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Abstract

One of the goals of a cooperative game is to compute a value
division to the players from which they have no incentive to
deviate. This concept is formalized as the notion of the core.
To obtain a value division that motivates players to cooper-
ate to a greater extent or that is more robust under noise, the
notions of the strong least core and the weak least core have
been considered. In this paper, we characterize the strong and
the weak least cores of supermodular cooperative games us-
ing the theory of minimizing crossing submodular functions.
We then apply our characterizations to two representative
supermodular cooperative games, namely, the induced sub-
graph game generalized to hypergraphs and the airport game.
For these games, we derive explicit forms of the strong and
weak least core values, and provide polynomial-time algo-
rithms that compute value divisions in the strong and weak
least cores.

Introduction

Cooperation and the sharing of resources are crucial factors
in achieving a sustainable and resilient economy. Based on
these concepts, services such as vehicle sharing, office shar-
ing, house sharing, and skill sharing (Reisch and Thgersen
2015) can be realized. Individuals can reduce their own costs
by dividing the cost of services with other customers, in-
stead of using these services alone. A crucial challenge in
such scenarios is to divide the cost so that all customers are
satisfied with the division and are motivated to cooperate.

In this paper, we tackle this problem from the game-
theoretic perspective of cooperative games. We explain the
motivation underlying cooperative games using the exam-
ple of sharing taxis. The total fare for a group of customers
taking a taxi is typically determined by the customer who
travels farthest in the group. Our task is to divide the total
fare among these customers. However, if some customers
can pay less by forming a smaller group and dividing the
total fare of the subgroup appropriately, they will leave the
larger group. Hence, we need to find a stable division that
avoids such a deviation. This concept have been formalized
as the notion of the core (Gillies 1959).

It is known that the core exists for the taxi example.
More generally, there is a core within supermodular cooper-
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ative games (sometimes called convex cooperative games),
that is, cooperative games with supermodular utility func-
tions (Shapley 1971). Indeed, a value division called the
Shapley value (Shapley 1967) is always in the core.

It is natural to consider what is the “stablest” value divi-
sion, rather than simply any stable value division. One rea-
son is to motivate the players of the game to cooperate to
the greatest extent. From the perspective of a manager of
the game, this extent can be regarded as the tax that can be
imposed on players while still ensuring they play the game.
Of course, the manager aims to maximize the tax. A second
reason to identify the stablest value division is to enhance
robustness to noise. In practice, we cannot accurately mea-
sure the valuation of each group because of external noise.
In such a case, the loss incurred when a group deviates (with
respect to the observed valuations) should be regarded as the
safety margin for the group not to deviate (Li and Conitzer
2015). To address these issues, several extensions of the core
have been considered. Two well-known examples are the
strong least core and the weak least core (Shapley and Shu-
bik 1966). Indeed, it is known that value divisions in these
cores are most robust against a certain type of noise (Li and
Conitzer 2015).

In this paper, we consider computational aspects of the
strong and weak least cores. First, we provide theoretical
characterizations of those cores of supermodular cooperative
games using the theory of minimizing crossing submodular
functions. To see that our characterizations are useful to in-
terpret those cores and design efficient algorithms for com-
puting a value division in them, we analyze two representa-
tive supermodular cooperative games, namely, the induced
subgraph game (Deng and Papadimitriou 1994) generalized
to hypergraphs and the airport game (Littlechild and Owen
1973). The induced subgraph game models the profit among
countries from forming alliances, whereas the airport game
can model the sharing of a runway at an airport and the shar-
ing of taxis. To the best of our knowledge, there has been
no computational analysis of the weak least core, and the
difference between the strong and weak least cores has not
been discussed. We emphasize that we obtain the strong and
weak least core values in a uniform manner, which helps us
to analyze the difference between them.
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Related Work

Supermodular games are a well-studied class of coop-
erative games. Examples include the induced subgraph
game (Deng and Papadimitriou 1994), airport game (Lit-
tlechild and Owen 1973), public good game (Oishi and
Nakayama 2009), bidder collusion game (Graham, Mar-
shall, and Richard 1990), multicast tree game (Feigen-
baum, Papadimitriou, and Shenker 2001), and bankruptcy
game (O’Neill 1982). Our characterizations of the strong
and weak least core values can be applied to each of these.

Algorithms for computing the strong least core value have
already been developed (Kuipers 1996; Faigle, Kern, and
Kuipers 2001). However, as these algorithms solve opti-
mization problems on the extended polymatroid associated
with a crossing submodular function, we suspect that they
are essentially impractical. In contrast, we have character-
ized the strong and weak least cores, and used these char-
acterizations to obtain efficient algorithms that compute the
strong and weak least core values for specific games.

When defining the strong and weak least cores, we
strengthened the stability constraint x(S) ≥ ν(S) in the def-
inition of the core. An alternative approach is to replace the
constraint x(V ) = ν(V ) by x(V ) = ν(V ) + ε (see the for-
mal definition of the core in the next section). The minimum
ε that renders the program feasible is called the cost of sta-
bility (Bachrach et al. 2009). This corresponds to having a
benevolent external party that wishes to stabilize the game
by offering subsidies to players if they remain in the grand
coalition. The cost of stability focuses on the case where the
core is empty, and the cost of stability of a supermodular
game is always zero. Hence, the cost of stability is inappro-
priate for defining the stablest value division.

Cooperative games represented by marginal contribution
nets (Ieong and Shoham 2005) can be seen as a general-
ization of the induced subgraph game for which negative
weights are allowed. Although (Hirayama et al. 2014) con-
sidered computing the least cores in this general setting, the
time complexity of their algorithm is exponential.

Preliminaries

For an integer k, we denote the set {1, 2, . . . , k} as [k]. The
set of non-negative real values is denoted by R+. We use
bold symbols such as x to denote vectors. Let V be a finite
set. For a vector x ∈ RV and a set S ⊆ V , we denote the
value

∑
v∈S

x(v) as x(S).

A function f : 2V → R is called submodular (resp., su-
permodular) if

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T )

(resp., f(S) + f(T ) ≤ f(S ∩ T ) + f(S ∪ T ))

for all S, T ⊆ V .
We say that two sets S, T ⊆ V are crossing if S ∩ T 	= ∅,

S \T 	= ∅, T \S 	= ∅, and S∪T 	= V . A function f : 2V →
R is called crossing submodular (Fujishige 2005) if

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T )

holds for any crossing S, T ⊆ V .

We say that a family of sets S is a copartition of V if
{V \ S | S ∈ S} is a partition of V . For an integer k, let
Pk(V ) (resp., P̄k(V )) be the family of all partitions (resp.,
copartitions) S of V into at least k sets, such that each set
S ∈ S is nontrivial, that is, ∅ � S � V .

Cooperative Games

We now briefly describe the framework of cooperative
games. For more details, readers are referred to (Chalki-
adakis, Elkind, and Wooldridge 2011) and the references
therein. A cooperative game is a pair (V, ν), where V is
a set of players and ν : 2V → R+ is a function called
the characteristic function. We can regard ν(S) as the profit
when the players in S form a coalition. We always assume
that ν(∅) = 0. We say that x ∈ RV is a value division if
x(V ) = ν(V ), that is, a value division is a distribution of
the total profit to the players.

Suppose that a value division x ∈ RV satisfies x(S) <
ν(S) for some S ⊆ V . In such a case, the players in S will
form a coalition and leave V . We say that a value division
is in the core if such an S does not exist. More formally, a
value division x ∈ RV is in the core if x(S) ≥ ν(S) for all
S ⊆ V .

We say that a cooperative game (V, ν) is a supermodular
(cooperative) game if ν is supermodular. It is known that
the core of a supermodular game is nonempty; in particular,
a value division called the Shapley value is always in the
core (Shapley 1967).

If we wish to ensure that players are tightly retained, it
is natural to consider stronger requirements. Let us consider
the following two extensions of the core.
• For ε ∈ R, we say that a value division x ∈ RV is in

the strong (−ε)-core if the loss of a deviating nontrivial
coalition is at least ε, that is, x(S) − ν(S) ≥ ε for any
∅ � S � V .

• For ε ∈ R, we say that a value division x ∈ RV is in
the weak (−ε)-core if the loss of a deviating nontrivial
coalition is at least ε on average, that is, x(S) − ν(S) ≥
ε|S| for any ∅ � S � V .

Note that the core is equal to the strong 0-core and the weak
0-core.

The strong least core value of a game is the minimum
ε ∈ R such that the strong ε-core is nonempty. The strong
least core of a game is the strong ε-core for the strong least
core value ε. The weak least core value and the weak least
core are defined analogously using the notion of the weak ε-
core. Note that the strong and the weak least core values of a
supermodular game are always nonpositive because the core
is nonempty. Hence, it is convenient to consider the strong
and weak (−ε)-cores instead of the strong and the weak ε-
cores.

Let δs(ε, S) = ε and δw(ε, S) = ε|S|. The strong and
weak least core values of a cooperative game can be com-
puted by solving the following linear program (LP).

min −ε
s.t. x(S) ≥ ν(S) + δtype(ε, S) ∀∅ � S � V

x(V ) = ν(V )
x(v) ≥ 0 ∀v ∈ V,

(1)
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where type is ‘s’ in the strong core case and ‘w’ in the weak
core case. Note that, for supermodular games, ε ≥ 0 holds
in the optimal solution.

Characterizations of Least Cores
In this section, we characterize the strong and weak least
core values of a supermodular game.

Let (V, ν) be a supermodular game. Instead of solving the
optimization problem (1), we fix ε ≥ 0 and consider its fea-
sibility. We define a function f type

ε : 2V → R as

f type
ε (S) =

⎧⎨
⎩
0 if S = ∅,
−ν(S)− δtype(ε, S) if ∅ � S � V,

−ν(V ) if S = V.

It is clear that f type
ε is crossing submodular (but not neces-

sarily submodular).
The feasibility version of (1) can then be rephrased as fol-

lows:
x(S) ≤ f type

ε (S) ∀∅ � S � V,
x(V ) = f type

ε (V ),
x(v) ≤ 0 ∀v ∈ V.

(2)

Note that the variable x(v) is negated for each v ∈ V .
For a function f : 2V → R, we can write the (general-

ized) extended polymatroid associated with f as
P (f) = {x ∈ RV | x(S) ≤ f(S) for all ∅ � S � V }.

We define ptypeε = max{x(V ) | x ∈ P (f type
ε )}. Then, the

program (2) is feasible if and only if ptypeε ≥ f type
ε (V ).

It is known that ptypeε can be computed in polynomial
time (Frank and Tardos 1988; Naitoh and Fujishige 1992).
However, as the algorithm is cumbersome to describe and
implement, we further simplify the problem using the prop-
erties of supermodular cooperative games. We use the fol-
lowing theorem.
Theorem 1 ((Fujishige 1984)). Let f : 2V → R be a cross-
ing submodular function and let p = max{x(V ) | x ∈
P (f)}. Let q, r ∈ R be defined as

q = min
S∈P2(V )

∑
S∈S

f(S),

r = min
S∈P̄3(V )

1

|S| − 1

∑
S∈S

f(S).

Then, we have p = min{q, r}.
Consider Theorem 1 instantiated with the function f type

ε ,
and set q = qtypeε and r = rtypeε . From Theorem 1, the
program (2) is feasible if and only if

min{qtypeε , rtypeε } ≥ f type
ε (V ). (3)

We now derive the strong and weak least core values us-
ing (3).
Theorem 2. The strong least core value of a supermodular
game (V, ν) is

−min
{

min
S∈P2(V )

1

|S|
(
ν(V )−

∑
S∈S

ν(S)
)
,

min
S∈P̄2(V )

1

|S|
(
(|S| − 1)ν(V )−

∑
S∈S

ν(S)
)}

.

Proof. Note that the strong least core value is −ε for the
maximum ε ≥ 0 such that (3) holds, where the type is ‘s’.

We first consider the condition qsε ≥ f s
ε (V ). Let S ∈

P2(V ) be a partition of V . We then have∑
S∈S

f s
ε (S)− f s

ε (V ) =ν(V )−
∑
S∈S

(ν(S) + δs(ε, S))

=ν(V )−
∑
S∈S

ν(S)− ε|S|. (4)

Hence, qsε ≥ f s
ε (V ) holds if and only if ν(V ) −∑

S∈S ν(S)− ε|S| ≥ 0 holds for any partition S of V .
Next, we consider the condition rsε ≥ f s

ε (V ). Let S ∈
P̄3(V ) be a copartition of V . We then have

1

|S| − 1

∑
S∈S

f s
ε (S)− f s

ε (V )

= ν(V )− 1

|S| − 1

∑
S∈S

(ν(S) + δs(ε, S))

= ν(V )− 1

|S| − 1

∑
S∈S

ν(S)− ε|S|
|S| − 1

.

Hence, rsε ≥ f s
ε (V ) holds if and only if ν(V ) −

1
|S|−1

∑
S∈S ν(S) − ε|S|

|S|−1 ≥ 0 holds for any copartition
S ∈ P̄3(V ).

Combining these two cases, we obtain the desired value.
Note that a partition into two parts can be regarded as a co-
partition into two parts. Hence, we can replace P̄3 by P̄2.

Theorem 3. The weak least core value of a supermodular
game (V, ν) is

− 1

|V | min
S∈P̄2(V )

(
ν(V )− 1

|S| − 1

∑
S∈S

ν(S)
)
.

Proof. Note that the weak least core value is−ε for the max-
imum ε ≥ 0 such that (3) holds, where the type is ‘w’.

We first consider the condition qwε ≥ fw
ε (V ). Let S ∈

P2(V ) be a partition of V . We then have∑
S∈S

fw
ε (S)− fw

ε (V ) =ν(V )−
∑
S∈S

(ν(S) + δw(ε, S))

=ν(V )−
∑
S∈S

ν(S)− ε|V |. (5)

Since ν is supermodular, (5) is minimized when S is a parti-
tion into two parts. Hence, qwε ≥ fw

ε (V ) holds if and only if
ν(V )− (ν(S1) + ν(S2))− ε|V | ≥ 0 holds for any partition
{S1, S2} of V .

Next, we consider the condition rwε ≥ fw
ε (V ). Let S ∈

P̄3(V ) be a copartition of V . We then have
1

|S| − 1

∑
S∈S

fw
ε (S)− fw

ε (V )

= ν(V )− 1

|S| − 1

∑
S∈S

(ν(S) + δw(ε, S))

= ν(V )− 1

|S| − 1

∑
S∈S

ν(S)− ε|V |.
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Hence, rwε ≥ fw
ε (V ) holds if and only if ν(V ) −

1
|S|−1

∑
S∈S ν(S) − ε|V | ≥ 0 holds for any copartition

S ∈ P̄3(V ).
To summarize, (3) holds if and only if ν(V ) −
1

|S|−1

∑
S∈S ν(S) − ε|V | ≥ 0 holds for any copartition

S ∈ P̄2(V ), which means that the weak least core value
is

− min
S∈P̄2(V )

1

|V |
(
ν(V )− 1

|S| − 1

∑
S∈S

ν(S)
)
.

Induced Subgraph Game

Let G = (V,E,w) be a weighted hypergraph, where V is a
set of vertices, E is a set of hyperedges, and w : E → R+ is
a weight function on the hyperedges. We often regard a hy-
peredge e ∈ E as a subset of V . The induced subgraph game
associated with G is the cooperative game (V, ν), where
ν : 2V → R+ is the total weight of the hyperedges e ∈ E
with e ⊆ S. Note that ν is supermodular.

In this section, we consider induced subgraph games. We
derive explicit forms of the strong and weak least core val-
ues, and present polynomial-time algorithms that compute
the value divisions in the strong and weak least cores.

Definitions

Let S ⊆ V be a set of vertices. We say that a hyperedge
e ∈ E is cut by S if e 	⊆ S and e 	⊆ V \S. The cut weight of
S, denoted by c(S), is the total weight of the hyperedges cut
by S. A vertex set with the minimum cut weight is called a
minimum cut. Let c∗(G) denote the weight of the minimum
cut of G.

Let S be a partition of V into at least two nontrivial parts.
We say that a hyperedge e ∈ E is cut by S if e 	⊆ S for
any S ∈ S . The cut weight of a partition S of V , denoted by
c(S), is the total weight of hyperedges cut by S. We define
c̄(S) as

∑
S∈S c(S) − c(S). That is, we count a hyperedge

e ∈ E exactly � times if it intersects with �+ 1 parts of S.

Characterization of the strong least core value

We first derive the strong least core value of induced sub-
graph games.
Theorem 4. The strong least core value of the induced sub-
graph game associated with a hypergraph G = (V,E,w)
is

− min
S∈P2

c(S)
|S| .

Proof. From Theorem 2, the strong least core value is

−min
{

min
S∈P2

1

|S|
(
ν(V )−

∑
S∈S

ν(S)
)
,

min
S∈P̄2

1

|S|
(
(|S| − 1)ν(V )−

∑
S∈S

ν(S)
)}

.

For a partition S ∈ P2(V ), we have

ν(V )−
∑
S∈S

ν(S) = c(S).

For a copartition S ∈ P̄2(V ), we have

(|S| − 1)ν(V )−
∑
S∈S

ν(S)

= (|S| − 1)ν(V )−
∑
S∈S

(
ν(V )− ν(V \ S)− c(V \ S)

)

=
∑
S∈S

(
ν(V \ S) + c(V \ S)

)
− ν(V ) = c̄(S̄),

where S̄ is the partition consisting of the complements of
the sets in S.

Since c(S) ≤ c̄(S) for any partition S ∈ P2(V ) because
the former counts each cut hyperedge once whereas the latter
counts each cut hyperedge once or more, we have the desired
result.

The value c(S)/|S| can be understood as how well the hy-
pergraph is clustered by the partition S. Hence, Theorem 4
implies that, the more tightly connected the hypergraph is,
the more stable value division there exists.

Suppose that the input hypergraph is a graph, that is, each
hyperedge has cardinality two. In this case, we can further
simplify the strong least core value in Theorem 4.
Theorem 5. The strong least core value of the induced sub-
graph game associated with a graph G = (V,E,w) is

−c∗(G)

2
.

Proof. First, we show that the strong least core value is at
least − c∗(G)

2 . Suppose that there is a value division x ∈
RV in the strong (−ε)-core with ε > c∗(G)

2 . Let S be the
minimum cut of G. Then, x(S) > ν(S) + c∗(G)

2 and x(V \
S) > ν(V \ S) + c∗(G)

2 . However, this implies that x(V ) =
x(S) + x(V \ S) > ν(S) + ν(V \ S) + c∗(G) = ν(V ) =
x(V ), which is a contradiction.

We now show that there is a value division in the strong
− c∗(G)

2 -core. Let x ∈ RE be a value division defined as
x(v) =

∑
e∈E:v∈e w(e)/2 for every v ∈ V .

Let ∅ � S � V be a set of vertices. Then, x(S) = ν(S)+
c(S)
2 ≥ ν(S) + c∗(G)

2 , which implies that x is in the strong
− c∗(G)

2 -core.

Characterization of the weak least core value

We now derive the weak least core value of induced sub-
graph games.
Theorem 6. The weak least core value of the induced sub-
graph game associated with a hypergraph G = (V,E,w)
is

− 1

|V | min
S∈P2(V )

c̄(S)
|S| − 1

.

Proof. From Theorem 3, the weak least core value is

− 1

|V | min
S∈P̄2

(
ν(V )− 1

|S| − 1

∑
S∈S

ν(S)
)
.

Using the calculation in the proof of Theorem 4 (for the co-
partition case), we have the desired result.
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G v1

v2

v3

v4

v1

v2

v3

v4

1

1

1

1

s t

G′ v1

v2

v3

v4

1

1

s t

x(v1)

x(v2)

x(v3)

x(v4)

x(v1)− ε

x(v2)− ε

x(v3)− ε

x(v4)− ε

G′′

Figure 1: Reduction examples. Circles and boxes represent nodes and a hyperedges, respectively. The value associated with
each box is the weight of the corresponding hyperedge. The graphs G′ and G′′ are obtained from G when computing the strong
and weak least core values, respectively.

Suppose that the input hypergraph is a graph. Then, the
value of c̄(S) is equal to c(S)

2 . The value minS∈P2(V )
c(S)
|S|−1

is called the strength, which is another notion representing
how the graph is well clustered, and it can be computed in
polynomial time (Cunningham 1985).

Algorithm for the strong least core

In this subsection, we provide a polynomial-time algorithm
that computes a value division in the strong least core of
the induced subgraph game associated with a hypergraph
G = (V,E,w). To this end, we construct a separation or-
acle for the LP (1), which returns a constraint (if any) that is
not satisfied in the current LP solution (ε,x). Using the el-
lipsoid method (Khachiyan 1980), we can then solve LP (1)
by calling the separation oracle polynomially many times in
n.

The separation oracle is constructed as follows. As the last
two constraints of the LP (1) are easy to check, we assume
that the current solution (ε,x) satisfies these constraints.

We now wish to check x(S) ≥ ν(S) + ε for any ∅ �
S � V . This problem can be reduced to the minimum cut
problem. We first construct a hypergraph G′ = (V ′, E′, w′)
from G as follows: define V ′ = V ∪{s, t}, where s and t are
new vertices. For each hyperedge e ∈ E, add a hyperedge
e ∪ {s} of the same weight to E′. Finally, for each v ∈ V ,
add a hyperedge {v, t} of weight x(v). An example of this
reduction is shown in Figure 1. For a set of vertices S ⊆ V ,
the cut weight of S ∪ {s} in G′ is

ν(V ) + x(S)− ν(S).

Hence, it suffices to check that the cut weight of S ∪ {s} is
at least ν(V ) + ε for all ∅ � S � V .

This problem is almost equivalent to finding a minimum
s-t cut in G′, except that we need to exclude trivial cuts {s}
and V ∪{s}. To this end, for each pair of vertices (u, v), we
construct a hypergraph G′

uv by contracting u to s and v to t.
Note that for any S ⊆ V \ {u, v}, the cut weight of S ∪ {s}
in G′

uv is equal to the cut weight of S ∪{u, s} in G′. Hence,
by taking the minimum cut weight of G′

uv over all possible
pairs (u, v) and checking that it is at least ν(V ) + ε, we can
find the constraint violated by the current LP solution (ε,x).

The algorithm proposed by (Pistorius and Minoux 2003)
can be used to compute the minimum cut of a hypergraph.

Algorithm 1

Input: A hypergraph G = (V,E,w).
Output: The strong least core value of G.

1: Solve LP (1) using the ellipsoid method with
SEPARATION-ORACLE, and return −ε.

2: procedure SEPARATION-ORACLE(ε,x)
3: if x(V ) 	= ν(V ) or x(v) < 0 for some v ∈ V then
4: return the violated constraint.
5: Construct a hypergraph G′ from G.
6: for each u, v ∈ V do
7: S ← the minimum cut of G′

uv .
8: if c(S) < ν(V ) + ε then
9: return the violated constraint.

10: return by saying no constraint is violated.

The overall algorithm is given in Algorithm 1. In summary,
we have the following:
Theorem 7. We can compute a value division in the strong
and weak least cores of a hypergraph G = (V,E,w)
in O(|V |2f(|V |, O(

∑
e∈E

|e|))L) time, where f(n,m) is the

time complexity of solving the max flow problem on a graph
consisting of n vertices and m edges, and L is the number
of times that the separation oracle is called by the ellipsoid
method, which is polynomial in |V | and |E|.

Algorithm for the weak least core

In this subsection, we briefly discuss a polynomial-time al-
gorithm that computes a value division in the weak least core
of the induced subgraph game associated with a hypergraph
G = (V,E,w).

The algorithm is almost identical to that for the strong
least core. The only difference is the implementation of the
separation oracle, which can be summarized as follows: (i)
Check that the current solution satisfies x(v) ≥ ε for all
v ∈ V instead of checking x(v) ≥ 0. (ii) When construct-
ing an auxiliary graph the weight of the hyperedge {v, t} is
x(v)− ε instead of x(v). See Figure 1 for an example of the
reduction. (iii) The cut weight of S ∪ {s} is then

ν(V ) + x(S)− ε|S| − ν(S).

Hence, it suffices to check that the cut weight of S ∪ {s} is
at least ν(V ) for all ∅ � S � V .
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Airport Game
In this section, we consider the airport game. An instance of
the airport game is a tuple I = (n, c1, . . . , cn), where n is
an integer and c1, . . . , cn ∈ R+ with c1 ≤ c2 ≤ · · · ≤ cn.
Let V = [n]. We define

ν(S) = −max
i∈S

ci

for each set S ⊆ V . Then, the cooperative game associated
with I is (V, ν). In the example of sharing taxis, ci denotes
the fare of the i-th customer, and the fare for a group S ⊆ V
is maxi∈S ci, that is, the fare for the customer whose desti-
nation is farthest away.

Characterization of the strong least core

We derive a closed formula for the strong least core value of
the airport game.
Theorem 8. The strong least core value of the airport game
associated with an instance I = (n, c1, . . . , cn) is

− min
k∈[n−1]

ck
k + 1

.

Proof. From Theorem 2, the strong least core value is

−min
{

min
S∈P2

1

|S|
(
ν(V )−

∑
S∈S

ν(S)
)
,

min
S∈P̄2

1

|S|
(
(|S| − 1)ν(V )−

∑
S∈S

ν(S)
)}

.

The first term is

min
S∈P2

1

|S|
(∑
S∈S

max
i∈S

ci − cn

)
= min

2≤k≤n

1

k

∑
i∈[k−1]

ci.

The second term is

min
S∈P̄2

1

|S|
(∑
S∈S

max
i∈S

ci − (|S| − 1)cn
)

= min
2≤k≤n

1

k

(
(k − 1)cn + ck−1 − (k − 1)cn

)
= min

2≤k≤n

ck−1

k
.

Since ck−1 ≤
∑

i∈[k−1] ci, we have the desired result.

Theorem 9. The strong least core value −ε, where ε :=
min

k∈[n−1]

ck
k+1 of the airport game associated with an instance

I = (n, c1, . . . , cn) is achieved by the following value divi-
sion x ∈ RV :

x(i) = −ε (i ∈ [n− 1]) and x(n) = −cn + ε(n− 1).

Proof. First, we have x([n]) = −cn = ν([n]). In the fol-
lowing, we check that x(S) ≥ ν(S) + ε holds for any
∅ � S � V .

Note that x(i) = −ε ≤ 0 for all i ∈ [n − 1] and x(n) =
−cn + ε(n − 1) ≤ cn−2 − cn ≤ 0. Hence, we need only
consider sets of the form [k] for each k ∈ [n−1] and [n]\{k}
for each k ∈ [n − 1]. Specifically, we check the following
conditions: (i) x([k]) ≥ ν([k]) + ε for each k ∈ [n− 1], and
(ii) x([n])− x(k) ≥ ν([n]) + ε for each k ∈ [n− 1]. Since
x([k]) = −εk and ν([k]) = −ck, the former condition is
equivalent to ε(k + 1) ≤ ck for each k ∈ [n − 1], which
is true. Since x([n]) = ν([n]) and x(k) = −ε, the latter
condition is trivially true.

Characterization of the weak least core

We derive a closed formula for the weak least core value of
the airport game.

Theorem 10. The weak least core value of the airport game
associated with an instance I = (n, c1, . . . , cn) is

− 1

n
min

k∈[n−1]

ck
k
.

Proof. From Theorem 3, the weak least core value is

− 1

n
min
S∈P̄2

1

|S| − 1

(
(|S| − 1)ν(V )−

∑
S∈S

ν(S)
)
,

which is

− 1

n
min
S∈P̄2

1

|S| − 1

(∑
S∈S

max
i∈S

ci − (|S| − 1)cn

)

= − 1

n
min

2≤k≤n

1

k − 1

(
(k − 1)cn + ck−1 − (k − 1)cn

)

= − 1

n
min

2≤k≤n

ck−1

k − 1
= − 1

n
min

k∈[n−1]

ck
k
.

Theorem 11. The weak least core value −ε, where ε :=
1
n mink∈[n−1]

ck
k of an instance I = (n, c1, . . . , cn) of the

airport game is achieved by the following value division x ∈
RV :

x(i) = −ε(n− 1) ∀i ∈ [n− 1],

x(n) = −cn + ε(n− 1)2.

Proof. Note that x([n]) = −cn = ν([n]). In the following,
we check that x(S) ≥ ν(S)+ε|S| holds for any ∅ � S � V .

Let ∅ � S � V be a set. If n 	∈ S, then we have that
x(S)−ν(S) = cj− ε(n−1)|S| ≥ cj− cj

j |S|+ ε|S| ≥ ε|S|
for j = max{i ∈ S}. If n ∈ S, then we have x(S)−ν(S) =
ε(n−1)((n−1)−(|S|−1)) = ε(n−1)(n−|S|) ≥ ε|S|.

Conclusion

The contributions reported in this paper can be summarized
as follows: First, we provided theoretical characterizations
of the strong and weak least core values of a supermodu-
lar game. We then derived explicit and concise formulations
for the strong and weak least core values of the induced sub-
graph game and the airport game, and presented polynomial-
time algorithms for computing the value divisions in the
strong and weak least cores. It should be noted that, although
space limitations mean that we have only provided formula-
tions for two supermodular games, we could easily analyze
other supermodular games using a similar reasoning.
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