H .
Hence, if we can efficiently decide whether A ∈ H , we can
also implement the verifier efficiently. Several constraints
are downward-closed and efficiently checkable, such as
matroid constraints, knapsack constraints, and various graph
properties.

Implications for Many-to-One Matching

The above results imply complexity results for the many-to-
one stable matching problem.

Recall that in this problem, we are given a set of doctors
D and a set of hospitals H . Each doctor has a preference or-
dering over the hospitals, and each hospital has a preference
order over subsets of doctors. The goal is to find an assign-
ment of doctors to hospitals, so that each doctor is matched
to at most one hospital, that is stable. The stability condition
is that for each hospital h, there exists no subset of doctors
that the hospital prefers to its assigned set such that all those
doctors prefer h over their assigned hospital.

Hatfield and Milgrom (2005) proposed a generalized
Gale-Shapley algorithm for this problem and showed that,
when hospital preferences satisfy substitutes, it runs in a
quadratic number of iterations where each iteration requires
polynomially many queries to the hospital choice functions.

Notice that a special case of many-to-one stable matching
is the case where there is a set D of doctors and just one
hospital, which is liked by all doctors; in this case, the stable
matching is the choice set of the hospital.

We summarize our findings for many-to-one stable
matchings below:

Even when hospital preferences satisfy substitutes, no
algorithm guarantees to find a stable matching with a
subexponential number of queries to hospital prefer-
ences (Example 1, Theorem 1).
But given access to a verifier, there exists an algorithm
for stable many-to-one matching running in polynomial
time with a polynomial number of verifier calls (Theo-
rem 2). In particular, polynomial-time algorithms exist
in the following natural settings: submodular valuation
functions and monotone valuation functions with effi-
ciently checkable downward-closed constraints.

Preferences with Ties

In this section, we suppose a hospital’s preference relation
may contain ties with A ∼ B meaning A and B are equally
preferred. In this case, the choice function is

C(X) = {Y ⊆ X | ∀Z ⊆ X,Y � Z or Y ∼ Z}.
Because C(X) may be exponentially large, the computa-
tional problem is naturally phrased as finding any member
of C(X) given oracle access to compare(A,B) which re-
turns A ≺ B, A � B, or A ∼ B. We also generalize
maxM to mean the set of members of M that are preferred
to or comparable to every other member of M, i.e.

maxM = {B ∈ M : ∀B′ ∈ M, B � B′} .
Recall that the definition of substitutes had, intuitively,

two properties: (1) a hospital who rejects a doctor contin-
ues to do so when more doctors are available; (2) a hos-
pital who accepts a doctor continues to do so when fewer
doctors are available. Sotomayor (1999) observed that these
two conditions are not equivalent if there are ties (see de-
tailed examples and discussions in (Aziz, Brill, and Harren-
stein 2013)), and preserved both conditions in defining sub-
stitutability over preference relations with ties.

Definition 5 (Substitutable preferences with ties). A pref-
erence relation with ties is substitutable if and only if the
following two conditions hold

1. For all nonempty sets A,B ⊆ D with B ⊆ A, we have
for all Y ∈ C(B), there exists some X ∈ C(A), such
that X ∩B ⊆ Y , and

2. For all nonempty sets A,B ⊆ D with B ⊆ A, we have
for all X ∈ C(A), there exists some Y ∈ C(B), such
that X ∩B ⊆ Y .
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In the following discussions, we treat the above two con-
ditions separately to illustrate their individual impact on the
computability of the choice function. In fact, we observe a
sharp contrast between the behavior of the choice function
under these two conditions individually.

Condition 1

If the preference relation satisfies condition 1, we can gen-
eralize Fact 1 as follows.

Fact 2. For any A ⊆ D and doctor v ∈ A, if there exists
Y ∈ C(A) such that v �∈ Y , then there exists X ∈ C(D)
such that v �∈ X .

Therefore, we can modify our previous approach slightly
by arbitrarily setting B∗ as an element in maxN (A) in Al-
gorithm 2, and all our results for substitutable preference re-
lations without ties applies to preference relations with ties,
provided it satisfies condition 1 of substitutability.

Gross substitutes. As an application, we consider the
widely studied class of gross substitute preferences. Gross
substitutability applies in an economy comprising a set [n] of
indivisible goods. Each agent has a valuation v : 2[n] → R.
Given a price vector p ∈ R

n and a set S ⊆ [n], the utility
function for each agent is u(S, p) = v(S)−∑

i∈S pi. A de-
mand oracle D takes a valuation v and a price vector p as
input, and outputs a set of subsets of [n] that maximize the
utility of the agent for this price vector of the algorithm.

This setting can be viewed as a generalization of our orig-
inal setting, which is the case where all prices must be set
to either zero or (positive) infinity. In that case, the demand
oracle will not take any item having infinite price, so it cor-
responds to the choice function applied to the subset having
price zero.

Definition 6 (Gross substitutability). A valuation function
satisfies the gross substitute property if for any price vectors
p ∈ R

n and set S ∈ D(v, p), if p′ is a price vector with
p ≤ p′, then there is a set S′ ∈ D(v, p′) such that S ∩
{j | pj = p′j} ⊆ S′.

The standard implementation of a demand oracle in this
setting is an “ascending greedy” algorithm (Leme 2014) that
starts with an empty set and adds doctors, one at a time, to
the choice set. In contrast, we give a new implementation of
the demand oracle using a “descending” algorithm based on
our search procedure that starts with all doctors and discards
doctors who are not in the choice set one at a time. This im-
plementation follows from showing that gross substitutabil-
ity implies condition 1 (indeed, condition 2 as well) of sub-
stitutability with ties. This allows us to invoke our search
algorithm, since gross substitutability implies submodular-
ity (Gul and Stacchetti 1999), which in turn implies efficient
verification. The next theorem, whose proof appears in the
full version, formalizes these claims.

Theorem 3. Given a fixed price vector p, the preference
relation (possibly with ties) induced by the utility function
u(·, p) satisfies condition 1 (and condition 2) of substi-
tutability with ties.

Condition 2

We have shown that condition 1, on its own, is sufficient for
our algorithm to apply. But, what if only condition 2 is satis-
fied? Unfortunately, in this case, Algorithm 1 does not work
since for an almost optimal set A, maxN (A) may not be
unique and Algorithm 2 is unable to find a doctor to discard
from further consideration. In fact, this failure of the algo-
rithm is fundamental: it turns out that verification is strictly
easier than computation in this case. Recall that we showed
previously that we can implement a verifier efficiently for
submodular valuation functions. Nevertheless, we can show
the following negative result:

Theorem 4. There exists a class of preferences with ties in-
duced by a submodular function and satisfying substitutabil-
ity (condition 2) such that any implementation of its induced
choice function requires an exponential number of queries
to the submodular function.

The instance that establishes the above theorem, given in
the full version along with the proof of the theorem, turns
out to have an exponential number of what we call critical
sets: almost optimal sets A for which |maxN (A)| > 1. In-
tuitively, these are cases that flummox our descending search
algorithm by presenting ties at almost optimal sets.

Let C denote the collection of all critical sets. In the full
version, we give a modification of our algorithm that works
with ties by intuitively mimicking a depth-first search, back-
tracking if it reaches a critical set. We are then able to bound
its running time in terms of |C|.
Theorem 5. The implementation of a choice function for
substitutable preferences with ties (condition 2) can be done
with O(poly(|D|, |C|)) queries to the verifier and the pref-
erence relations.

From these results, we infer that in preference relations
with ties and satisfying condition 2 of substitutability, given
efficient verification, the computational complexity is cap-
tured by the number of critical sets. When it is large, we
have examples that are hard for all algorithms; when it is
polynomial, our algorithm is efficient.

Conclusion

This paper takes a step toward understanding the complex-
ity of stable matchings in many-to-one settings. It was pre-
viously known that substitutability was the “right” condition
for existence of stable matchings, but we showed it does not
suffice for efficiently computing them. However, it is enough
to have, in addition, a verifier that can tell whether a set is
preferred to all of its subsets. If there are ties, the situation
is more complicated: there are two natural interpretations of
substitutability, and they result in qualitatively different be-
havior in terms of computational complexity of the choice
function.

The key question was the complexity of computing a
choice function: when can we efficiently compute the most
preferred subset for an agent, given access to her (expo-
nentially large) preference order over subsets? While sub-
stitutability was a natural assumption given the application
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to stable matchings, this work also fits in a broader re-
search program of discovering the computational complex-
ity of choice functions under other assumptions. Submod-
ular maximization is a well-studied example that fits in this
framework. Identifying other natural conditions under which
a choice function can be implemented (exactly or approxi-
mately) is an interesting direction for future work.
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