
The Positronic Economist:
A Computational System for Analyzing Economic Mechanisms

David Thompson, Neil Newman, Kevin Leyton-Brown
Department of Computer Science

University of British Columbia, Canada
{daveth, newmanne, kevinlb}@cs.ubc.ca

Abstract

Computational mechanism analysis is a recent approach to
economic analysis in which a mechanism design setting is ana-
lyzed entirely by a computer. For games with non-trivial num-
bers of players and actions, the approach is only feasible when
these games can be encoded compactly, e.g., as Action-Graph
Games. Such encoding is currently a manual process requiring
expert knowledge; our aim is to simplify and automate it. Our
contribution, the Positronic Economist is a software system
having two parts: (1) a Python-based language for succinctly
describing mechanisms; and (2) a system that takes such de-
scriptions as input, automatically identifies computationally
useful structure, and produces a compact Action-Graph Game.

1 Introduction

A mechanism is a protocol for collective decision making
among self-interested agents. Mechanisms model many so-
cial processes from auctions to elections. They are widely
studied in computer science, both because the participants in
real-world mechanisms can be autonomous software systems
(e.g. algorithmic bidding and trading agents) and because
algorithms such as job schedulers give rise to mechanisms
when users have competing interests. Mechanisms are com-
plicated to understand because participants respond to rule
changes strategically. Thus, although real-world mechanisms
are often fairly simple (e.g., plurality voting), a mechanism’s
outcome depends not just on its functional description but on
agents’ strategic choices. Game theory provides principled
methods for analyzing such choices. Unfortunately, game
theoretic analysis is a difficult process requiring either sub-
stantial human effort or very large amounts of computation.

An alternative is offered by recent advances in algorithms
for efficiently computing game-theoretic solution concepts
(Roughgarden and Papadimitriou 2008; Jiang, Leyton-Brown,
and Bhat 2011a), and on using such algorithms to analyze
mechanisms (Thompson and Leyton-Brown 2009), an ap-
proach referred to as computational mechanism analysis
(CMA). While these algorithms can operate on normal-
form descriptions of games, applying them to computation-
ally motivated compact game representations allows for
exponential speedups (Kearns, Littman, and Singh 2001;

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Jiang, Leyton-Brown, and Bhat 2011a). For example, Action-
Graph Games (AGGs) can compute an agent’s expected
utility under an arbitrary mixed strategy profile with a
polynomial-time dynamic programming algorithm, and this
expected utility problem constitutes the inner loop of many
game-theoretic algorithms. (The standard method of comput-
ing expected utility is polynomial in the size of the normal
form; since an AGG can be exponentially smaller, the AGG
representation can yield exponential speedups.)

We have used this approach of combining efficient al-
gorithms with compact representations to address open
problems in mechanism analysis ranging from bidding in
advertising auctions (Thompson and Leyton-Brown 2009;
2013) to strategic voting in plurality elections (Thompson
et al. 2013). The approach has the advantage that games
need not be approximated and that equilibria are computed
exactly; we leverage compact representations and sophisti-
cated, exact-equilibrium-finding algorithms to manage com-
putational demands. However, we have found it nontrivial
to produce the application-specific encodings into compact
game representations upon which this process depends.

This paper’s goal is to make CMA accessible to a broader
audience without reducing its fidelity. We summarize our
desiderata as the “Three Laws of Positronic Economics,” in-
spired by Asimov’s [1942] “Three Laws of Robotics.”

1. Precision: Games are represented exactly. Equilibria are
either exact or are ε-equilibria with ε roughly machine-ε.

2. Speed: Algorithms must be fast enough to be used in
practice, except when this is in conflict with the first law.

3. Autonomy: Human effort should be minimized, except
when this conflicts with the first two laws.
In this paper, we introduce a tool, Positronic Economist

(PosEc), that delivers on these goals, dramatically reduc-
ing the human effort required by CMA without compro-
mising the analysis itself. Our paper makes two major con-
tributions. The first is a high-level Python-based declara-
tive language for describing mechanisms in a form that
closely resembles their natural mathematical representa-
tions; the second is a pair of complementary algorithms
that automatically infer the structure of a game specified
in this language and produce a compact Bayesian AGG
(BAGG). We then draw on a portfolio of existing algorithms
to solve the game. We chose to use BAGGs because of the

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

720

availability of empirically fast tools available for working
with them: while Nash equilibrium finding is an NP- or
PPAD-hard problem for BAGGs, depending on the equi-
librium type, good heuristics can often find exact equilib-
ria quickly (Thompson, Leung, and Leyton-Brown 2011;
Jiang, Leyton-Brown, and Bhat 2011a).

The structure of the remainder of this paper is as follows.
Section 2 surveys related work. Section 3 formalizes the
mechanisms and settings that PosEc can represent. Section 4
briefly describes BAGGs. Section 5 provides an overview of
the PosEc representation language. Section 6 details PosEc’s
two structure inference algorithms. Section 7 discusses exper-
iments that help characterize PosEc’s performance. Finally,
Section 8 discusses some directions for future work.

2 Related Work

We are not aware of any other work with the goal of sim-
plifying the process of generating compact representations.
Perhaps the closest is by Duong et al. (2009), which also
integrates with the compact games literature. They provide
algorithms to construct a graphical game that best approxi-
mates an input game from a set of samples of strategies and
payoffs, which either come from previously observed play
or a simulator. The question of how to obtain samples from
a simulator without unacceptably degrading fidelity is unan-
swered. We note that PosEc does not require any samples.

We are aware of two other CMA systems, which differ
from PosEc in the human effort required to specify games,
in the types of games that they are able to specify, and in
their ability to leverage high performance algorithms. The
system of Rabinovich et al. (2013) does not explicitly specify
how games are represented. A user must provide code for
computing expected utility given a strategy profile, which
could require substantial human effort; observe that one of the
main benefits of AGGs is that they provide such an efficient
computational procedure. Their system is restricted to two
player games of incomplete information, places restrictions
on the form of utility functions, and requires strategy and
type sets to be continuous and unbounded. While PosEc
cannot handle infinite strategy or type sets due to the discrete
nature of BAGGs, it can represent games with any number of
players and does not impose restrictions on the form of the
utility function. Their system only supports the fictitious play
algorithm (FP), which is a relatively weak Nash equilibrium
computation algorithm, prone to getting stuck in cycles.

Another CMA system was introduced by Vorobeychik,
Reeves, and Wellman (2012). This system describes mech-
anisms and settings as piecewise linear equations. Given
that many single-parameter mechanisms and settings are de-
scribed algebraically in the literature, this representation re-
quires very little human effort. However, the only supported
equilibrium-finding algorithm is iterative best response (IBR),
which is unable to compute mixed-strategy equilibria and can
also fail to converge. In contrast, PosEc makes it easy for the
user to leverage a wide range of high-performance solvers.

There is other work in the empirical game-theoretic analy-
sis (EGTA) space that proposes specialized algorithms that
operate directly on a simulator, without translation to an

intermediate form. One example is by Vorobeychik and Well-
man (2008), who used simulated annealing to find a strategy
profile constituting an approximate Nash equilibrium of the
simulated game. While the human effort of building a simu-
lator is comparable the effort of specifying a game in PosEc,
the major difference is that PosEc creates a compact game
that represents the input game exactly and computes exact
equilibria of the input game. While approximate equilibria
are a major subject of research in algorithms and complexity,
researchers in mechanism design and auction theory over-
whelmingly favor exact equilibria.

3 Mechanisms and Settings

We now formally describe the games that PosEc is able to
represent. An epistemic-type Bayesian game is specified by
〈N,A,Θ, p,U〉, where N is a set of agents, numbered 1 to
n, A = A1 × · · · × An, where Ai is a set of actions that
agent i can perform, Θ is the set of private types that an
agent can have, p is the joint type distribution, p ∈ Δ(Θn)
where Δ denotes the set of probability distributions over a
given domain, and U is a profile of n utility functions where
Ui : A×Θn → R.

This paper considers “mechanism-based games,” and so
splits games into two parts, a mechanism and a setting. A
mechanism is given by 〈A,M〉 where A = A1 × · · · × An,
where Ai is a set of actions that agent i can perform, and
M is the choice function, M : A → Δ(O). A Bayesian
setting is given by 〈N,O,Θ, p, u〉 where N is a set of agents,
numbered 1 to n, O is a set of outcomes, Θ is the a set
of private types that an agent can have, p is the joint type
distribution, p ∈ Δ(Θn), and u is a utility function u : N ×
Θn × O → R. Any mechanism and setting that both use
the same n and O can be combined to form a game where
Ui(θN , aN) = u(i, θN ,M(aN)) and where aN ∈ A denotes
an action profile.

4 Bayesian Action-Graph Games

PosEc uses Bayesian Action-Graph Games to represent the
games described in Section 3. We briefly and informally
introduce BAGGs here, but refer the reader to Jiang and
Leyton-Brown (2010) for more details. BAGGs are compact
because they exploit anonymity (an agent’s payoff may not
depend on the specific identities of agents who played certain
actions) and context-specific independence (an agent’s payoff
for playing a given action can be determined based only on
the distribution of play over a strict subset of the actions). A
BAGG is a directed graph in which the nodes correspond to
type-action pairs. Play of the game can be thought of as each
agent placing a token on one of their allowed subset of nodes.
Given the locations of all of the tokens, an agent’s utility
can be computed by referring only to the count of tokens
in the neighborhood of the node the agent chose. A node’s
neighborhood is the set of nodes having outgoing edges that
point to it, with self-edges allowed. The counts of all of the
nodes in a neighborhood are called a projected configura-
tion, and each node stores a payoff table indexed by these
configurations. We conclude by mentioning function nodes:
no agent selects these nodes; instead, the count at a function

721

Setting

n = 10

O = ("A", "B", "C")

Theta = [("A", "B", "C"), ("C", "B", "A")]

P = [UniformDistribution(Theta)] * n

def u(i, theta, o, a_i):

return theta[i].index(o)

s = BayesianSetting(n, O, Theta, P, u)

Mechanism

def A(setting, i, theta_i):

return setting.O

def M(setting, a_N):

scores = {o: a_N.count(o)

for o in setting.O}

maxScore = max(scores.values())

winners = [o for o in scores.keys()

if scores[o] == maxScore]

return UniformDistribution(winners)

m = Mechanism(A, M)

agg = makeAGG(s, m, symmetry=True)

Figure 1: Sample code defining a mechanism and setting for
plurality voting with randomized tie breaking.

node is an arbitrary deterministic function of the counts of
the node’s parents. For example, a sum node in a voting game
might be used to count all of the agents that choose actions
that influence a particular candidate’s score. Since expected
utility computation runtime depends asymptotically on the
in-degree of action nodes, and this can be substantially re-
duced via the use of function nodes, they can lead to large
computational savings.

5 Representing Games with PosEc

PosEc is a language that aims to make it easy for users
to describe mechanisms and settings. Space constraints do
not permit us to describe it in detail here; thus, we confine
ourselves to examples and discussion of some of the key
decisions that went into its design. The package is open
source and pointers to the software, compatible equilibrium-
finding algorithms, and further documentation are available
at https://www.cs.ubc.ca/research/posec/.

Our modeling language is based on Python. The tuples,
sets and utility functions of the mathematical representation
map quite naturally to tuples, set and functions in Python.
To specify a mechanism-based game, a user must create and
combine a setting and a mechanism.

Figure 1 shows all the code that is required to define the
mechanism and setting for plurality voting with randomized
tie breaking. First a Bayesian setting is defined as consisting
of ten agents, three outcomes (one in which each candidate
wins), types corresponding to unique preference orderings,
a uniform probability distribution for each agent over each
type, and a utility function that returns the index of the elected
candidate in the agent’s preference ordering. Second, an ac-
tion function A is defined as returning the actions available
to a given agent (here, to vote for any candidate) and is com-
bined with a choice function M that returns a distribution over
outcomes given each agent’s actions.1 Finally, the makeAGG

1Note that PosEc requires randomized mechanisms, like our tie-

function is called,2 and the structure inference algorithms
described in Section 6 produce a BAGG.

One of our goals was to let users implement their utility
and choice functions however they liked. Indeed, PosEc will
convert any valid Python functions into a valid BAGG. How-
ever, as will be made more explicit in Section 6.1, PosEc can
take advantage of game structure signaled through appropri-
ate use of PosEc’s accessors, which are used by the choice
and utility functions to get information about agent types and
actions played (i.e., any usage of a N or theta). Note the
call to a N.count(o) in the choice function, which signals
that the outcome can be determined based only on the number
of agents that played a given action. Consider an anonymous
mechanism with a constant number of actions c, like our
voting game. The corresponding normal-form game requires
O(ncn) space, while the corresponding AGG is O(nc).

In many single-good auction settings, each agent’s payoff
depends only on whether she is allocated the good and on
her own payment. Such structure is computationally useful:
an agent’s utility may be computed without deriving a dis-
tribution over the entire outcome space. We call this idea
projection. PosEc allows users to specify projected settings
and mechanisms. While expressing projection structure can
be more work for users, doing so can yield exponentially
faster computation, because the resulting games can be much
more compact than games based on the equivalent (unpro-
jected) settings and mechanisms.

The overriding goal for the PosEc API is to allow users
to precisely specify games as easily as possible. Thus, our
design decisions emphasize a simple general language for
users to build with, rather than a palette of options for users
to choose from. Naturally, we hope that users will produce a
library of reusable mechanisms and settings.

6 Structure Inference Algorithms

The second main component of PosEc is structure inference:
automatically generating compact BAGGs given setting and
mechanism descriptions in PosEc’s own modeling language.
We provide two approaches for doing this. First, white-box
structure inference (WBSI) uses structure made explicit in
the PosEc representation—e.g., via use of the count operator,
projection, etc.—to generate a BAGG. (In the degenerate
case, no such structure is explicitly given, and we obtain
an exponential-size BAGG.) Second, black-box structure
inference (BBSI) takes the BAGG generated in the first step
and probes it to find additional structure to obtain a more
compact BAGG.

6.1 White-Box Structure Inference

We aim to obtain what we call the straightforward BAGG: a
BAGG that contains only those function nodes and edges that

breaking scheme, to return distributions over outcomes rather than
performing randomization internally (e.g., via the Python random
module). If choice functions randomized on their own, PosEc would
need to sample the choice function and would then only approximate
the distribution.

2symmetry=True specifies that agents of the same type share
the same action node set.

722

A B C

A B C

A � B � C

C � B � A

(a)

A B C

A B C

∑
B

∑
A

∑
C

A � B � C

C � B � A

(b)

∑
A

∑
B

∑
C Expected Payoff

1 0 1 1
1 1 0 1.5
2 0 0 2

(c)

Figure 2: WBSI’s first steps on the plurality voting example
in Figure 1. Beginning with a disconnected action graph
(a), WBSI selects an action node (here, voting for candidate
A with type A � B � C) and creates an empty payoff
table. As the choice function is run, WBSI will infer from
accessor calls such as a N.count("A") that it needs to
create summation nodes aggregating the number of players
that voted for each candidate across types, and that these
function nodes should be inputs to the payoff table. (b) shows
the action graph once the payoff table is computed, and (c)
shows the payoff table (for a 2 agent game).

are necessary to compute features used by the input game.
Let �s denote the representation length of this game. Our goal
is to compute the straightforward BAGG using only poly(�s)
calls to the utility function of the input game. We do so via a
relatively direct algorithm. Essentially, it works by beginning
with a totally disconnected action graph, and progressively
adding function nodes and edges whenever their absence
means that the utility function cannot compute a payoff. We
give pseudocode for WBSI in Algorithm 1 and work through
the first steps of WBSI on the plurality voting example from
Section 5 in Figure 2.

We now provide two theorems about the behavior of WBSI:
the first relates the size of the BAGG produced by WBSI
to parameters of the game under certain conditions, while
the second relates the runtime of WBSI to the size of the
straightforward BAGG.

Theorem 1 For any game parameterized by the number of
agents n, the number of actions per agent m, and the number
of types t, where the choice and utility functions each can
make a constant number of different calls to PosEc acces-
sor functions, and where any weighted-sum calls involve a
maximum weight of w bounded by poly(n ·m · t), the straight-
forward BAGG will require only poly(n ·m · t) space.

Proof sketch. WBSI introduces at most one function node
per accessor call. A weighted max node, which returns an
action node index, can only have as many different projected
configurations as there are action nodes, of which there are
at most O(n ·m · t). A weighted sum node with maximum
w can only have at most O(w · n) different projected config-
urations. For each action node, there are a constant number
of neighbors. Thus the possible projected configurations on
the neighborhood of any action node is at most the Carte-
sian product of the possible projected configurations of each
neighbor. Since these spaces are all poly(n ·m · t) and there
are boundedly many of them, the total configuration space in
the neighborhood of every action is at most poly(n ·m · t).�

Small outputs are important because the BAGGs produced
by WBSI are typically used as inputs to game-solving algo-
rithms, which often require worst-case time exponential in
the size of their inputs. It is also important that WBSI be fast,
so as not to become the main bottleneck.

Theorem 2 The white-box structure-inference algorithm (Al-
gorithm 1) runs in O(c(�s)

2) time, where �s denotes the size
of its output, the straightforward BAGG, and c denotes the
amount of time that the input code requires to compute a
single agent’s payoff for a single type-action-profile.

Proof sketch. The runtime is dominated by the computation
of payoff tables. The outer for and repeat loops jointly take
O(�s) time: the for loop runs once per action node, and each
iteration of the repeat loop after the first one involves creat-
ing a new edge, and both actions and edges take up space in
the BAGG representation. The inner for loop iterates over
projected configurations, where one payoff per projected con-
figuration is also part of the BAGG representation. Because
this loop only deals with BAGGs that contain weakly fewer
edges than the straightforward BAGG, it can only iterate over
projected-configuration spaces that are weakly smaller than
the projected configuration space of the straightforward AGG.
Thus, this inner loop also takes O(�s) time. �

As long as the outcome and utility functions passed
to WBSI can be evaluated in polynomial time and make
bounded numbers of calls to accessor functions, WBSI will
run in polynomial time and output a polynomial-sized BAGG.

6.2 Black-Box Structure Inference

The goal of black-box structure inference is to take a BAGG
obtained from white-box structure inference—in the degen-
erate case, a completely unstructured BAGG—and return a
new BAGG that more efficiently represents the same game.
Thus, BBSI is a constrained optimization problem where the
feasible region is the set of all BAGGs that are equivalent
to the input game and the objective is to find the smallest
BAGG, measured by input length, in the feasible region. A
simple, polynomial-time algorithm is to try cutting an incom-
ing edge to an action node if this results in a strategically
equivalent payoff table (e.g., in a GFP auction, an agent’s
payoff is unaffected by each bid less than her own). When
successful, we reduce by one the dimension of that action
node’s payoff table. Our algorithm iterates over nodes and
cuts edges as long as it is possible to do so. Pseudocode is
given in Algorithm 2.

723

E
nc

od
in

g
Si

ze
E

nc
od

in
g

Ti
m

e
G

N
M

So
lv

in
g

Ti
m

e
IB

R
So

lv
in

g
Ti

m
e

Po
rt

fo
lio

So
lv

in
g

Ti
m

e

Figure 3: Encoding sizes (first row); Encoding times (second row); Median time required to identify an equilibrium using the
GNM algorithm (third row), IBR algorithm (fourth row), and a parallel portfolio of GNM and IBR running on two cores (fifth
row). WBSI+BBSI achieved substantially more compression than WBSI only in the case of wGSP; this suggests that previous
work identified very effective encodings. We did not run BBSI on games with more than 5 players as the runtime required grew
prohibitively large. All equilibrium finding plots are truncated at our budget of one hour.

724

(a) (b) (c) (d)

Figure 4: Median regret (across random initializations) achieved by IBR in (a) and FP in (b)–(d) on 10 agent games as a function
of time; each line corresponds to a different game and regret is normalized by the maximum payoff in each game.

Input: Bayesian game, utility represented as a function
Output: Bayesian action-graph game
Create action nodes but no edges or function nodes
foreach Action-node a do

repeat
create an empty payoff table for action node a
finished ← True
foreach projected config c on a’s neighbors do

try to compute payoff given c
if success then add c and payoff to table
else

v ← missing accessor in computation
if no function node computes v then

add function node and edges to
compute v

add edge from function node to a
finished ← False
break

until finished
Algorithm 1: White-Box Structure Inference

7 Experiments and Results

We now present experimental evidence that our two structure
inference algorithms produce compact games in a practical
amount of time and that these games can be used to compute
sample Nash equilibria efficiently. To evaluate our algorithms,
we turned to games for which previous work has manually
identified compact encodings; they happen to be perfect-
information games (thus, AGGs rather than BAGGs). Specif-
ically, we recreated GFP and wGSP position auctions games
from Thompson and Leyton-Brown (2009) and two-approval
voting games from Thompson et al. (2013). We generated
straightforward specifications of these settings in PosEc and
then ran WBSI and BBSI. For every setting, for every number
of agents, we generated 10 different games. The results are
summarized in Figure 3. For our position auction games we
used 4 positions, 20 bid increments, and the Varian (2007)
preference model. We varied the per-agent click-through
rates, valuations, and quality scores across games. We re-
stricted to “conservative” strategies (Caragiannis et al. 2011;
Roughgarden and Tardos 2012) in which bidders do not play
the weakly dominated strategies of bidding above their valu-

Input: Bayesian action-graph game G
Output: Bayesian action-graph game G′ (created in

place)
foreach action-node a do

repeat
randomly select an edge e that ends at a
if e can be cut without breaking strategic

equivalence then
cut edge e
remove e’s column from a’s payoff table

until there are no cut-able edges to a
remove childless function nodes and their edges
Algorithm 2: Black-box structure inference

ations. For our two-approval games, we considered settings
with 5 candidates and a variable number of voters. For each
game, we randomly assigned each bidder some permutation
of 0, 1, 2, 3 and 4 utility points for each of the different
candidates. All of our experiments were run on Intel Xeon
E5-2640 v2 processors on nodes with 96 GB of RAM.

For each game, we considered four encodings: the normal
form (NFG); white box structure inference (WBSI); WBSI
followed by black-box structure inference (BBSI) refinement
(WBSI+BBSI); and BBSI based on the raw normal-form
games. Across our three settings, WBSI always produced
a BAGG which was dramatically smaller than the corre-
sponding normal-form games. WBSI+BBSI was only able to
achieve much additional compression in the case of wGSP.
BBSI was considerably worse; indeed, we were unable to
test it on games with more than 5 agents because runtimes
for encoding grew too large.

The runtime required for WBSI encoding was generally
quite manageable, with WBSI and WBSI+BBSI growing
subexponentially for GFP and GSP and exponentially for
2-approval. (Even in the latter case, runtimes only reached
roughly half an hour for a setting with 10 agents and 5 can-
didates.) The same was not true for BBSI; runtimes grew
sharply, and indeed we were unable to encode games involv-
ing more than 5 agents within a reasonable amount of time
for any of our settings.

We then considered the amount of time required to identify
a sample Nash equilibrium of the resulting games within a
CPU budget of one hour. Recall that one of PosEc’s strengths

725

is that it is not tied to any single algorithm. We first con-
sider Iterative Best Response (IBR) and the Global Newton
Method (GNM) of Govindan and Wilson (2003), extended
to BAGGs by Jiang, Leyton-Brown, and Bhat (2011a). Each
algorithm’s runtime depends on its starting point, which we
initialized randomly; we considered the median time to find
an equilibrium over 10 such randomly sampled points, report-
ing the distribution over games for each setting. For GNM,
we observed subexponential scaling for GFP and wGSP, with
median runtimes of only several minutes even in the case
of 10 agents.3 In the case of 2-approval voting, we observed
exponential scaling, and GNM’s median runtime exceeded
our CPU budget for all games with more than 6 agents.

We implemented a version of IBR that operates on the raw
game specification—i.e., that does not leverage either BBSI
or WBSI. Players are initialized to random pure strategies; at
each iteration, a random player best responds to the current
strategy (choosing among best responses at random if more
than one exists). We measure the maximum regret at the
end of each iteration; a regret of zero corresponds to a Nash
equilibrium. IBR can only discover pure Nash equilibria. We
observed that IBR timed out on most of our GFP games
(see Figure 4, which illustrates its cycling behavior), but was
quick to find an equilibrium in all of our wGSP games and in
nearly all of our 2-approval games.

PosEc makes it easy to use multiple algorithms. Given
the different strengths and weaknesses of IBR and GNM
given WBSI+BBSI AGGs, we thus considered an algorithm
portfolio consisting of both algorithms running in parallel on
two cores. This portfolio could find an equilibrium within
our time budget for all but one four-agent GFP game.4

Finally, because it was used by the CMA system of (Ra-
binovich et al. 2013) we surveyed in Section 2, we also
consider the Fictitious Play (FP) algorithm. FP relies on ex-
pected utility calculations, and hence only runs efficiently
on large games by leveraging AGG structure and the poly-
time expected utility algorithm of Jiang and Leyton-Brown
(2006); we thus produced such an implementation based on
WBSI+BBSI. We ran it on each of our 10 agent games given
10 random initializations, again tracking regret after each
iteration. The results are shown in Figure 4. FP converged
relatively quickly (though slower than IBR) for the wGSP
games, but cycled or stagnated on most GFP games and all
2-approval games.

8 Conclusions and Future Work

This paper makes two major technical contributions: the
PosEc declarative language for describing mechanism-based
games, and two structure-inference algorithms that make
it possible to compactly represent such games as BAGGs.

3One exception: a single 4-agent GFP game was not solved for
any of our GNM starting points.

4Other settings might benefit from different algorithm portfolios.
In particular, we note that Simplicial Subdivision (van der Laan,
Talman, and van Der Heyden 1987; Jiang, Leyton-Brown, and Bhat
2011b) and the Support Enumeration Method (Porter, Nudelman,
and Shoham 2008; Thompson, Leung, and Leyton-Brown 2011)
have been extended to handle BAGGs efficiently.

These contributions dramatically reduce the human effort nec-
essary to perform computational mechanism analysis without
leading to a substantial loss of accuracy or speed. There are
many potential applications in which PosEc could shed light
on hard-to-analyze economic settings. Even within the lim-
ited and well-studied sphere of single-good auctions, PosEc
could be used to study non-linear utility for money (e.g.,
budgets; risk attitudes), asymmetric valuation distributions,
other-regarding preferences (both altruism and spite), and
conditional type dependence (including common and affili-
ated values).

One limitation of the current PosEc system is that it can
only describe simultaneous-move games. In contrast, many
real-world mechanisms proceed in multiple stages (e.g., se-
quential auctions; clock-proxy auctions). In such games, deci-
sions made in one stage can affect which outcomes are possi-
ble or desirable in the next stage. BAGGs inherently represent
single-stage games, but could be used to analyze multi-stage
mechanisms by representing the different stages as individual
BAGGs and solving the complete system by a process of
backward induction. Such a process would likely resemble
the special-purpose algorithm that Paes Leme, Syrgkanis, and
Tardos (2011) proposed for computing the equilibria of se-
quences of single-good auctions. Alternatively, analysis could
be performed using a compact game representation that ex-
plicitly supports multi-stage games, such as temporal AGGs
(Jiang, Leyton-Brown, and Pfeffer 2009) or MAIDs (Koller
and Milch 2003). Unfortunately, the algorithms for reason-
ing about such representations currently offer much poorer
performance than algorithms for reasoning about BAGGs.

Another limitation of the PosEc system is the cost of ex-
plicitly representing types and actions: no BAGG can be
asymptotically smaller than its number of types or actions.
Thus, games with large type or action spaces—such as com-
binatorial auctions—cannot be succinctly represented. There
is very little work on representing games with implicitly
specified action spaces—Koller and Milch (2003) and Ryan,
Jiang, and Leyton-Brown (2010) are the two exceptions, un-
fortunately both without good implementations—but as this
literature develops there may be opportunities for extending
our encode-and-solve CMA approach to new game families.

A third limitation is the requirement to discretize actions
and (in the case of Bayesian games), types. We note that
many real-world mechanisms do discretize actions; thus, we
argue that PosEc’s ability to give insight into such settings is
also one of its benefits.

Finally, as mentioned earlier, this paper considered only
non-Bayesian-game settings, even though PosEc supports
BAGGs as well as AGGs. This was simply because we
wanted to compare to manual AGG encodings, which ex-
isted only in the case of perfect-information games. In future
work, we intend to investigate the computational cost of com-
putational mechanism analysis in Bayesian game settings.

References

Asimov, I. 1942. Runaround. In Astounding Science Fiction.
Caragiannis, I.; Kaklamanis, C.; Kanellopoulos, P.; Ky-
ropoulou, M.; Lucier, B.; Paes Leme, R.; and Tardos, E. 2011.

726

On the efficiency of equilibria in generalized second price
auctions. In EC.
Duong, Q.; Vorobeychik, Y.; Singh, S.; and Wellman, M. P.
2009. Learning graphical game models. In IJCAI.
Govindan, S., and Wilson, R. 2003. A global Newton method
to compute Nash equilibria. J. Economic Theory 110:65–86.
Jiang, A. X., and Leyton-Brown, K. 2006. A polynomial-time
algorithm for action-graph games. In PROCEEDINGS OF
THE NATIONAL CONFERENCE ON ARTIFICIAL INTEL-
LIGENCE, volume 21, 679. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999.
Jiang, A. X., and Leyton-Brown, K. 2010. Bayesian action-
graph games. In NIPS.
Jiang, A. X.; Leyton-Brown, K.; and Bhat, N. A. R. 2011a.
Action-graph games. GEB 71:141–173.
Jiang, A. X.; Leyton-Brown, K.; and Bhat, N. A. 2011b.
Action-graph games. Games and Economic Behavior
71(1):141–173.
Jiang, A. X.; Leyton-Brown, K.; and Pfeffer, A. 2009. Tem-
poral action-graph games: A new representation for dynamic
games. In UAI.
Kearns, M.; Littman, M.; and Singh, S. 2001. Graphical
models for game theory. In UAI.
Koller, D., and Milch, B. 2003. Multi-agent influence dia-
grams for representing and solving games. GEB 45:181–221.
Paes Leme, R.; Syrgkanis, V.; and Tardos, E. 2011. Sequen-
tial auctions and externalities. In SODA.
Porter, R.; Nudelman, E.; and Shoham, Y. 2008. Simple
search methods for finding a nash equilibrium. GEB 63:642–
662.
Rabinovich, Z.; Naroditskiy, V.; Gerding, E. H.; and Jennings,
N. R. 2013. Computing pure Bayesian Nash equilibria in
games with finite actions and continuous types. AIJ 195:106–
139.
Roughgarden, T., and Papadimitriou, C. 2008. Computing
correlated equilibria in multi-player games. JACM 37:49–56.
Roughgarden, T., and Tardos, E. 2012. Do externalities
degrade GSP’s efficiency? In Workshop on Advertising Auc-
tions.
Ryan, C. T.; Jiang, A. X.; and Leyton-Brown, K. 2010. Com-
puting pure strategy Nash equilibria in compact symmetric
games. In EC.
Thompson, D. R. M., and Leyton-Brown, K. 2009. Compu-
tational analysis of perfect-information position auctions. In
ACM-EC.
Thompson, D. R. M., and Leyton-Brown, K. 2013. Revenue
optimization in the generalized second-price auction. In EC.
Thompson, D. R. M.; Lev, O.; Leyton-Brown, K.; and Rosen-
schein, J. 2013. Empirical analysis of plurality election
equilibria. In AAMAS.
Thompson, D. R. M.; Leung, S.; and Leyton-Brown, K. 2011.
Computing Nash equilibria of action-graph games via support
enumeration. In WINE.

van der Laan, G.; Talman, A. J. J.; and van Der Heyden, L.
1987. Simplicial variable dimension algorithms for solving
the nonlinear complementarity problem on a product of unit
simplices using a general labelling. Mathematics of Opera-
tions Research 12:377–397.
Varian, H. R. 2007. Position auctions. International Journal
of Industrial Organization 25:1163–1178.
Vorobeychik, Y., and Wellman, M. P. 2008. Stochastic search
methods for Nash equilibrium approximation in simulation-
based games. In AAMAS.
Vorobeychik, Y.; Reeves, D. M.; and Wellman, M. P. 2012.
Constrained automated mechanism design for infinite games
of incomplete information. JAAMAS 25:313–351.

727

