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Abstract

Proper scoring rules can be used to incentivize a forecaster
to truthfully report her private beliefs about the probabilities
of future events and to evaluate the relative accuracy of fore-
casters. While standard scoring rules can score forecasts only
once the associated events have been resolved, many appli-
cations would benefit from instant access to proper scores.
In forecast aggregation, for example, it is known that using
weighted averages, where more weight is put on more accu-
rate forecasters, outperforms simple averaging of forecasts.
We introduce proxy scoring rules, which generalize proper
scoring rules and, given access to an appropriate proxy, allow
for immediate scoring of probabilistic forecasts. In particu-
lar, we suggest a proxy-scoring generalization of the popular
quadratic scoring rule, and characterize its incentive and ac-
curacy evaluation properties theoretically. Moreover, we thor-
oughly evaluate it experimentally using data from a large real
world geopolitical forecasting tournament, and show that it
is competitive with proper scoring rules when the number of
questions is small.

1 Introduction

We study the problem of evaluating the accuracy of proba-
bilistic forecasts. This is typically done using proper scor-
ing rules (Brier 1950; Good 1952; Gneiting and Raftery
2007), which are used in two ways. First, they are used as
incentive mechanisms that truthfully elicit an agent’s pri-
vate belief about the outcome of a future event. Second,
they are used as an accuracy evaluation mechanism to judge
the accuracy of probabilistic forecasts even if incentives are
not a concern. The incentive and the evaluation aspect of
proper scoring rules are two sides of the same coin, and
often both are required. For example, proper scoring rules
have a long history in meteorology for comparing the rela-
tive accuracy of competing weather forecasters (Brier 1950;
Good 1952). While the primary goal is evaluating accu-
racy, it is important that weather services are not incen-
tivized to misreport their true estimates. Another example
is geopolitical forecasting, where forecasters are asked to
report probabilistic estimates of the likelihood of geopolit-
ical events, such as the probability of a military coup in
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Yemen (Atanasov et al. 2016). Here, proper scoring is im-
portant to incentivize forecasters to invest effort and report
truthfully, and to judge the relative accuracy of forecasts.

For proper scoring rules to be applicable, the forecast-
ing system requires the resolved outcomes of the events that
forecasters reported on. In this paper, we introduce proxy
scoring rules, which generalize proper scoring rules and,
given access to an appropriate proxy, allow for immediate
scoring of probabilistic forecasts, i.e., right after elicitation
and before outcome resolution. This is important for a num-
ber of applications. In forecast aggregation, for example, it is
known that using weighted averages, where more weight is
put on more accurate forecasters, outperforms simple aver-
aging of forecasts (Atanasov et al. 2016). To make this work
with proper scoring rules, one requires early-closing ques-
tions, which can then inform the weighting of forecasters
for other questions. Often, however, many questions close at
the same time. Consider for example forecasting the major-
ity party in each of the 50 US states in a presidential election.
Voting closes on the same day in all states, and so the system
does not obtain forecaster accuracy information in time to
improve aggregation through forecaster weighting. Or con-
sider the challenge of scoring long-term questions, such as
“Will humanity have traveled to Mars by 2030?” Applying
proper scoring rules to such questions would require fore-
casters to wait for payment until 2030. It is unlikely that
forecasters have the patience and trust in the continued ex-
istence of the system that this would require. Or consider
the problem of hiring intelligence agents based on their ac-
curacy in forecasting geopolitical events. It is not feasible
to wait until a sufficient number of questions have been re-
solved before making a hiring decision. Instead, the intelli-
gence agency requires immediate feedback on the accuracy
of the candidate.

In addition to proper scoring rules, proxy scoring rules
are related to peer prediction mechanisms (Miller, Resnick,
and Zeckhauser 2005; Prelec 2004; Jurca 2007; Witkowski
2014; Waggoner and Chen 2014), where the system seeks
to incentivize agents to report private information without
being able to verify the truthfulness of their reports. Peer
prediction is related to our approach in that agents are not
scored against an outcome of ground truth but a proxy event
(in the case of peer prediction, this is another agent’s re-
port). The boundary between this work and peer prediction
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is smooth and partly depends on the proxy that is being used.
For example, the extremized mean proxy that we suggest in
Section 4 bears a lot of resemblance to peer prediction since
it is an aggregate of other agents’ reports. One difference to
peer prediction is that, at the heart of proper and proxy scor-
ing is the elicitation and scoring of probabilistic forecasts,
whereas peer prediction is primarily concerned with the elic-
itation of informative signals. While Bayesian Truth Serum
mechanisms (Prelec 2004; Witkowski and Parkes 2012;
Radanovic and Faltings 2013) also elicit a probabilistic re-
port, the probabilistic report is only a means towards elicit-
ing the signal. The proxy scoring framework can be viewed
as providing a link between the literature on proper scoring
rules and peer prediction.

Chakraborty and Das (2016) study a two-trader prediction
market model, where the outcome of the event is decided
by a vote of the traders themselves. Similarly, Freeman, La-
haie, and Pennock (2017) study a model where a prediction
market is followed by a peer prediction mechanism to deter-
mine the outcome. While that literature also combines fore-
casting with peer prediction, proxy scoring rules generalize
proper scoring rules and, as such, proxy scoring rules only
ask agents for one report (a probabilistic forecast) instead of
having two reporting stages (a forecasting and an outcome
determination stage). Moreover, just as proper scoring rules,
proxy scoring rules can be used both to provide proper in-
centives and to estimate forecaster accuracy.

The remainder of the paper is organized as follows. First,
we review proper scoring rules in Section 2. In Section 3,
we then introduce a new class of scoring rule called proxy
scoring rules, which, given access to an appropriate proxy,
allow for the immediate scoring of probabilistic forecasts.
We characterize the conditions on the rule and the proxy that
need to hold for properness and provide concrete examples.
Moreover, we show that the class of proper proxy scoring
rules contains proper scoring rules as a special case. In Sec-
tion 4, we show how the theoretical concepts of Section 3
translate to a concrete application. After introducing the data
set, we introduce an example proxy that we then thoroughly
evaluate on a large, real-world data set from a geopolitical
forecasting tournament. In particular, we show that a gener-
alization of the quadratic proper scoring rule together with
the example proxy predicts out of sample forecaster accu-
racy almost as good as the quadratic proper scoring rule that
has access to true event outcomes.

2 Proper Scoring Rules

Proper scoring rules are used for two purposes: as an incen-
tive mechanism, which incentivizes rational forecasters to
truthfully report their private, probabilistic beliefs about the
likelihood of a future event, and as an evaluation mechanism,
which estimates the relative accuracy of forecasts.

Consider first a single forecaster and let p ∈ [0, 1] be her
probabilistic belief that ω = 1. The scoring proceeds as fol-
lows: first, the system (center) asks the forecaster for her
belief report y ∈ [0, 1]. Second, an event ω ∈ {0, 1} mate-
rializes (observed by the center) and, third, the center pays
the forecaster the payment R(y, ω).

Definition 1 (Scoring Rule). Given outcome ω ∈ {0, 1} and
report y ∈ [0, 1] in regard to the probability that ω = 1, a
scoring rule R(y, ω) ∈ R ∪ {−∞,+∞} assigns a score
based on report y and the outcome ω that occurs.
Definition 2 (Strictly Proper Scoring Rule). A scoring rule
is proper if a forecaster maximizes her expected score by
truthfully reporting her belief p ∈ [0, 1], and is strictly
proper if the truthful report is the only report that maximizes
the forecaster’s expected score.

Definition 2 is phrased in an incentive spirit. An equiva-
lent definition in the evaluation spirit is the following:
Definition 3 (Strictly Proper Scoring Rule). Let θ =
Pr(ω = 1) be the true probability of the event occurring
and let there be two forecasts y = θ and y′ �= θ. Then scor-
ing rule R is proper if Eω[R(y, ω)] ≥ Eω[R(y′, ω)] for all
θ ∈ [0, 1], and strictly proper if the inequality is strict.

There exist infinitely many proper scoring rules since any
(strictly) convex function corresponds to a (strictly) proper
scoring rule (Gneiting and Raftery 2007, Theorem 1). Where
these rules differ from one another is in how imperfect fore-
casts (or: forecasters) are scored. For example, let θ = 0.7
be the true probability and consider forecasts y = 0.79 and
y′ = 0.6. Since neither y nor y′ is the true probability, strict
properness does not dictate which forecast shall receive a
higher expected score. This is specified only through the par-
ticular choice of proper scoring rule. In this paper, we focus
on the quadratic scoring rule (Brier 1950).
Definition 4. The quadratic scoring rule normalized to yield
scores in the interval [0, 1] is Rq(y, ω) = 1− (y − ω)2.
Proposition 1. (Brier 1950) The quadratic scoring rule Rq

is strictly proper.
(We prove a generalization of this result in Section 3.)
For the quadratic rule, the expected score difference be-

tween the highest possible score (for reporting the true prob-
ability θ) and reporting y ∈ [0, 1] is (y − θ)2 (Selten 1998,
p.47f). Applying it to the above example, the expected score
for report y = 0.79 would thus be higher than the expected
score for report y′ = 0.6 since (0.79−0.7)2 < (0.6−0.7)2.1
In fact, the quadratic rule is the only strictly proper scoring
rule, where the expected loss is a function of only y − θ,
i.e., the difference between the forecast and the true proba-
bility (Savage 1971, p.787f). Moreover, the quadratic scor-
ing rule is convenient for payments since it is bounded (here
scaled to be in [0, 1]) and non-negative.

In practice, forecasters often report on more than one
event, in which case, scores are typically averaged over
questions (e. g., Brier 1950, Gneiting and Raftery 2007,
Atanasov et al. 2016). With the quadratic scoring rule, for
example, a forecaster reporting y1, . . . , yn ∈ [0, 1]n on
n different questions is assigned score 1

n

∑n
i=1 Rq(yi, ωi),

where ωi denotes the outcome of the ith event. Without any
assumptions on how the events are related, comparing av-
erage scores is only meaningful if forecasters report on the

1Note that this decision is not self-evident. The logarithmic
proper scoring rule (Good 1952), for example, gives higher ex-
pected score to y′ = 0.6 than y = 0.79 since 0.7 ln(0.6) +
0.3 ln(0.4) > 0.7 ln(0.79) + 0.3 ln(0.21).
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same set of questions. This is because the highest possible
expected score (of a perfect forecast) depends on θ. For ex-
ample, for the quadratic rule, if θ = 0.5, a perfect forecast
of y = θ = 0.5 yields an expected score of 0.75, whereas
for θ = 0.1, a perfect forecast of y = θ = 0.1, yields an
expected score of 0.91. For a more in-depth treatment of
proper scoring rules, we refer to the article by Gneiting and
Raftery (2007).

3 Proxy Scoring Rules

In this section, we introduce proxy scoring rules, a general-
ization of proper scoring rules, which allow for the immedi-
ate scoring of probabilistic forecasts.

3.1 Model

As in Section 2, let again θ denote the probability that ω = 1
and let y be a forecaster’s report. In contrast to the previous
section, instead of eventually observing the event’s outcome
ω, the center now has access to a proxy Θ̂, which is a
random variable conditioned on θ, i.e., Θ̂ ∼ Pr(Θ̂ |Θ = θ).
At this point, we are agnostic as to where such a proxy may
come from. As we will see in Section 4.2, one possibility
is to estimate a proxy from the forecasters’ forecasts them-
selves, e.g. using a transformation of the average forecast
on a question. We assume that the forecaster knows θ and
the distribution of random variable Θ̂, but nothing about
its realization θ̂. Note that these knowledge assumptions
are with respect to the forecaster’s subjective probability.
Of course, a forecaster may actually not know the true θ
but instead have some subjective belief p about the event
occurring. The objective of proper scoring can be cast as:
“Assume you knew θ, then you should maximize your
expected score reporting θ.”

3.2 Proper Proxy Scoring Rules

Definition 5 (Proxy Scoring Rule). Let y ∈ [0, 1] be a belief
report in regard to the probability that ω = 1, and let θ̂ ∈
[0, 1] be the proxy forecast. A proxy scoring rule R(y, θ̂) ∈
R ∪ {−∞,+∞} assigns a score based on belief report y
and proxy forecast θ̂.

The crucial difference to proper scoring rules from Def-
inition 1 is that a proxy scoring rule cannot use the actual
outcome ω stemming from θ but only has access to a proxy
forecast θ̂ stemming from proxy Θ̂.

Definition 6 (Strictly Proper Proxy Scoring Rule). Let θ =
Pr(ω = 1) be the true probability of the event occuring and
let there be two forecasts y = θ and y′ �= θ. Then proxy
scoring rule R(y, θ̂) is proper if EΘ̂[R(y, Θ̂) | Θ = θ] ≥
EΘ̂[R(y′, Θ̂) | Θ = θ] for all θ ∈ [0, 1], and strictly proper
if the inequality is strict.

Before we characterize conditions on Θ̂ and R(y, θ̂) under
which R(y, θ̂) is strictly proper, consider first a special case:
intuitively, the goal of both proper scoring rules and proper
proxy scoring rules is to elicit θ, i.e., the expectation of ω.
In proxy scoring, we do not have access to ω directly but

get around this restriction through access to a proxy, which
is statistically linked to the true distribution θ. For example,
assume we knew the expectation of Θ̂ and that it equals the
expectation of the true distribution, i.e., E[Θ̂ |θ] = θ. If we
had a way to incentivize the forecaster to report the mean of
Pr(Θ̂ |θ), then we would be able to incentivize reporting θ
(or the forecaster’s best estimate of θ) implicitly.

To characterize the more general case, we now turn to the
literature on property elicitation, where one wishes to extract
a particular function, or property, of an agent’s belief using
a scoring rule with access to a single sample from the true
distribution (which, in our case, will be the proxy) (Lambert,
Pennock, and Shoham 2008; Frongillo and Kash 2014). We
present the following definitions for the special case that we
need in this paper.

Definition 7 (Property). (Lambert, Pennock, and Shoham
2008) We call Γ: [0, 1]→ [0, 1] a property of distribution P .

Examples of properties are the mean, the median, or the
variance.

Definition 8 (Property Scoring Rule). (Lambert, Pennock,
and Shoham 2008) Let y ∈ [0, 1] be a report in regard to
Γ(P) and let x be a sample from P . Property scoring rule
R(y, x) ∈ R ∪ {−∞,+∞} assigns a score based on belief
report y and sample x.

Definition 9 (Strictly Proper Property Scoring Rule). (Lam-
bert, Pennock, and Shoham 2008) Let y = Γ(P) and
y′ �= Γ(P). Then property scoring rule R is proper if
EP [R(y, x)] ≥ EP [R(y′, x)] for all P ∈ [0, 1], and strictly
proper if the inequality is strict.

An example of a property scoring rule that is proper for
the mean is the quadratic rule Rq (also see Lemma 5).

Theorem 2. Proxy scoring rule R(y, θ̂) is (strictly) proper
if property scoring rule R is (strictly) proper for Γ and
Γ(Pr(Θ̂ |θ)) = θ for all θ.

Proof. The statement follows by construction: property
scoring rule R is (strictly) proper for Γ and Γ(Pr(Θ̂ |θ)) =
θ. This means that for y = θ and y′ �= θ, it holds that
EΘ̂[R(y, Θ̂) | Θ = θ] ≥ EΘ̂[R(y′, Θ̂) | Θ = θ] for all
θ ∈ [0, 1], where the inequality is strict if R is strictly proper
for Γ.

Corollary 3. Proxy scoring rule R(y, θ̂) is strictly proper if
E
[
Θ̂ | θ] = θ, and property scoring rule R is strictly proper

for the mean, i.e., Γ(Pr(Θ̂ |θ)) = E[Θ̂ |θ].
Corollary 3 is Theorem 2 for Γ being the mean. To see

how Theorem 2 is more general than Corollary 3, consider
the case where Γ is the median instead of the mean. This also
results in a strictly proper proxy scoring rule if the median of
Pr(Θ̂ |θ) is equal to θ and property scoring rule R is strictly
proper for the median.

3.3 Proper Scoring Rules as Special Case

Theorem 4 establishes that the class of proper proxy scoring
rules contains proper scoring rules as a special case.
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Theorem 4. Let R(y, ω) be a (strictly) proper scoring rule.
Then proxy scoring rule R(y, θ̂) with

Θ̂ ∼ Pr(Θ̂ |θ) =
{

0 with 1− θ
1 with θ

is (strictly) proper and yields the same payment distribution
as R(y, ω) given y and θ. That is, random variables R(y, θ̂)
and R(y, ω) are identical for all θ, y ∈ [0, 1].

Proof. The statement follows directly from the fact that ran-
dom variables ω and Θ̂ are identically distributed according
to Pr(Θ̂ |θ) = Pr(ω).

Note that without further knowledge about the depen-
dency of Θ̂ and ω, one cannot make the statement that
R(y, θ̂) = R(y, ω) since drawing one sample each from two
identically distributed random variables does not mean that
these samples are identical (even if the probabilities are).
However, Theorem 4 is stronger than stating that only the
expected payments of both rules agree since that would al-
low for the payment distributions to be different as long as
their expectations are identical.

3.4 The Quadratic Proxy Scoring Rule

Definition 10 (Quadratic Proxy Scoring Rule). The
Quadratic Proxy Scoring Rule is defined as

Rq(y, θ̂) = 1− (y − θ̂)2.

It is easy to see that the quadratic proxy scoring rule is a
generalization of the quadratic proper scoring rule.

Lemma 5. (Brier 1950; Savage 1971) Rq(y, ·) is strictly
proper for the mean.

Theorem 6. The quadratic proxy scoring rule with proxy Θ̂
is strictly proper iff E[Θ̂ | θ] = θ.

Proof. The statement follows directly from Theorem 2 and
Lemma 5.

We refer to proxies satisfying E[Θ̂ | θ] = θ as unbiased.
Observe that unbiasedness only requires the mean of the
proxy to be the true probability; in particular, it is not re-
quired for properness that any sample from the proxy ever
coincides with the true probability.

4 Experimental Evaluation

In this section, we evaluate the quadratic proxy scoring rule
with an example proxy experimentally using a real-world
forecasting data set.

4.1 Good Judgment Data Set

The data set we use is from the Good Judgment Project, a
research and development project that provides probabilistic
forecasts of geopolitical events to the United States intelli-
gence community. We use data from the third year, which in-
cludes questions started on or after August 1, 2013 and were
scheduled to close on or before June 1, 2014. This original

data set comprises 515 forecasters (with and without pre-
diction training), who made more than 48,000 forecasts on
100 questions. An example question is “Will Angela Merkel
win the next election for Chancellor of Germany?” Forecast-
ers self selected the questions they want to report on. For
more details, including how the incentive issues that are in-
herent in self selection were addressed, we refer to the work
by Atanasov et al. (2016).

As expected from a real-world application, this dynamic
environment has a fair amount of complexity in a number of
dimensions. In particular, forecasters are free to update their
forecasts over time, only very few forecasters report on all
questions, and while most questions are binary, some have
more than two possible outcomes. To obtain a (forecast, out-
come) tuple with binary outcome for all questions, we first
map every non-binary question to a binary question by inter-
preting the first of the possible outcomes as “event occurred”
and all others as “event did not occur.” We then, for each
question, subset to those forecasters who made at least one
forecast for that question in the first 7 days after the question
started, and define a forecaster’s forecast for that question as
her average forecast within those first 7 days. (7 days were
chosen because there is a rush of forecasting activity in the
first week of a question.) We dropped 2 questions in the orig-
inal data set, which lasted for 1 day and 7 days, respectively,
after the question was posed. After this transformation of the
original data set, we are left with 426 forecasters, who made
5728 forecasts on 98 questions.

4.2 The Extremized Mean Proxy

From Theorem 6 we know that the quadratic proxy scoring
rule is proper with an unbiased proxy. What has not been
discussed so far is where such a proxy may come from.
One possibility is to use an aggregate of the forecasts them-
selves, such as the mean or the median of all forecasts on
a given question. Two challenges with this kind of proxy
shall be noted here: first, any such proxy will be slightly bi-
ased in practice and thus the proxy scoring rule will not be
perfectly proper. Note that to take advantage of this, strate-
gic forecasters would need to know the proxy’s bias, which
is perhaps unlikely. Second, when using such a proxy for
incentives instead of evaluating forecaster accuracy, the re-
sulting scheme shares many similarities with peer predic-
tion mechanisms (Miller, Resnick, and Zeckhauser 2005;
Prelec 2004; Jurca 2007; Witkowski 2014), including the ex-
istence of non-truthful equilibria (Waggoner and Chen 2014;
Shnayder, Frongillo, and Parkes 2016). The empirical evi-
dence as to whether or not the existence of non-truthful equi-
libria are a problem in practice are mixed (John, Loewen-
stein, and Prelec 2012; Gao, Mao, and Chen 2014; Rigol
2016). While we focus on the accuracy evaluation property
of proxy scoring in this section, it is an interesting direction
for future work to experimentally evaluate the incentives of
proxy scoring when the computation of the proxy itself is
using the forecasters’ forecasts.

One of the best performing simple aggregators (i.e.,
not weighting forecasters by their frequency or magnitude
of forecasts) of the Good Judgment Project (in terms of
quadratic scoring rule) was the extremized mean.
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Definition 11. (Atanasov et al. 2016) Let ȳi be the mean of
forecasts for question i. The extremized mean is given by

θ̂i,α =
ȳi

α

ȳiα + (1− ȳi)α
,

where α ≥ 1 is an extremizing parameter of the aggregator.

It is easy to see that for α = 1, this is just the simple mean,
whereas for α > 1, any ȳi > 0.5 will be pushed towards 1
and any ȳi < 0.5 will be pushed towards 0. The optimal
α for the original dynamic Good Judgment data set, which
was optimized out of sample from earlier seasons, is α = 2
(Atanasov et al. 2016), and so we are also using α = 2 in our
experiments. For intuition as to why the extremized mean is
a good aggregator, see Appendix A.

It is worth emphasizing that the aggregation of forecasts
is not the focus of this paper. Instead, we use the extrem-
ized mean of forecasts (an aggregation algorithm; Defini-
tion 11) as the proxy in the quadratic proxy scoring rule
(Definition 10). Just as with standard proper scoring rules,
our two objectives are to incentivize truthtelling and to es-
timate the relative accuracy of forecasters. (Both properties
are implied by a rule being proper.) It shall also be noted
here that when computing the proxy, we use the same proxy
for all forecasters and thus ignore a forecaster’s influence
on the computation of the proxy through her own forecast.
Of course, one can compute the proxy (e. g. the extremized
mean) leaving out the forecasters whose accuracies are to be
evaluated and run this computation for every forecaster pair
but given the large number of forecasters in our data set, this
would not make a qualitative difference to the results.

4.3 Estimation Procedure

Both proper scoring and proxy scoring address the prob-
lem of deciding which of two forecasters is better, where
better means higher expected quadratic scoring rule score
on the same set of questions. The goal of this section is to
compare the performance of the quadratic scoring rule with
access to true event outcomes with the performance of the
quadratic proxy scoring rule, which only has access to the
extremized mean proxy. Answering this problem using the
data described in Section 4.1 is difficult because neither are
the forecasters’ questions sampled i.i.d. nor do we have infi-
nite data. To guarantee that different forecasters’ scores are
comparable, we only compare average scores on questions
that both forecasters reported on.

We subset to forecaster pairs with at least 60 questions in
common (of which there are 210) and, for each forecaster
pair, randomly sample two sets of questions, which we refer
to as the selection set and the validation set. The validation
set has size 30 and is scored using the quadratic proper scor-
ing rule from Definition 4 with access to the corresponding
30 event outcomes. Whichever of the two forecasters obtains
a higher score on the validation set is considered its winner.
(We will come back to the problem that this is not ground
truth.) The selection set’s size goes from 1 to 30 and is
scored using both the proper quadratic score (with access to
the selection set’s outcomes) and the quadratic proxy score,
where for each question, the proxy forecast is the extremized

mean of that question. Both methods call one of the two fore-
casters the selection set winner. A method receives a point
if and only if its selection set winner agrees with the vali-
dation set winner. For each of the 210 forecaster pairs, we
sample the validation set 10 times and, within each of those,
also sample the selection set 10 times for every size from
1 to 30. We estimate the methods’ probabilities of agreeing
with the validation set winner as the fraction of points over
the number of samples, which provides us with a relative
performance measure of the two methods.

Agreement vs Being Correct The validation set winner is
itself only a noisy predictor of who is the better forecaster.
Ideally, we not only have such a relative comparison but ob-
tain estimates of the true probability that a given method is
predicting correctly who is the better forecaster. To obtain
this estimate, we first estimate that the validation set winner
is correct. We proceed as follows: subsetting again to fore-
caster pairs with at least 60 questions in common, we sample
two equally-sized sets of size 30. This time, we score both
sets using only the proper quadratic score with access to the
outcomes in the respective sets. Both sets call a winner and
obtain a point if they agree. We then again divide the number
of points by the number of samples to obtain a good estimate
of the probability that the winner of the two sets agree.

Observe that the probability of correctly predicting the
better forecaster is the same for both sets since the two sets
are statistically identical. Let cv be this probability that any
one of the sets is predicting the better forecaster correctly,
and let av be the probability of the two sets’ winners agree-
ing. av can then be expressed as av = c2v + (1 − cv)

2. Af-
ter simple algebra and assuming that av > 0.5, we obtain
cv = 0.5 +

√
2av−1
2 , which gives us a way to estimate that

the validation set winner correctly predicts the better fore-
caster. For 1000 samples, we obtain estimates av = 0.71
and cv = 0.82.

With cv in hand, we can use a similar procedure to esti-
mate the probability that the selection set winner correctly
predicts the better forecaster. Let cs be this probability, and
let as be the probability that the selection set winner agrees
with the validation set winner. as can then be expressed as
as = cs · cv + (1 − cs)(1 − cv). Since we know as and
have just estimated cv , we can solve for cs and, assuming
cv > 0.5, we obtain cs =

cv+as−1
2cv−1 .

4.4 Results

The experimental results are shown in Figure 1. Slightly
abusing definitions, we will refer to the two methods as
proper scoring rule and proxy scoring rule, respectively, in
an effort to avoid confusion. The “proper scoring rule” is
the quadratic scoring rule (Definition 4) using resolved out-
comes of the respective set. The “proxy scoring rule” is the
quadratic proxy scoring rule (Definition 10) using the ex-
tremized mean proxy (Definition 11) on the respective set.
(Of course, every proper scoring rule can be written as a
proper proxy scoring rule (Theorem 4), so that proxy does
not imply improper and proper does not exclude proxy.)
Note that proper scoring may not be realistic in practice
since it requires that questions have already been resolved.
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Figure 1: Plotting the probability of agreement between the
selection and the validation set with standard errors. The val-
idation set contains 30 questions and the selection set sizes
range from 1 to 30. Proper scoring requires resolved ques-
tions in the selection set, whereas proxy scoring only uses
an aggregate of the forecasts on the selection set.

While not perfectly accurate in predicting the better fore-
caster, the validation set winner is proper-scored using the
outcomes of 30 questions and is thus a decent approximation
of ground truth. As mentioned in Section 4.3, we estimate
the probability of it being correct to be cv = 0.82. Therefore,
the larger the agreement with the validation set, the more
accurate is the method at predicting who is the better fore-
caster. Unsurprisingly, both methods increase agreement as
the size of the selection set increases: the more scored ques-
tions there are in the selection set, the more information it
contains, and so both methods do better. Keeping the size of
the validation set fixed, cv = 0.82 is an upper bound on the
agreement probability even for proper scores and infinitely
large selection sets. The reason is that while the probabil-
ity that proper scoring will correctly call the better fore-
caster goes to 1 as the number of questions in the selection
set increases, the validation set winner will still be correct
only with probability cv = 0.82, and thus the probability of
agreement cannot be higher.

Proxy scoring, however, seems to converge to a level be-
low 0.82. For a selection set size of 30, we obtain an agree-
ment probability of as = 0.65, which, using the proce-
dure introduced in Section 4.3, we estimate to correspond
to a probability of calling the correct winner of cs = 0.73.
Note that this is still around 89% of the probability that
proper scoring achieves (0.89 	 0.73/0.82). Starting with
5 questions in the selection set, proxy scoring is increasing
slower than proper scoring. This slope to a lower level than
proper scoring suggests that the extremized mean proxy is
not perfectly unbiased. For the first 4 questions, however,

proxy scoring slightly outperforms proper scoring. Presum-
ably, this is the case because average proxy scores have less
variance than average proper scores with such few questions.
Consider the most extreme case of only one question in the
selection set: the proper score calls that forecaster the win-
ner who is closer to 0 or 1, depending on the actual outcome.
The proxy score is less extreme and calls that forecaster the
winner who is closer to the proxy forecast, which will typi-
cally be a number strictly in between 0 and 1.

An interesting additional observation is that for validation
and selection set sizes of 30 each, the in sample prediction
of proxy scoring (i.e., computing the average proxy score on
the 30 validation set questions) is as good in predicting av-
erage proper score on the validation set as the out of sample
prediction of proper scoring (both agree with the validation
set winner with probability 0.71). This is interesting because
it depends on the use of proxy scoring as to whether in or out
of sample is the right evaluation method. Out of sample is
the correct method if one wants to estimate which forecaster
will do better on other questions in the future. In sample is
appropriate when using proxy scoring in aggregation algo-
rithms, where one wants to put more weight on forecasters
who are doing well on the currently open questions.

5 Conclusion
We introduced a new class of scoring rules generalizing
proper scoring rules to settings, where the center does not
have access to samples from the true distribution. We char-
acterized conditions that allow for proper proxy scoring, and
experimentally evaluated the performance of the quadratic
proxy scoring rule with the extremized mean proxy on a real-
world geopolitical forecasting data set.

We believe an exciting direction for future work is to use
proxy scores in aggregation algorithms. It has been shown
that forecast aggregation is improved relative to unweighted
aggregation when algorithms put more weight on those fore-
casters who have higher average quadratic score on already
resolved questions (Atanasov et al. 2016). Of course, using
proxy scores instead of scores using already closed ques-
tions is promising because forecasting systems do not al-
ways have access to resolved questions. Moreover, and per-
haps most interestingly, for aggregation, one can use the
proxy scores in sample, i.e., on the questions that the ag-
gregation algorithm is eventually scored against. Here, our
experiments give an agreement probability of 0.71, which
is the same as the agreement probability of out of sample
proper scoring with the quadratic scoring rule. That is, using
the average proxy score on the 30 questions that have just
been posed is as predictive of who is eventually obtaining a
higher score on these questions as using the average proper
score on 30 out-of-sample resolved questions.

Another interesting direction for future work is equilib-
rium selection when using an aggregate of other forecast-
ers’ forecasts as the proxy. The peer prediction commu-
nity has recently made progress in making coordination
on non-truthful equilibria “less likely” (e.g. Dasgupta and
Ghosh 2013; Shnayder, Frongillo, and Parkes 2016), and
it will be interesting to see how these techniques can be
adapted to proxy scoring.
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A Intuition for Extremized Mean

Consider a biased coin that is either positively biased (com-
ing up heads with 80%) or negatively biased (coming up
heads with 20%). Both biases are equally likely a priori. Two
forecasters are now asked to privately flip the coin once and
then provide a probabilistic forecast for a single public coin
flip that follows their private flips. Assume both are scored
using a proper scoring rule, such as the quadratic rule, and
so their reports are properly incentivized. Given this setting,
there are only two possible posterior beliefs following one
flip, namely 0.68 = 0.22+0.82 and 0.32 = 0.2·0.8+0.2·0.8.
If one forecaster reports 0.68 and the other reports 0.32, then
we have learned nothing and the best forecast for the public
flip is still 50%. If both report 0.68, however, the best fore-
cast for the public flip is not 0.68 but roughly 13

17 	 0.76,
which is the posterior belief for heads given two heads have
been observed. (The analogous is true for both reporting
0.32.) In this example, the extremized mean is an unbiased
proxy for α 	 1.56. In general, the optimal choice for α de-
pends on the information overlap between forecasters. For
example, full information overlap is given when both fore-
casters not only observe an i.i.d. flip of the same coin but the
same flip. In that case, the optimal α would be 1, i.e., no ex-
tremizing. For more detailed explanations, see the work by
Baron et al. (2014).
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