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Abstract

Kidney exchanges are organized markets where patients swap
willing but incompatible donors. In the last decade, kid-
ney exchanges grew from small and regional to large and
national—and soon, international. This growth results in
more lives saved, but exacerbates the empirical hardness of
the NP-complete problem of optimally matching patients
to donors. State-of-the-art matching engines use integer pro-
gramming techniques to clear fielded kidney exchanges, but
these methods must be tailored to specific models and objec-
tive functions, and may fail to scale to larger exchanges. In
this paper, we observe that if the kidney exchange compati-
bility graph can be encoded by a constant number of patient
and donor attributes, the clearing problem is solvable in poly-
nomial time. We give necessary and sufficient conditions for
losslessly shrinking the representation of an arbitrary com-
patibility graph. Then, using real compatibility graphs from
the UNOS US-wide kidney exchange, we show how many
attributes are needed to encode real graphs. The experiments
show that, indeed, small numbers of attributes suffice.

1 Introduction

There are over 100,000 needy patients waiting for a kid-
ney transplant in the United States, with similar—and
increasing—demand worldwide.1 Complementing potential
cadaveric transplantation via the deceased donor waiting
list, a recent innovation—kidney exchange (Rapaport 1986;
Roth, Sönmez, and Ünver 2004)—allows patients with will-
ing living donors to participate in cyclic donor swaps or
altruist-initiated donation chains to receive a life-saving or-
gan. Kidney exchange now accounts for over 10% of living
donation in the US, with that percentage increasing annually.

In reality, participating patients and donors are endowed
with a set of attributes: blood type, tissue type, age, insur-
ance, home transplant center, willingness to travel, and myr-
iad other measurements of health, personal preference, and
logistical constraints. While some of these features can, at a
cost, be temporarily or permanently changed, the attributes
determine the feasibility of a potential donation from each
donor to each patient. For example, a donor with blood type
AB can only give to a patient with that blood type.
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1
https://optn.transplant.hrsa.gov/converge/data/

A central aspect of kidney exchange is the clearing prob-
lem, that is, determining the “best” set of cyclic and chain-
based swaps to perform in a given compatibility graph,
which consists of all participating patients, donors, and
their potential feasible transactions. For even simple (but
realistic) models of kidney exchange, the clearing prob-
lem is NP-hard (Abraham, Blum, and Sandholm 2007;
Biró, Manlove, and Rizzi 2009) and also extremely difficult
to solve in practice (Glorie, van de Klundert, and Wagelmans
2014; Anderson et al. 2015; Dickerson et al. 2016).

In this paper, we tackle the complexity of the clearing
problem via the introduction of a novel model for kidney ex-
change that explicitly takes into account all attributes of the
participating patients and donors. Under the assumption that
real kidney exchange graphs can be represented using a con-
stant number of attributes, we show that our model permits
polynomial-time solutions to central NP-hard problems in
general kidney exchange. Inspired by classical results from
intersection graph theory, we give conditions on the repre-
sentation of arbitrary graphs in our model, and generalize to
the case where participants are allowed to have a thresholded
number of negative interactions between attributes. Noting
that real-life kidney exchange graphs are not arbitrary, we
show on actual data from the United Network for Organ
Sharing (UNOS) US-wide kidney exchange that our model
permits lossless representation of true graphs with far fewer
attributes than the worst-case theoretical results require.

2 A New Model for Kidney Exchange

In this section, we formalize our model of kidney exchange.
We prove that under this model certain well-known NP-
hard problems in general kidney exchange are solvable in
polynomial time. We also show that, given a compatibility
graph, determining the best set of attributes to change (at
some cost) is solvable in polynomial time.

2.1 Notation & Preliminaries

A kidney exchange can be represented by a directed com-
patibility graph G = (V,E). Each patient-donor pair, or
unpaired altruistic donor, forms a vertex v ∈ V , and a di-
rected edge exists from one vertex to another if the donor at
the former can give to the patient at the latter, i.e., are com-
patible (Roth, Sönmez, and Ünver 2004; 2005).
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In kidney exchange, patients and donors participate in cy-
cles or chains. In a cycle, each participating vertex receives
the kidney of the previous vertex. All transplants in a cy-
cle must be performed simultaneously to ensure participa-
tion, and thus are limited to some small length in practice.
This ensures that no donor backs out after her patient has
received a kidney but before she has donated her kidney.
Most fielded kidney exchanges—including UNOS—allow
only 2- and 3-cycles. In a chain, a donor without a paired
patient enters the pool, donating his kidney to a patient,
whose paired donor donates his kidney to another patient,
and so on (Montgomery et al. 2006; Roth et al. 2006; Rees
et al. 2009). Chains can be executed non-simultaneously2

and thus chains can be longer (but typically not infinite) in
length. Most exchanges—including UNOS—see great gains
through the use of such “altruist-initiated” chains.

We consider a model that imposes additional structure on
an arbitrary compatibility graph. For each vertex vi ∈ V , as-
sociate attribute vectors di and pi with its constituent donor
and patient, respectively. The qth element dqi of di takes on
one of a fixed number of types—for example, one of four
blood types (O, A, B, AB), or one of a few hundred standard
insurance plans. Then, for vi �= vj ∈ V , we define a com-
patibility function f(di,pj), a boolean function that returns
the compatibility of the donor of vi with the patient of vj .

Given V and associated attribute vectors, we can uniquely
determine a compatibility graph G = (V,E) such that
E = {(vi, vj) : f(di,pj) = 1 ∀vi �= vj ∈ V }. We
claim that this model accurately mimics reality, and we later
support that claim with strong experimental results on real-
world data. Furthermore, under this new model, certain com-
plexity results central to kidney exchange change (for the
better), as we discuss next.

2.2 The Clearing Problem is Easy (in Theory)

We now tackle the central computational challenge of kid-
ney exchange: the clearing problem. Well-known to be NP-
hard (Abraham, Blum, and Sandholm 2007; Biró, Manlove,
and Rizzi 2009), a variety of custom clearing algorithms ad-
dress adaptations of the clearing problem in practice.3 We
show that, in our model, the clearing problem itself is solv-
able in polynomial time.

Formally, we are interested in a polynomial-time algo-
rithm that solves the L-CYCLE-COVER problem—that is,
finding the largest disjoint packing of cycles of length at
most L. For ease of exposition, in this section we use “cy-
cles” to refer to both cycles and chains; indeed, it is easy
to see that altruist donors are equivalent to standard patient-
donor pairs with a patient who is compatible with all non-
altruist vertices in the pool. Then, a chain is equivalent to a
cycle with a “dummy” edge returning to the altruist. Also,

2To see why this is, take the case where a donor backs out of
a chain after his paired patient received a kidney, but before his
own donation. Unlike in the case of a broken cycle, no pair in the
remaining tail of the planned chain is strictly worse off; that is, no
donor was “used up” before her paired patient received a kidney.

3For an overview of practical approaches to solving the clearing
problem, see a recent survey due to Mak-Hau (2015).

again for ease of exposition, we assume the value of a chain
of length L is equal to a cycle of length L, due to the final
donor giving to a patient on the deceased donor waiting list.

Recall that we are working in a model where each ver-
tex vi belongs to one of a fixed number of types determined
solely by its attribute vectors di and pi. Let Θ be the set of
all possible types, and θ ∈ Θ represent one such individual
type. With a slight abuse of notation, we can define a type
compatibility function f(θ, θ′) = 1 if and only if there is a
directed edge between vertices of type θ and θ′. (Note that
this captures chains and altruist donors as described above.)

A key observation of this section is that any additional
edge structure that is imposed on the graph—such as a cycle
cover—would be independent of the identity of specific ver-
tices; rather, it would only depend on their types, as vertices
of the same type have the exact same incoming and outgoing
neighborhoods. For example, in any cycle cover, if vi and vj
are two vertices of the same type, we can swap vi and vj and
obtain a feasible cycle cover of the same size. This observa-
tion drives our theoretical algorithmic results.

In more detail, every cycle through vertices of G can be
interpreted as a closed walk through the type space. Every
such cycle can be represented by θ = (θ1, . . . , θ�) ∈ Θ�,
where � is the length of the cycle. Let us define fC as the
boolean function with fC(θ) = 1 if and only if

f(θ1, θ2) = · · · = f(θ�−1, θ�) = f(θ�, θ1) = 1.

Furthermore, for L ≤ n = |V |, let T (L) denote the set of
closed walks through the type space of length at most L.
Formally

T (L) =

L⋃

�=2

{θ ∈ Θ� : fC(θ) = 1}.

Let C be a cycle cover in G, and denote the number of
unique vertices matched in C by ‖C‖V . Suppose C has cy-
cle cap L; then it is equivalent, in our setting, to a vector
m ∈ Z

|T (L)|
+ , where, for θ ∈ T (L), mθ equals the num-

ber of cycles in C that can be represented in the type space
by θ. Let |θ| be the length of the vector θ, and ‖m‖V =∑

θ∈T (L) mθ|θ|. Then ‖m‖V = ‖C‖V , that is, ‖m‖V is
another way to express the number of matched vertices in
the equivalent cycle cover.

Now consider Algorithm 1 for L-CYCLE-COVER in our
model, which we claim is optimal and computationally effi-
cient in our setting.

Algorithm 1 L-CYCLE-COVER

1. C∗ ← ∅
2. for every vector of non-negative integers m ∈ Z

|T (L)|
+

such that ‖m‖V ≤ n

• if ‖m‖V > ‖C∗‖V and there exists cycle cover C in G
such that for each θ ∈ T (L), C contains mθ cycles of
type θ, then C∗ ← C

3. return C∗

Theorem 1. Given constants L and |Θ|, Algorithm 1 is a
polynomial-time algorithm for L-CYCLE-COVER.
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Proof. We start by verifying that Algorithm 1 is indeed op-
timal. Consider the optimal cycle cover C∗. For each θ ∈
T (L), let m∗

θ be the number of cycles in C∗ that are consis-
tent with the types in θ. Clearly

∑
θ∈T (L) m

∗
θ|θ| ≤ n, as

there are only n vertices. Therefore, Algorithm 1 considers
the collection of numbers m∗

θ in Step 2. Because this collec-
tion of numbers does induce a valid cycle cover that is of the
same size as C∗, the algorithm would update its incumbent
cycle cover if it were not already optimal.

We next analyze the running time of the algorithm. First,
note that it is straightforward to check whether the vector
m induces a valid cycle cover. Since T (L) consists only of
valid cycles according to the compatibility function fC , we
just need to check that there are enough vertices of each type
θ ∈ Θ to construct all the cycles that require them. This can
be checked individually for each θ ∈ Θ. For a particular
θ ∈ T (L), the number of vertices of type θ required is mθ

multiplied by the number of times type θ appears in θ. Then
the sum of these products over all θ ∈ T (L) is at most the
number of vertices of type θ in G.

Second, there is only a polynomial number of possibili-
ties to construct a collection of numbers m = {mθ}θ∈T (L)

such that ‖m‖V ≤ n. Indeed, this number is at most
(n + 1)|T (L)|. Moreover, |T (L)| ≤ L · |Θ|L. Because |Θ|
and L are constants, |T (L)| is also a constant. The expres-
sion (n+ 1)|T (L)| is therefore a polynomial in n.

Even for constant L, the running time of Algorithm 1 is
exponential in |Θ|. But this is to be expected. Indeed, any
graph can trivially be represented using a set Θ of types of
size n, where each vertex has a unique type, and a compat-
ibility function fC that assigns 1 to an ordered pair of types
if the corresponding edge exists in G. Therefore, if the run-
ning time of Algorithm 1 were polynomial in n and |Θ|,
we would solve the general L-CYCLE-COVER problem in
polynomial time—and that problem is NP-hard (Abraham,
Blum, and Sandholm 2007).

2.3 Flipping Attributes is Also Easy (in Theory)

While patients and donors in a kidney exchange are en-
dowed with an initial set of attributes, it may be possible
in practice to—at a cost—change some number of those at-
tributes to effect change in the final matching. For exam-
ple, the human body naturally tries to reject, to varying de-
grees, a transplanted organ. Due to this, nearly all recipi-
ents of kidneys are placed on immunosuppressant drugs af-
ter transplantation occurs.4 However, preoperative immuno-
suppression can also be performed to increase transplant
opportunity—but at some cost to the patient’s overall health.

With this in mind, we extend the model of Section 2.2 as
follows. Associate with each pair of types θ, θ′ ∈ Θ a cost
function c : Θ×Θ → R representing the cost of changing a
vertex of type θ to type θ′. Then, the L-FLIP-AND-CYCLE-
COVER problem is to find a disjoint packing of cycles of
length at most L that maximizes the size of the packing mi-
nus the sum of costs spent changing types. Building on The-
orem 1, this problem is also solvable in polynomial time.

4
https://www.kidney.org/atoz/content/immuno

Theorem 2. Suppose that L and |Θ| are constants. Then L-
FLIP-AND-CYCLE-COVER is solvable in polynomial-time.

Proof sketch. For any type θ ∈ Θ, there are nθ vertices.
Then, for each of the (|Θ|−1) choices of which type θ′ �= θ
to switch to, choose how many vertices from θ will switch
to that type; there are at most (nθ + 1) possibilities. Do this
for all types in Θ, resulting in∏

θ∈Θ

(nθ + 1)|Θ|−1 ≤ (n+ 1)|Θ|2

possibilities. Since |Θ| is a constant, this is polynomial in n.
For each of these polynomially-many type-switch possi-

bilities, we can compute the optimal cycle cover in polyno-
mial time using Algorithm 1, and subtract c(θ, θ′) for each
vertex that switched from θ to θ′. Taking the best of these
solutions gives the optimal solution in polynomial time.

3 A Concrete Instantiation: Thresholding

As motivated in Sections 1 and 2, compatibility in real kid-
ney exchange graphs is determined by patient and donor at-
tributes, such as blood or tissue type. In particular, if an at-
tribute for a donor and patient is in conflict, they are deemed
incompatible. Motivated by that reality, in this section, we
associate with each patient and donor a bit vector of length
k, and count incompatibilities based on any shared activated
bits between a patient and potential donor.

As a concrete example, consider human blood types. At
a high level, human blood contains A antigens, B antigens,
both (type AB), or neither (type O). AB-type patients can
receive from any donor, A-type (B-type) can receive from
O-type and A-type (B-type) donors, and O-type patients can
only receive from O-type donors. In our bit model, this is
represented with k = 2. The first bit represents compatibility
with A antigens and the second bit represents compatibility
with B antigens. Thus, the type space Θ = 2{has-A,has-B} ×
2{no-A,no-B}; in general, |Θ| = 22k.

Formally, unless otherwise stated, throughout this sec-
tion G will refer to a directed graph with vertex set V =
[n] := {1, . . . , n} and edge set E, and with each i ∈ V
associated with two k-bit vectors di,pi ∈ {0, 1}k. Let
Qd(i) = {q ∈ [k] : diq = 1} be the set of conflict bits
for the donor associated with vertex i ∈ V , and similarly let
Qp(i) = {q ∈ [k] : piq = 1}. For i, j ∈ V such that i �= j,
the threshold feasibility function f t

thresh is defined as

f t
thresh(di,pj) =

{
1 if |Qd(i) ∩Qp(j)| ≤ t,
0 otherwise.

.

Note that |Qd(i) ∩Qp(j)| ≤ t if and only if 〈di,pj〉 ≤ t.
Kidney exchange graphs constructed using threshold

compatibility functions are closely related to complements
of intersection graphs (McKee and McMorris 1999), which
are graphs that have a set associated with each vertex and
an edge between two vertices if and only if the sets in-
tersect. Given t ∈ N, the function f t

thresh is related to p-
intersection graphs (Chung and West 1994; Eaton, Gould,
and Rödl 1996), where an edge connects two vertices if their
corresponding sets intersect in at least p ≥ 1 elements.
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In particular, our model is similar to that of intersection
digraphs (Sen et al. 1989), or equivalently bipartite intersec-
tion graphs (Harary, Kabell, and McMorris 1982), both also
considered in (Orlin 1977). These have mainly been stud-
ied under the assumption that the sets used to represent the
graph have the “consecutive ones” property, i.e., each set is
an interval from the set of integers. Our model is more gen-
eral: we do not place such an assumption on the set of con-
flict bits. Moreover, most treatments of intersection digraphs
consider loops on the vertices, whereas in our thresholding
model, whether or not donor i and patient i are compatible is
not considered. In addition, the directed and bipartite inter-
section graph literature has focused on the case that t = 0 (in
our terminology). To the best of our knowledge, this paper
is the first treatment p-intersection digraphs, and certainly
their first real-world application.

3.1 Existence of Small Representations

It is natural to ask for what values of t and k we can se-
lect vertices with bit vectors di and pi of length k such that
f t

thresh can create any graph of a specific size?
Formally, we say that G is (k, t)-representable (by feasi-

bility function f t
thresh) if, for all i ∈ V there exist di,pi ∈

{0, 1}k such that for all j1 ∈ V , j2 ∈ V \{j1}, (j1, j2) ∈ E
if and only if f t

thresh(dj1 ,pj2) = 1.
It is known (Erdős, Goodman, and Pósa 1966) that any

graph can be represented as an intersection graph with k ≤
n2/4. Yet, we show next that, in our model, k ≤ n suffices
to represent any graph. It is akin to a result on the term rank
of the adjacency matrix of G (Orlin 1977, Thm 6.6).

Theorem 3. Let G = (V,E) be a digraph on n vertices.
Let n1 be the number of vertices with outgoing edges, Let
n2 be the number of vertices with incoming edges, and n′ =
min{n1 +1, n2 +1, n}. Then G can be (n′, 0)-represented.

Proof. We first show that the graph can be (n1 + 1, 0)-
represented. Assume without loss of generality that ver-
tices 1, . . . , n1 have outgoing edges. We show how to set
di,pi ∈ {0, 1}n1+1 for each vertex i in V . To set the donor
attributes, for each i ∈ [n1], let di be ei, the ith standard ba-
sis vector, i.e., the vector of length n1 +1 with a 1 in the ith
coordinate and 0 everywhere else. For i > n1, set di to be
en1+1. For the patient attributes of vertex j ∈ [n], for each
i ∈ [n] such that (i, j) ∈ E, set pji = 0, and set pji = 1
otherwise. Note that if all the vertices have outgoing edges,
then n1 = n unit vectors suffice. A similar approach works
to (min{n, n2 + 1}, 0)-represent G, by using the n2 unit
vectors as the patient vectors of those vertices with incom-
ing edges, and (if needed) one additional unit vector for any
remaining vertices. In both of these cases, 〈di,pj〉 = 0 if
and only if (i, j) ∈ E, which represents G by f0

thresh.

In particular, Theorem 3 implies that any graph is (n, 0)-
representable. The next theorem shows a matching lower
bound. The same construction and bound also hold if loops
are considered (Sen et al. 1989).

Theorem 4. For any n ≥ 3, there exists a graph on n ver-
tices that is not (k, 0)-representable for all k < n.

Proof. Define G to be the digraph on n vertices, V = [n],
with an edge from vertex i, for each i ∈ V , to every vertex
except i−1 (and itself), where vertex n is also referred to as
vertex 0.

Assume that G is (k, 0)-representable, and consider ver-
tex 1. Since (1, n) /∈ E, and (i, n) ∈ E for all i /∈ {1, n},
there exists a conflict bit q1 ∈ Qd(1) ∩ Qp(n) such that
q1 /∈ Qp(V \ {1, n}). More generally, there exists such a
conflict bit qi for all i ∈ V .

We claim that these conflict bits are all unique, which di-
rectly implies that k ≥ n. Indeed, otherwise we can assume
that q1 = qi for some i �= 1 (without loss of generality, as
the graph is symmetric subject to cyclic permutations). But
then (1, i− 1) and (i, n) do not appear as edges in G, which
is not true for any i ∈ V \ {1}.

More generally, it is easy to see that any graph that is
(k, 0)-representable is also (k + t, t)-representable for any
t ≥ 0. Indeed, simply take the (k, 0)-representation of the
graph, and append t ones to every vector. Together with The-
orem 3, this shows that any graph is (n+ t, t)-representable.
However, the lower bound given by Theorem 4 does not ex-
tend to t > 0. We conjecture that for any n and t there exists
a graph that can only be (k, t)-represented with k = Ω(n)—
this remains an open question.

3.2 Computational Issues

Given a real compatibility graph with n vertices, we know
by Theorem 3 that we can (k, 0)-represent that graph for
k = n. But, in practice, how large of a k is actually needed?

Various problems related to intersection graphs are NP-
complete for general graphs (Kou, Stockmeyer, and Wong
1978; Orlin 1977), but we work in a setting with additional
structure. And while we do not show that finding a (k, t)-
representation is NP-hard, we do show that a slightly harder
problem, which we refer to as (k, t)-REPRESENTATION-
WITH-IGNORED-EDGES, is NP-hard. Given an input of a
directed graph G = (V,E), a subset F of

(
V
2

)
, and integers

k ≥ 1 and t ≥ 0, this problem asks whether there exist bit
vectors di and pi of length k for each i ∈ V such that for any
(i, j) ∈ F , we have (i, j) ∈ E if and only if 〈di,pj〉 ≤ t.

Theorem 5. The (k, t)-REPRESENTATION-WITH-
IGNORED-EDGES problem is NP-complete.

The theorem’s nontrivial proof is relegated to the ap-
pendix.5 Here we give a proof sketch. One major idea is
the construction of a bit-grounding gadget Gk—a subgraph
where the bits are set uniquely (up to permutations) in any
valid representation, and can be used to set the bits in other
vertices. The gadget has

(
k
2

)
vertices; we prove that there is

a unique (up to permutations) (k, 1)-representation of Gk,
where each donor vector has a unique pair of ones, and sim-
ilarly for each patient vector. Figure 1 shows G4.

Then, we prove NP-hardness by reduction from 3SAT. In
the constructed instance of our problem, we set the thresh-
old to 1. The crux of the reduction is to add a vertex for each

5https://arxiv.org/abs/1605.07728
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clause in the given 3SAT formula, where in the patient vec-
tor, the bit corresponding to each literal in the clause is set
to 1. This can be done by connecting the vertex to the bit-
grounding gadget. Moreover, there is a special vertex that
does not have outgoing edges to any of the clause vertices.
This means that it must have a 1 in a position that corre-
sponds to one of the literals in each clause. A different part
of the construction ensures that there is at most a single 1 in
the two positions corresponding to a variable and its nega-
tion. Therefore, a valid assignment of the donor bits corre-
sponds to a satisfying assignment for the 3SAT formula.

1

2

3

4
1

d1 : 1100
p1 : 1010

2

d2 : 1010
p2 : 1001

3
d3 : 1001
p3 : 0110

4

d4 : 0110
p4 : 0101

5

d5 : 0101
p5 : 0011

6
d6 : 0011
p6 : 1100

Figure 1: Gadget G4 with a subset of non-edges shown; all
edges between circle vertices are also not in E.

4 Computing Small Representations of Real

Kidney Exchange Compatibility Graphs

In this section, we test our hypothesis that real compatibility
graphs can be represented by a substantially smaller number
of attributes than required by the worst-case theoretical re-
sults of Section 3. We begin by presenting general math pro-
gramming techniques to determine, given k, t ∈ Z, whether
a specific graph G = (V,E) is (k, t)-representable. We
then show on real and generated compatibility graphs from
the UNOS US-wide kidney exchange that small k suffices
for (k, 0)-representation, and conclude by exploring the al-
lowance of greater thresholds t on match size. Even small
thresholds t > 0 result in substantial societal gain.6

4.1 Mathematical Programming Formulations

Implementation of f t
thresh can be written succinctly as

a quadratically-constrained discrete feasibility program
(QCP) with 2k|V | binary variables, given as M1 below.

〈di,pj〉 ≤ t ∀(vi, vj) ∈ E
〈di,pj〉 ≥ (t+ 1) ∀(vi, vj) 	∈ E

di,pi ∈ {0, 1}k ∀vi ∈ V
(M1)

The constraint matrix for this program is not positive
semi-definite, and thus the problem is not convex. Ex-
ploratory use of heuristic search via state-of-the-art integer
nonlinear solvers (Bonami et al. 2008) resulted in poor per-
formance (in terms of runtime and solution quality) on even

6Code for this section will be made available once the double-
blind period is over; the code itself uniquely identifies the authors.

small graphs. With that in mind, and motivated by the pres-
ence of substantially more mature integer linear program
(ILP) solvers, we linearize M1, presented as M2 below.

min
∑

vi∈V

∑
vj �=vi∈V ξij

s.t. dqi ≥ cqij ∧ pqj ≥ cqij ∀vi 	= vj ∈ V, q ∈ [k]
dqi + pqj ≤ 1 + cqij ∀vi 	= vj ∈ V, q ∈ [k]∑

q c
q
ij ≤ t+ (k − t)ξij ∀(vi, vj) ∈ E∑
q c

q
ij ≥ (t+ 1)ξij ∀(vi, vj) ∈ E∑

q c
q
ij ≥ t+ 1− kξij ∀(vi, vj) 	∈ E∑

q c
q
ij ≤ k − (k − t)ξij ∀(vi, vj) 	∈ E

dqi , p
q
i ∈ {0, 1} ∀vi ∈ V, q ∈ [k]

cqij , ξij ∈ {0, 1} ∀vi 	= vj ∈ V, q ∈ [k]
(M2)

M2 generalizes M1; while M1 searches for a feasible
solution to the (k, t)-representation problem, M2 finds the
“best” (possibly partially-incorrect) solution by minimizing
the total number of edges that exist in the solution but not
in the base graph G, or do not exist in the solution but do
in G. This flexibility may be desirable in practice to strike a
tradeoff between small k and accuracy of representation.

Interestingly, neither the fully general ILP nor its
(smaller) instantiations for the special cases of feasibility
and/or threshold t = 0 were solvable by a leading com-
mercial ILP solver (IBM ILOG Inc 2015) within 12 hours
for even small graphs, primarily due to the model’s loose LP
relaxation. Indeed, the model we are solving is inherently
logical, which is known to cause such problems in tradi-
tional mathematical programming (Hooker 2002). With that
in mind, we note that the special case of t = 0 can be rep-
resented compactly as a satisfiability (SAT) problem in con-
junctive normal form, given below as M3.

∧
q∈[k]

(¬dqi ∨ ¬pqj) ∀(vi, vj) ∈ E

(z1ij ∨ z2ij ∨ . . . ∨ zkij) ∧∧
q∈[k]

[
(¬zqij ∨ dqi ) ∧ (¬zqij ∨ pqj)

] ∀(vi, vj) 	∈ E
(M3)

This formulation maintains two sets of clauses: the first
set enforces no bit-wise conflicts for edges in the underlying
graph, while the second set enforces at least one conflict via
k auxiliary variables z·ij for each possible edge (vi, vj) �∈
E. M3 was amenable to parallel SAT solving (Biere 2014).
Next, we present results on real graphs with this formulation.

4.2 (k, 0)-representations of Real Graphs

Can real kidney exchange graphs be represented by a small
number of attributes? To answer that question, we begin by
testing on real match run data from the first two years of
the United Network for Organ Sharing (UNOS) kidney ex-
change, which now contains 143 transplant centers, that is,
60% of all transplant centers in the US. We translate each
compatibility graph into a CNF-SAT formulation according
to M3, and feed that into a SAT solver (Biere 2014) with ac-
cess to 16GB of RAM, 4 cores, and 60 minutes of wall time.
(Timeouts are counted—conservatively against our paper’s
qualitative message—as negative answers.)

Figure 2 shows a classical phase transition from unsat-
isfiability to satisfiability as k increases as a fraction of
graph size, as well as an associated substantial increase
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Figure 2: Classical hardness spike near the phase transition
for (k, 0)-representation on real UNOS graphs.
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bound of k solved by our SAT solver (upper dotted line).
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Figure 4: Pairs matched (%, y-axis) in generated UNOS
graphs of varying sizes (lines), as t increases (x-axis).

in computational intractability centered around that phase
transition. This phenomenon is common to many central
problems in artificial intelligence (Cheeseman, Kanefsky,
and Taylor 1991; Hogg, Huberman, and Williams 1996;
Walsh 2011). Indeed, we see that substantially fewer than
|V | attributes are required to represent real graphs; compare
with the lower bound of Theorem 4.

Figure 3 explores the minimum k required to represent
each graph as a function of |V |, compared against the theo-
retical upper bound of |V |. The shaded area represents those
values of k where the SAT solver timed out; thus, the re-
ported values of k are a conservative upper bound on the re-
quired minimum, which is still substantially lower than |V |.

4.3 Thresholding Effects on Matching Size

A motivation of this work is to provide a principled basis for
optimally “flipping bits” of participants (via, e.g., immuno-

suppresion) in fielded kidney exchanges, in the hope that ad-
ditional edges in the compatibility graph will result in gains
in the final algorithmic matchings. We now explore this line
of reasoning—that is, increasing the t in f t

thresh instead of
the k, which is now endogenous to the underlying model—
on realistic generated UNOS graphs of varying sizes.

Figure 4 shows the effect on the percentage of patient-
donor pairs matched by 2- and 3-cycles as a global threshold
t is raised incrementally from t = 0 (the current status quo)
to t = 5. Intuitively, larger compatibility graphs result in a
higher fraction of pairs being matched; however, a comple-
mentary approach—making the graph denser via even small
increases in t—also results in tremendous efficiency gains
of 3–4x (depending on |V |) over the baseline for t = 0, and
quickly increasing to all pairs being matched by t = 5.

We note that any optimal matching found after increas-
ing a global threshold t could also be created by paying to
change at most t bits per vertex in a graph; however, the
practical selection of the minimum-sized set of at most t bits
per vertex such that the size of the resulting optimal match-
ing is equal to that found under the global threshold of t is
a difficult two-stage problem and is left as future research.
The large efficiency gains realized by moving from f0

thresh to
even f1

thresh motivate this direction of research.

5 Conclusions & Future Research

Motivated by the increasing size of real-world kidney ex-
changes, we presented a compact approach to modeling kid-
ney exchange compatibility graphs. Our approach is inti-
mately connected to classical intersection graph theory, and
can be viewed as the first exploration and practical applica-
tion of p-intersection digraphs. We gave necessary and suf-
ficient conditions for losslessly shrinking the representation
of an arbitrary compatibility graph in this model. Real com-
patibility graphs, however, are not arbitrary, and are created
from characteristics of the patients and donors; using real
data from the UNOS US-wide kidney exchange, we showed
that using only a small number of attributes suffices to rep-
resent real graphs. This observation is of potential practical
importance; if real graphs can be represented by a constant
number of attributes, then central NP-hard problems in gen-
eral kidney exchange are solvable in polynomial time.

This paper only addresses the representation of static
compatibility graphs; in reality, exchanges are dynamic,
with patients and donors arriving and departing over
time (Ünver 2010). Extending the proposed method to cover
time-evolving graphs is of independent theoretical inter-
est, but may also be useful in speeding up the (presently-
intractable) dynamic clearing problem (Awasthi and Sand-
holm 2009; Dickerson, Procaccia, and Sandholm 2012;
Anderson 2014; Dickerson and Sandholm 2015; Glorie et al.
2015). Better exact and approximate methods for computing
(k, t)-representations of graphs would likely be a prerequi-
site for that research. Adaptation of the theoretical results to
models of lung, liver, and multi-organ exchange would also
be of practical use (Ergin, Sönmez, and Ünver 2014; 2015;
Luo and Tang 2015; Dickerson and Sandholm 2016).
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