
Crowdsourced Outcome Determination in Prediction Markets

Rupert Freeman
Duke University

rupert@cs.duke.edu
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Abstract

A prediction market is a useful means of aggregating infor-
mation about a future event. To function, the market needs
a trusted entity who will verify the true outcome in the end.
Motivated by the recent introduction of decentralized predic-
tion markets, we introduce a mechanism that allows for the
outcome to be determined by the votes of a group of arbiters
who may themselves hold stakes in the market. Despite the
potential conflict of interest, we derive conditions under which
we can incentivize arbiters to vote truthfully by using funds
raised from market fees to implement a peer prediction mech-
anism. Finally, we investigate what parameter values could be
used in a real-world implementation of our mechanism.

1 Introduction

Prediction markets are commonly used to elicit informa-
tion about some future event. The market operates by al-
lowing participants to buy and sell securities which pay
off according to the outcome of the event, and partici-
pants with an informational edge are able to place prof-
itable trades when the market price disagrees with their
own forecast. Through this trading process, the market
price can be construed as a consensus forecast of the un-
derlying event probability. Prediction markets have proven
effective at forecasting events in a variety of domains,
including business and politics (Spann and Skiera 2003;
Berg and Rietz 2006).

A key challenge in implementing and scaling prediction
markets is the question of outcome determination (i.e., clos-
ing markets for events). Traditional prediction markets are
centralized, in the sense that there exists a trusted center that
creates markets, oversees transactions, and closes the market
appropriately. The trusted center is a bottleneck for defining
and closing markets, limiting the scope of what can be pre-
dicted. However, there has recently been a rise of interest in
decentralized prediction markets, where any user may create
a market for an event. The markets are closed by consensus
among a group of arbiters rather than by a center.

A decentralized platform removes the requirement for a
highly trusted center, but it also allows each arbiter to directly
influence the outcome of the market, in much the same way
that agents may deliberately manipulate an event due to their
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own stake in the market; this is known as outcome manipu-
lation (Shi, Conitzer, and Guo 2009; Berg and Rietz 2006;
Chakraborty and Das 2016). Additionally, by allowing any-
one to create a market, there is no longer any guarantee that
all questions will be sensible, or even have a well-defined out-
come. In this paper, we propose a specific prediction market
mechanism with crowdsourced outcome determination that
addresses several challenges faced by decentralized markets
of this sort.

First is the issue of outcome ambiguity. At the time the
market closes, it might be unreasonable to assign a binary
value to the event outcome due to lack of clarity in the out-
come. In a centralized market, it may be possible to postpone
the market closing date to allow for rare cases of ambiguity,
but it is not clear who should make such decisions in a de-
centralized marketplace. Therefore, it may be more fitting to
allow outcomes to be non-binary, reflecting some level of dis-
agreement. Outcomes in our mechanism are determined by
the fraction of arbiters that report an event to have occurred.
This also guarantees that every market is well-defined, by
having traders explicitly trade on their expectations of the
arbiter reports, not the actual event.

Second is the problem of peer prediction. For the credibil-
ity of the market, it is essential that arbiters are incentivized
to truthfully report their opinion as to the realized outcome.
If, for instance, we reward arbiters for agreeing with the ma-
jority opinion, then they are forced to anticipate the reports of
other arbiters, not their independent opinion. We address this
problem by making a technical change to an existing peer
prediction mechanism, the 1/prior mechanism.

Third is the inherent conflict of interest that arises by com-
bining prediction markets and peer prediction mechanisms.
Even if arbiters can be incentivized to report truthfully in
isolation, there is no way to prevent them also having a stake
in the market. An arbiter holding securities that pay off in a
particular event will be incentivized to report that the event
has occurred, even if they do not genuinely believe it to be
the case, as long as they have a chance of affecting the market
outcome. We tackle this issue by charging a trading fee that
is later used to pay the arbiters. We show that, as long as
each agent is responsible for a limited fraction of trading, and
questions are clear enough, realistic trading fees can fully
subsidize truthful reporting on the part of the arbiters.
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Related Work. This work is inspired by decentralized pre-
diction markets based on crypto-currencies, including Truth-
coin, Gnosis, and especially Augur (Peterson and Krug 2015).
As in Augur, our mechanism consists of a prediction mar-
ket stage and an arbitration stage, with trading fees from
the market stage subsidizing the arbitration. The details of
the mechanisms differ in both stages, however, and Augur
includes additional layers of complexity such as a reputa-
tion system. While this complexity does provide additional
protection against attack, Peterson and Krug do not obtain
any theoretical guarantees or justification for their chosen
parameters. Clark et al. (2014) also discuss outcome deter-
mination in crypto-based prediction markets, among several
other implementation aspects.

Our work is most closely related to that of Chakraborty
and Das (2016), who consider a model where two agents
participate in a prediction market whose outcome is deter-
mined by a vote among the two agents. Our model extends
theirs by allowing an arbitrary number of traders, and not
requiring that all traders are arbiters. Further, we take a mech-
anism design approach, obtaining an incentive compatible
mechanism, while Chakraborty and Das focus on analyzing
the equilibrium of a simple (to play) trading-voting game,
with no peer prediction mechanism in the voting phase to
incentivize truthful voting. Recent work by Witkowski et al.
(2017) also looks at a combination of forecasting and peer
prediction, although the forecasts in their paper are elicited
via proper scoring rules, rather than prediction markets.

The work of Bacon et al. (2012) is similar in spirit to
ours, as is the literature on outcome manipulation men-
tioned previously, but in all cases the concrete setting is
quite different. We also draw heavily on existing litera-
ture in prediction markets (Hanson 2003; Chen and Pen-
nock 2007; Chen and Vaughan 2010) and peer predic-
tion (Miller, Resnick, and Zeckhauser 2005; Prelec 2004;
Witkowski and Parkes 2012); Chen and Pennock (2010) sur-
vey these topics.

2 Preliminaries

Let N be a set of agents and let A ⊂ N be a small set
of distinct and verifiable arbiters. Let m = |A| denote the
number of arbiters. The agents are anonymous in the sense
that one cannot verify whether a trade is placed by an arbiter
or non-arbiter, and whether several trades are placed by the
same agent. Let X be a binary event with some realized
outcome in {0, 1}. We are interested in setting up a prediction
market for the outcome of X , with the resolution of the
market decided upon by the arbiters.

Prediction markets. We consider prediction markets im-
plemented via a Market Scoring Rule (MSR), where the
underlying scoring rule is strictly proper (Hanson 2003;
Chen and Pennock 2007). Every strictly proper MSR can
be implemented as a market maker based on a convex cost
function. Under this market structure, agents trade shares of
a security with a centralized market maker, who commits to
quoting a buy and sell price for the security at any time. The
security payout is contingent on the outcome of X . In the
usual implementation, one share of the security pays out $1

in the event that X = 1, and $0 otherwise.
Let q denote the total number of outstanding shares owned

by the agents (note that q can be negative, in the case that
more shares have been sold than bought). The market maker
charges trades according to a convex, differentiable, and
monotonically increasing function C. An agent wishing to
buy q′ − q securities pays C(q′)−C(q). Negative payments
encode a transaction where securities are sold back to the
market maker. The instantaneous price of the security is given
by p = dC

dq . Because the market maker always commits to
trading, it may run a loss once the outcome is realized and
the securities pay out, but the loss is bounded.

In practice, the cost function is also tuned using a liquidity
parameter b, via the transformation Cb(q) ≡ bC(q/b). A
higher setting of b results in lower price responsiveness, in the
sense that the price will change less for a fixed dollar trading
amount. It also results in a higher worst-case loss bound
for the market maker. Unless otherwise stated, our results
assume that each agent participates in the market only once.
The mechanism and results extend to situations in which
agents can participate more than once, and we highlight these
extensions where relevant throughout the paper.

Peer prediction. Peer prediction mechanisms are designed
to truthfully elicit private information from a pool of agents
via a reward structure that takes advantage of information
correlation across agents. After the realization of X , each
arbiter i receives either a positive or negative signal xi, which
we denote by xi = 1 and xi = 0 respectively. Let μ be the
prior probability that an agent receives a positive signal. Let
μ1 (resp. μ0) be the probability that, given agent i receives
a positive (resp. negative) signal, another randomly chosen
agent also receives a positive signal.1 In a standard peer
prediction belief model, the quantities μ1 and μ0 can be cal-
culated given μ and the signal beliefs P (xi = 1|X = 1) and
P (xi = 1|X = 0); Witkowski (2014) provides an overview.
Assuming common information is not always reasonable, but
it is natural in our setting to assume that agents take the clos-
ing price of the prediction market as their prior (if not, then
they can profit in expectation by participating in the market).
The probabilities μ1 and μ0 are specific to the nature of the
event X .

The peer prediction mechanism of interest in this work is
the 1/prior (“one over prior”) mechanism (Witkowski 2014;
Jurca and Faltings 2008; 2011). The 1/prior mechanism first
asks each agent for their signal report x̂i. Then, every agent i
is randomly paired with a peer agent j �= i, and paid

u(x̂i, x̂j) =

⎧⎨
⎩
kμ if x̂i = x̂j = 0

k(1− μ) if x̂i = x̂j = 1

0 if x̂i �= x̂j ,

where k is some positive constant that can be freely adjusted
to scale the payments received by the arbiters. Truthfully re-
porting x̂i = xi is an equilibrium provided that μ1 ≥ μ ≥ μ0

1Our analysis will assume that μ1 and μ0 are common across
agents, but this is not a strict requirement. If we allow each agent
to have distinct updates μi

1, μ
i
0, then we can let μ1 = mini μ

i
1,

corresponding to the minimum update given x̂i = 1, and similarly
μ0 = maxi μ

i
0.
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1. Market stage.
(a) A prediction market is set up for an event X using

a market scoring rule.
(b) Agents trade in the market. For a security bought

at price p, a trading fee of fp is charged, and for a
security sold at price p, a fee of f(1−p) is charged.

(c) The market closes, trading stops.

2. Arbitration stage.
(a) Each arbiter i receives a signal xi ∈ {0, 1} and

reports an outcome x̂i ∈ {0, 1}.
(b) Each arbiter i is assigned a peer arbiter j �= i and

paid according to the 1/prior with midpoint mecha-
nism.

(c) The outcome of the market, and the payoff of each
share sold, is set to the fraction of arbiters that
report x̂i = 1.

Figure 1: Prediction market with outcome determined using
peer prediction.

(Frongillo and Witkowski 2016). This is a natural condition
that we will assume throughout the paper—receiving signal
xi = 1 should not decrease i’s estimate that another agent j
also receives signal x̂j = 1. We also assume that at least one
of the inequalities is strict, so that μ1 > μ0; this condition
is known as stochastic relevance. Via a simple adaptation of
the corresponding proof for the 1/prior mechanism, it can
be shown that truthful reporting remains an equilibrium if μ
is replaced by some other constant c with μ0 < c < μ1 in
the payments; we will exploit this fact to adapt the 1/prior
mechanism for our purpose.

We call the quantity δ = μ1−μ0 the update strength. This
quantity is specific to the instance and, roughly speaking,
measures how strongly positively correlated the signals are
across arbiters. The update strength is high if, after receiving
a positive (negative) signal, an arbiter believes that another
given arbiter receives a positive (negative) signal with high
probability. For instance, if event X is “Will the Cleveland
Cavaliers win the 2016 NBA playoffs?” then we would expect
δ ≈ 1, since any arbiter reaching a conclusion about the
outcome of the series (by watching it live, reading in the
news, etc.) would strongly expect any other arbiter to reach
the same conclusion. On the other hand, a question like “Will
a Presidential candidate tell a lie in the televised debate?”
is considerably more open to interpretation, and we would
expect it to have a smaller value of δ. If an arbiter believes
a candidate to have lied, it is not necessarily the case that
another arbiter believes the same.

3 Mechanism

A step by step description of our mechanism is given in
Figure 1. The mechanism runs a prediction market where
the outcome is determined by a vote among arbiters. The
arbiters’ signals should be interpreted as the information they
receive regarding the outcome of X: checking news sources,

observing events, their own opinions, etc. To ensure that
arbiters truthfully report their information, we incentivize
them via a peer prediction mechanism.2 In both stages we
implement non-standard versions of existing mechanisms,
which we detail in the following.

Market stage We make use of an MSR with non-binary
outcome. The outcome takes a value X̂ ∈ [0, 1] correspond-
ing to the fraction of arbiters that report x̂i = 1. Each share
sold pays off X̂ . Observe that this fundamentally changes
the value of a security to a market participant: in a standard
prediction market, an agent’s value for a security is his sub-
jective probability that event X occurs, while in our market
his value is the fraction of arbiters that he expects to report
x̂i = 1. However, given the agent’s valuation for a security,
his incentives in both markets are similar. A risk-neutral,
non-arbiter agent will trade shares until the market price
matches the security’s expected payoff, or the agent’s budget
is exhausted.

This change to the payoff structure has two advantages.
First, it ensures that any question has a well-defined and
unambiguous outcome, avoiding problems with badly worded
questions. This is important in any situation where users
are allowed to generate markets. Second, any market with a
binary outcome that relies on arbitration must have a point of
‘discontinuity’, where a change in report from a single arbiter
results in the value of a security changing by $1.3 There will
therefore always be situations where, given the reports of
the other arbiters, a single arbiter completely controls the
market outcome. If this arbiter also has a significant stake
in the market, this creates a very large incentive problem.
By utilizing non-binary outcomes, a single arbiter can only
change the value of each security by at most $1/m.

Our mechanism imposes trading fees. Theoretical models
of prediction markets do not typically incorporate trading
fees (an exception is the work of Othman et al. (2013), where
a fee in the form of a bid-ask spread is used to allow liquidity
to increase over time), but they are standard in real-world
implementations. To understand how the fee is implemented,
it is important to distinguish between transactions (buy or
sell) where an agent increases its position (in terms of risk),
and transactions where it liquidates its position. The trading
fee that we implement can be seen as a fee on the worst-case
loss incurred by an agent: the fee is on p when a new security
is bought, and 1− p when a security is sold short (because
it may pay out $1). However, no fee is levied when an agent
sells back a share that it holds, or buys back a share that was
previously sold short—these are liquidation transactions.

The trading fee serves two distinct purposes in our mecha-
nism. First, it allows us to raise funds which can then be used
to pay arbiters. Even assuming that arbiters behave honestly
(in the absence of a sophisticated peer prediction mechanism),
they still need to be compensated for the time spent looking

2Each arbiter makes his report without knowledge of the re-
port of any other arbiter; for instance, the reports could be made
simultaneously.

3To see this, consider the case where all arbiters report x̂i = 1,
and flip one report at a time to x̂i = 0. One of these flips must
change the outcome from X̂ = 1 to X̂ = 0.
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up the outcome of X and reporting it to the mechanism. This
can, in principle, be achieved by any of a number of fee
structures.

Second, the fee provides natural bounds on the value of
any given security. Even if an event is certain to occur, with
a fee of f = 2% an agent who moves the market price to
(say) 99¢ actually pays a marginal cost of $0.99 · 1.02 > $1
(see Lemma 2 for an exact bound). The multiplicative fee
effectively bounds the price of the security away from 0 and
1. Thus, it is impossible for an agent to buy securities at an
arbitrarily cheap price, which allows us to bound the number
of securities, and therefore maximum payout, of any agent
with a fixed budget B. We note that there are other reasonable
fee structures which do not provide such a lower bound on
the price. For example, if the agents only pay a fee on any
profit they gain from the market, then the price of an event
that is certain to happen will still converge to 1.

Arbitration stage The main challenge in our setting is to
incentivize arbiters to truthfully report their signal regarding
the realized value of X . In the absence of any conflict of inter-
est, this is a simple peer prediction problem. Since the closing
price of the market gives us a natural common prior on the
probability that a given arbiter receives signal xi = 1, it is nat-
ural to use the 1/prior mechanism. For prior signal probability
μ, the 1/prior mechanism uses the fact that μ1 ≥ μ ≥ μ0 to
guarantee that truthful reporting achieves higher payoff than
misreporting. However, as μ1 approaches μ, the payoff for
truthfully reporting signal x̂i = 1 approaches the payoff for
misreporting x̂i = 0. In isolation, there is still no reason to
misreport, but if the arbiter has some stake in the market then
it may be worthwhile to incur a small misreporting loss to
achieve other gains. The following example illustrates this
issue.
Example 1. Consider a prediction market for the event “Will
the Democratic presidential candidate be leading the Repub-
lican presidential candidate in the polls at the end of the
month?” Suppose it is known that 10% of arbiters only check
conservative news sources, which always report that the Re-
publican candidate is ahead, and another 10% only check
liberal news sources, which always report the opposite. Sup-
pose the market closes at μ = 0.89. Consider an arbiter
j who checks a (moderate) news source and finds that the
Democratic candidate is ahead (i.e., xj = 1). Since it is
still the case that 10% of the arbiters will certainly receive
signal xi = 0, the updated belief μ1 remains no higher than
0.9. That is, the update is very small, and the expected profit
from reporting x̂j = 1 is also small. If j has bet against the
outcome (i.e., sold some securities to the market maker), it
could be in his interest to lie and report x̂j = 0.

However, if the moderate news site had reported that the
Republican candidate was leading (i.e., x̂j = 0), the updated
belief μ0 could be quite small, even in the range of 0.1 (since
most arbiters check moderate sources). Now j has a lot to
gain from reporting x̂j = 0. Therefore, j would have to
hold a relatively large number of shares for misreporting to
outweigh the expected profit from the 1/prior mechanism.
Example 1 stems from an asymmetry in update strength, lead-
ing to potentially different incentives for arbiters depending

on which signal they receive. We modify the mechanism,
making the update strength symmetric. Given that we know
the updated beliefs μ1 and μ0, we can pay arbiters according
to the 1/prior mechanism but use the value (μ1 + μ0)/2 in-
stead of the prior, μ. We call this the 1/prior with midpoint
mechanism. Using the midpoint guarantees that the incentives
for arbiters are the same regardless of the signal they receive.
For the arbiter with the greatest incentive to misreport, us-
ing the 1/prior with midpoint mechanism (weakly) decreases
his incentive to misreport over the standard 1/prior mecha-
nism, allowing us to achieve better bounds in our worst-case
analysis.

Analysis

In this section, we derive conditions for truthful reporting
(x̂i = xi) to be a best response, given that all other arbiters
report truthfully. The main restriction we require is an upper
bound B on the total budget any given arbiter spends in
the market—without such a bound, an arbiter could have an
arbitrarily large incentive to manipulate the market’s outcome.
Thus, B appears as a parameter in our analysis.

Arguably, an arbiter confident in their ability to manipulate
a market outcome could procure enough funds as to have
a very large budget, especially relative to a small market.
However, in current decentralized prediction markets, each
arbiter arbitrates only a small fraction of markets. As long as
the assignment of arbiters to markets is done after the market
closes, there is no way for manipulators to target a specific
market. For this reason, we believe that manipulations are
most likely to be of a form where arbiters participate honestly
in the first stage, but, if they happen to be assigned to arbitrate
a market that they also participated in, may be able to gain
by not reporting truthfully, rather than arbiters mounting
deliberate high-budget attacks in the market stage. Of course,
our analysis is not specific to that particular interpretation,
but we do consider it a compelling argument in favor of using
a budget bound in our analysis.

Intuitively, we need to scale the payments made to arbiters
in the arbitration stage by a sufficiently large k so that the in-
creased payoff for truthful reporting in this stage overwhelms
the gains from manipulating the outcome.

Lemma 1. Let ni be the number of securities held by arbiter
i. Then truthfully reporting x̂i = xi is a best response for
arbiter i, given that all other arbiters report truthfully, if and
only if

k ≥ 2|ni|
mδ

.

Proof. We prove the case where ni > 0; the case for ni < 0
is symmetric. The total payoff for arbiter i is the sum of
the payoffs from the market phase and the arbitration phase.
Fixing the reports of the other arbiters, the market payout
for i is higher when i reports x̂i = 1. And, in expectation,
the payoff for i in the arbitration phase is higher for truthful
reporting than for lying. Thus, the only problematic case is
when xi = 0, but i may wish to report x̂i = 1.

So suppose that xi = 0. The expected payoff for truthfully
reporting x̂i = 0, assuming all other arbiters truthfully report
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their signal, is

niμ0
m− 1

m
+ (1− μ0)k

μ0 + μ1

2
. (1)

Here μ0(m−1) is the expected number of arbiters that report
signal 1, and therefore niμ0(m−1)/m is i’s expected payoff
from the market, while the remaining term is 1 − μ0, the
probability of i’s peer agent also reporting 0, multiplied by
the payment i receives in this case. On the other hand, the
expected payoff for misreporting x̂i = 1 is

ni

(
μ0

m− 1

m
+

1

m

)
+ μ0 k

(
1− μ0 + μ1

2

)
, (2)

where the extra 1/m in the first term is due to the additional
market payoff from i reporting x̂i = 1, and the latter term is
now the probability of i’s peer agent reporting 1, multiplied
by the payoff i receives when this happens.

We require that the expected payoff for reporting x̂i = 1
be at most the expected payoff for truthfully reporting x̂i = 0.
Setting term (2) to be at most term (1) and simplifying yields
the result.

This characterization requires an upper bound on the number
of securities that any single agent owns. In itself this is an
unsatisfying restriction; however, we can think about it in
terms of the size of the fee, f , and the amount of money
that any single arbiter spends in the market, B. For fixed
fee f , let q− and q+ be the number of outstanding securities
such that the market prices are p(q−) = f/(1 + f) and
p(q+) = 1/(1 + f) respectively. Note that these quantities
depend on the liquidity parameter b used in the cost function.
Lemma 2. For fixed percentage fee f , the number of out-
standing securities lies in the interval [q−, q+].

Proof. Suppose that some agent sells a security when there
are already q− outstanding. Then the marginal price is exactly
f/(1 + f). When selling a security at this price, the agent
receives f/(1 + f) from the mechanism but must pay a
trading fee of

f

(
1− f

1 + f

)
=

f

1 + f
.

Thus the agent’s net revenue from the sale is 0 (and the
possibility remains that he must pay the mechanism in the
event that X occurs). Therefore no agent makes such a sale,
and the number of outstanding securities never drops below
q−.

A similar argument shows that q never exceeds q+. To buy
a security when there are already q+ outstanding, an agent
must pay a price of at least $1, when the fee is included.

Lemma 2 provides us with the minimum and maximum num-
ber of outstanding securities at any time. As a corollary, we
can derive the maximum number of securities that a single
agent with budget B is able to purchase or short sell. We inter-
pret the budget as an upper bound on the worst-case loss that
the agent is able to incur. When buying a security for price p,
the worst-case loss is p, under outcome X = 0. When selling
a security for price p, the worst-case loss is 1 − p, under
outcome X = 1. Let φ−

b (B) = C−1
b (B+Cb(q

+))− q+ and
φ+
b (B) = C−1

b (B + Cb(q
−))− q−.

Corollary 1. At the end of the market stage, an agent i with
budget B holds ni ∈ [φ−

b (B), φ+
b (B)] securities.

The proof, along with all other omitted proofs, can be found
in the full version of the paper. An interesting special case is
the limit as b→∞. This corresponds to the market having
zero price responsiveness, meaning that all securities are
purchased at a fixed price. Conceptually, it is equivalent to
the situation where agents participate in the market more than
once. In that setting, an agent could wait until the market
price reaches f

1+f , buy a small number of securities, then
wait again until the price drops. An agent spending all their
budget in this way can, in the extreme case, buy as if the
market has infinite liquidity.
Corollary 2. For an agent that spends at most B dollars in
a market with trading fee f and infinite liquidity, ni lies in
the range

[
−B(1+f)

f , B(1+f)
f

]
.

If every agent has budget at most B in the market stage,
we can combine the bounds from Corollaries 1 and 2 and
Lemma 1 to determine the minimum payment that guarantees
truthful reporting in the arbitration phase.
Theorem 1. Given that all other arbiters report truthfully,
truthful reporting is a best response for arbiter i if

k ≥ 2max{|φ−
b (B)|, |φ+

b (B)|}
mδ

.

In the case that agents may participate in the market many
times, truthful reporting requires that

k ≥ 2B(1 + f)

fmδ
.

Therefore, fixing an agent budget B and a trading fee f ,
we know how large one needs to make the payments in the
arbitration phase in order to incentivize truthful reporting. We
now take a global view, and examine the total funds required
to incentivize all arbiters to report truthfully.
Lemma 3. The total payment made to the arbiters is at
most mk. We can implement a truthful equilibrium with total
payment at most

2max{|φ−
b (B)|, |φ+

b (B)|}
δ

.

In the case that agents may participate in the market many
times, we require total payment at most

2B(1 + f)

fδ
.

Proof. As 0 ≤ μ0, μ1 ≤ 1, their mean also lies between 0
and 1, and therefore each arbiter’s payment in the 1/prior with
midpoint mechanism is at most k. Thus the total payment
to the arbiters is at most mk, which proves the first part.
Combining this with the bounds on k from Theorem 1 yields
the second part.

Now that we have an expression for the total amount needed
to pay the arbiters, we can determine a suitable value for
the fee f so that the mechanism does not need any outside
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(a) Multiple entry case. (b) Single entry case.

Figure 2: Minimum fee f required to adequately incentivize arbiters, plotted as a function of B
M . In both cases, M = 106 is fixed.

Relationships are shown for selected values of update strength δ and, in the right-hand plot, liquidity b.

subsidy to finance these payments. Let ci denote the total
cost paid by agent i to the mechanism (so ci is negative if
agent i sells securities). Define M by

M =
∑

i:ni>0

ci +
∑

i:ni<0

(ni + ci).

M can be interpreted as the sum of the worst-case losses
of the agents. By definition, the total fee revenue collected
by the mechanism is fM . The mechanism is guaranteed to
generate enough fees to incentivize truthful reporting if the
revenue is at least as large as the total payment required for
the arbiters. We state this result as a theorem.
Theorem 2. The mechanism generates enough fee revenue
to pay the arbiters without requiring any outside subsidy if

fM ≥ 2max{|φ−
b (B)|, |φ+

b (B)|}
δ

. (3)

If agents may participate in the market many times, then we
require that

fM ≥ 2B(1 + f)

fδ
. (4)

Observe that inequality (4) aligns with intuition. An increase
in total trader spend M , or the trading fee f , makes it easier
to incentivize the arbiters to report truthfully since the market
collects more revenue. Likewise, an increase in δ helps us
satisfy the inequality, since a large update strength increases
the incentive for arbiters to report truthfully to the peer pre-
diction mechanism. However, a large value of B increases
the stake that any single arbiter can have in the market, which
in turn increases their payoff for misreporting.

An interesting feature of inequalities (3) and (4) is the
lack of any dependence on the number of arbiters m. One
might expect that increasing the number of arbiters would
be beneficial, since this reduces the influence that any one of
them has on the market outcome. However, this is canceled
out by the fact that as we add arbiters, the payment per arbiter
decreases, so that we cannot incentivize them as strongly.

4 Parameter Calibration

In this section we investigate the constraints imposed by
inequalities (3) and (4). The purpose of the exercise is to
illustrate how Theorem 2 can be used to inform the choice

of fee f , and to confirm that realistic fees could be charged
in practice to subsidize truthful arbitration. We consider the
logarithmic market scoring rule (LMSR), which is the most
common MSR used in practice. For the LMSR, the cost and
price functions are

Cb(q) = b log(1 + eq/b), p(q) =
eq/b

1 + eq/b
.

By the symmetry of LMSR, q− = −q+ and φ−
b (B) =

−φ+
b (B). We will therefore solve for φ+

b (B). To find q−,
we set p(q) = f/(1 + f) and solve for q, which gives
q− = b log f . Now, substituting the relevant components
into the expression φ+

b (B) = C−1
b (B+Cb(q

−))− q− leads
to the following expression for inequality (3):

fM ≥ 2b(log((1 + f)eB/b − 1)− log f)

δ
. (5)

In the case where we allow agents to participate multiple
times, inequality (4) remains unchanged.

We plot (3) and (4) in Figure 2, considering their tight ver-
sions as equalities. First consider Figure 2a, which represents
the worst-case scenario in which agents can enter multiple
times and potentially spend their entire budget buying se-
curities at minimum price p−. Suppose that some entity is
creating a prediction market for event X . Having decided
on a question, the main decision is what value to set for f ,
typically in the 2-5% range. To do so, the market creator
needs to first estimate a value for δ, which will be determined
by question clarity, whether the arbiters have reliable sources
to check the outcome, and other such factors. Each line in the
graph represents a specific value of δ. With δ fixed, the mar-
ket creator can estimate a value for B

M . This is the maximum
proportion of money that any single arbiter will contribute
to the market. We would expect B

M to be small for markets
that generate a lot of interest, while niche markets would be
vulnerable to having a single agent contribute a large per-
centage of the total trade. Given these values, the creator
can arrive at the smallest f that is guaranteed to subsidize
truthful reporting. From the graph, we see that in the case of
a question where δ = 1 and B

M = 0.001, we can subsidize
the arbiter payment with a fee of approximately 4%. This
may seem large for a clear question with high participation,
but we stress that this fee is based on a severe worst case
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where an agent is able to spend its entire budget purchasing
securities at the minimum price.

Now consider Figure 2b, which returns to the case where
an agent only enters once, where liquidity now plays a role
and we have to consider different values for parameter b.
Figure 2b includes two reasonable values for b, as well as
three different values for δ. We note that the situation looks
considerably better for the market creator; indeed, the hori-
zontal axis is now ten times larger indicating that we can now
handle much smaller markets. When δ = 1, we can handle
situations where a single agent can contribute as much as
2% of the total trade with a fee of less than 5%. Even for
questions with δ as low as 0.3, in a market with b = 1000
and B

M = 0.005 the fee can be set to approximately 5%.

5 Conclusion

This paper proposed and analyzed a mechanism where the
outcome of an MSR prediction market is determined via a
peer prediction mechanism among a set of arbiters. The mech-
anism relies on two key adaptations to incentivize truthful
arbitration: market shares pay out according to the proportion
of arbiters who vote affirmatively, instead of a binary payout,
and peer prediction payments are based on the midpoint of
the two possible posteriors, rather than the prior. We showed
that, with this combination of adaptations, it is possible to
charge a trading fee that fully subsidizes truthful arbitration.
Calibration based on plausible values of question clarity and
trading volume suggests that realistic fees of 5% should be
sufficient in practice.

While we have derived conditions under which truthful
reporting is an equilibrium, there remains the possibility of
the arbiters reporting according to uninformative equilibria
that achieve higher payoff. This problem has recently been
addressed in the peer prediction literature in situations where
reporters complete several tasks instead of just one (Dasgupta
and Ghosh 2013; Shnayder et al. 2016); it may be worthwhile
to apply these techniques to our setting. In practice, arbiters
vote on many questions across time, which opens the possi-
bility of using a reputation system to incentivize them to vote
truthfully and accurately (Peterson and Krug 2015). The in-
terplay of the incentives from all these mechanisms is fertile
ground for future research.
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