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Abstract

One of the fundamental research challenges in network sci-
ence is the centrality analysis, i.e., identifying the nodes that
play the most important roles in the network. In this paper, we
focus on the game-theoretic approach to centrality analysis.
While various centrality indices have been proposed based
on this approach, it is still unknown what distinguishes this
family of indices from the more classical ones. In this pa-
per, we answer this question by providing the first axiomatic
characterization of game-theoretic centralities. Specifically,
we show that every centrality can be obtained following the
game-theoretic approach, and show that two natural classes
of game-theoretic centrality can be characterized by two in-
tuitive properties pertaining to Myerson’s notion of Fairness.

Introduction

Centrality analysis is one of the fundamental research prob-
lems in graph theory and network analysis. It involves iden-
tifying the nodes that play the most important role in the
network (Brandes and Erlebach 2005). On top of the already
classic centrality indices such as degree, closeness, between-
ness, eigenvector, Katz, and PageRank centralities, various
new concepts have been recently proposed in the literature.

One family of centralities that has recently attracted grow-
ing attention is based on cooperative game theory (Gomez et
al. 2003, del Pozo et al. 2011, Michalak et al. 2013). The key
idea behind this approach is to analyse the topology of the
network using the combinatorial structure of a coalitional
game. More in detail, in the first step, one has to define a
function that evaluates the centrality of each subset of nodes.
Next, having evaluated all the subsets, one can use payoff
division schemes from cooperative game theory to measure
how individual nodes contribute to subsets’ performance.
This extends conventional centrality indices which solely fo-
cus on the performance of individual nodes. Various central-
ities obtained using the game-theoretic approach have been
shown to perform relatively better than classic approaches
in a number of real-life applications, including terrorist-
network analysis (Lindelauf, Hamers, and Husslage 2013;
Michalak et al. 2015), genes and brain networks (Kötter et
al. 2007; Moretti et al. 2010), and energy savings in IT net-
works (Bianzino et al. 2012).
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However, despite the plethora of game-theoretic centrali-
ties in the literature, their theoretical foundations and proper-
ties are not yet entirely understood. Unfortunately, this prob-
lem, termed “theory gap” concerns not only novel centrality
indices but also the classic ones as well as many other con-
cepts in social network analysis (Schoch and Brandes 2015).
A few attempts to bridge this gap include the works by
(Sabidussi 1966, Koschützki 2005, Boldi and Vigna 2014)
who provided axiomatic characterizations of some of the
classic centrality indices.

Meager axiomatic foundations are especially striking in
the case of game-theoretic indices. This is because the ax-
iomatizations of the payoff division schemes – the schemes
based on which the game-theoretic indices are built – have
been extensively studied. Hence, at first glance, it should be
straightforward to translate those game-theoretic axiom sys-
tems to the network context. This, however, is not the case. It
turns our that most axioms that seem desirable in the coali-
tional game context lose their attractiveness when applied
to networks. A notable exception is the Fairness axiom in-
troduced by Myerson (1977) for graph-restricted coalitional
games; it says that each edge equally affects the payoff of
both adjacent nodes. Indeed, Fairness is one of the axioms
used by Skibski et al. 2016, who proposed the first charac-
terization of a particular game-theoretic centrality.

Nevertheless, little is known about the axiomatic under-
pinnings of game-theoretic indices in general. In particular,
we still do not know how general this approach is, and what
distinguishes game-theoretic centrality indices from others.

In what follows, we present the first attempt to answer
these question. We show that every non game-theoretic cen-
trality can be also obtained using some game-theoretic cen-
trality; this is a testimony to the versatility of this approach
to centrality analysis. Next, we define two natural classes
of game-theoretic centrality indices: separable and induced.
We prove that the class of centralities obtained using sep-
arable game-theoretic centralities is defined by Myerson’s
Fairness. In other words, any separable game-theoretic cen-
trality satisfies Fairness, and any (non-game-theoretic) cen-
trality that satisfies Fairness can be obtained with some sep-
arable game-theoretic centrality. Next, we extend Fairness to
a new axiom, Edge Balanced Contribution. Analogously, we
prove that the class obtained using separable game-theoretic
centralities is defined by Edge Balanced Contribution.
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Preliminaries

In this section, we provide the necessary background and
notation from both graph theory and coalitional game theory.

Graph theory

A graph (network) is a pair G = (V,E), where V is the set
of nodes and E is the set of edges. The edge between any
two nodes, v, u ∈ V , will be denoted by {u, v}. Given a set
of nodes, V , the set of all possible graphs will be denoted
by GV . Furthermore, the set of all possible edges will be
denoted by EV , i.e., EV = {S ⊆ V : |S| = 2}.

For any subset of nodes, S ⊆ V , the subgraph of G in-
duced by S is denoted by G[S] and is defined as the graph
whose set of nodes is S and whose set of edges consists of
every edge in E of which both ends belong to S. Formally:

G[S] =
(
S,

{
{v, u} ∈ E : v, u ∈ S

})
.

A subgraph is said to be connected if there exists a path
between every pair of nodes in that subgraph. Furthermore,
any such connected subgraph, G[S], is said to be maximal if
G[S′] is disconnected for all S ⊂ S′. We will refer to each
maximal connected subgraph as a component of G. Also,
we will denote by K(G) the partition of V in which every
subset induces a component of G.

A centrality index is a function, c : GV → RV , that as-
signs to every node v ∈ V a real number reflecting the im-
portance of v in G; this number is called the centrality of
v. Typically, the higher the centrality, the more important or
central the node. Given a set of nodes V , the set of all pos-
sible centrality indices is denoted by CV . For every c ∈ CV
and every k ∈ R, we define the centrality index (k · c) as
follows: (k · c)v(G) = k · cv(G) for all G ∈ GV and v ∈ V .
Similarly, for every c, c′ ∈ CV , we define the centrality in-
dex (c+ c′) as follows: (c+ c′)v(G) = cv(G) + c′v(G) for
all G ∈ GV and v ∈ V .

Coalitional game theory

A game is a pair, (N, f), where N is the set of players and
f : 2N → R is the characteristic function, which assigns
to each subset of players a real number reflecting its im-
portance. Any subset of players, S ⊆ N , is called a coali-
tion, and f(S) is called the value of coalition S. Typically,
f(∅) = 0. Given a set of players, N , the set of all possible
games is denoted by FN .

A solution concept, ϕ : FN → RN , is a function that
assigns a payoff to each player, v, in any given game (N, f);
this payoff is denoted by ϕv(f). Given a set of players N ,
the set of all possible solution concepts is denoted by ΦN .

A fundamental class of solution concepts is Semivalues
(Dubey, Neyman, and Weber 1981). Let β : {0, . . . , |N | −
1} → [0, 1] be a function such that

∑|N |−1
k=0 β(k) = 1. Every

such β defines a unique semivalue, ϕβ , based on which the
payoff of a player v ∈ N is computed as follows:

ϕβ
v (f) =

∑
S⊆N\{v}

β(|S|)(|N |−1
|S|

) (f(S ∪ {v})− f(S)). (1)

Here, the expression f(S ∪ {v}) − f(S) is known as the
marginal contribution of player v to coalition S. We will

write β∗(k) as a shorthand notation for β(k)/
(|N |−1

k

)
. A

semivalue is said to be positive if β(k) > 0 for every
k ∈ {0, . . . , |N | − 1}. Given N , the set of all semivalues
is denoted by SVN , and the set of all positive semivalues is
denoted by SVN

+ . Thus, SVN
+ ⊆ SVN ⊆ ΦN .

Two well-known solution concepts, namely the Shapley
value (Shapley 1953) and the Banzhaf index (Banzhaf III
1965), are in fact positive semivalues, with βShapley(k) =

1/|N |, and βBanzhaf (k) =
(|N |−1

k

)
/2|N |−1.

Game-theoretic centrality indices

We begin with the definition of a representation function,
r : GV → FV , which maps every graph whose set of nodes
is V onto a cooperative game whose set of players is V . For a
graph G = (V,E), the characteristic function of game r(G)
is denoted by fr

G. That is to say, r(G) = (V, fr
G). Given a set

of nodes V , the set of all possible representation functions
will be denoted byRV .

A Game-Theoretic Centrality Index (GTC) is a pair,
(r, ϕ), where r is a representation function, and ϕ is a solu-
tion concept. We say that a game-theoretic centrality index,
(r, ϕ), generates a centrality index, [(r, ϕ)] ∈ CV , computed
for every G ∈ GV and every v ∈ V as follows:

[(r, ϕ)]v(G) = ϕv(f
r
G). (2)

In words, the centrality [(r, ϕ)] of node v in the graph G
equals the payoff of player v in the game r(G) according
to the solution concept ϕ. We say that (r, ϕ) is based on
ϕ. Given a set of nodes, V , the set of all game theoretic
centrality indices will be denoted by GT CV . Formally:

GT CV = {(r, ϕ) : r : GV → FV , ϕ ∈ ΦV }.

We will refer to GT CV as the general class of game-
theoretic centrality indices. For any given class, I ⊆ GT CV ,
we will write [I] to denote the set of centrality indices gen-
erated by every (r, ϕ) ∈ I. For instance, we have:

[GT CV ] = {[(r, ϕ)] : (r, ϕ) ∈ GT CV }.

Furthermore, for any given class, I ⊆ GT CV , we will write
I+ to denote the subclass of I for which the solution concept
happens to be a positive semivalue. Likewise, for any ϕ ∈
ΦV , we will write Iϕ to denote the subclass of I for which
the solution concept happens to be ϕ. For instance, we have:

GT CV+ = {(r, ϕ) : r : GV → FV , ϕ ∈ SVV
+},

GT CVϕ = {(r, ϕ) : r : GV → FV }.

In this paper, we focus on GT CV+ . Furthermore, we restrict
our attention to a fixed set of nodes, V , and so will often omit
V from notation such as EV , CV , ΦV , SVV , and GT CV .

General Class of Game-Theoretic Centralities

At first glance, it may seem that [GT C] � C. However, as
we will establish in Theorem 1, for every centrality index,
c ∈ C, there exists a game-theoretic centrality index, (r, ϕ),
such that [(r, ϕ)] = c. The theorem builds upon a dummy
game – a standard concept in cooperative game theory.
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Theorem 1. For every positive semivalue ϕ ∈ SV+,

[GT Cϕ] = [GT C+] = [GT C] = C.
Proof. Since ϕ ∈ SV+, then GT Cϕ ⊆ GT C+. Based on
this, as well as the fact that [GT C] ⊆ C, we have:

[GT Cϕ] ⊆ [GT C+] ⊆ [GT C] ⊆ C.
It remains to prove that C ⊆ [GT Cϕ]. To put it differently,
for every c ∈ C, it remains to prove that there exists some
r ∈ R such that [(r, ϕ)] = c. To this end, let c ∈ C be an
arbitrary centrality index, and let us define a representation
function r(G) = (V, fr

G) for every G ∈ GV such that:

∀S ⊆ V, fr
G(S) =

∑
v∈S

cv(G).

This is a dummy game – a game in which the value of ev-
ery coalition is the sum of the values of its members. In our
case, we set the value of every v ∈ V to be equal to the cen-
trality of v in graph G according to c. More precisely, we set
fr
G({v}) = cv(G). Now since the marginal contribution of
v to every coalition is equal to cv(G), then the definition of
semivalues (Equation 1) implies that:

∀v ∈ V, [(r, ϕ)]v(G) = ϕv(f
r
G) = cv(G).

This concludes the proof of Theorem 1.

Let us illustrate the construction used in the proof of The-
orem 1 through the following example.
Example 1. Consider the degree centrality, cD, defined as:

cDv (G) = |{{v, u} ∈ E : u ∈ V }|.
Now, given the two possible graphs in G{v,u}, i.e., given
G1 = ({v, u}, ∅) and G2 = ({v, u}, {{v, u}}), let us show
how to generate cD using some GTC. First, let us deal with
G1. We need to specify fr

G1
such that ϕv(f

r
G1

) = cDv (G1) =

0, and ϕu(f
r
G1

) = cDu (G1) = 0. To this end, let us define
a dummy game in which fr

G1
({v}) = cDv (G1) = 0 and

fr
G1

({u}) = cDu (G1) = 0. This implies that fr
G1

({v, u}) =
fr
G1

({v}) + fr
G1

({u}) = 0. Since every marginal contri-
bution of v equals 0 (i.e., fr

G1
({v}) − fr

G1
(∅) = 0 and

fr
G1

({v, u}) − fr
G1

({u}) = 0), then from the definition of
semivalues we get: ϕv(f

r
G1

) = 0. Following the same rea-
soning, we get: ϕu(f

r
G1

) = 0. Moving on to G2, we define
a dummy game in which fr

G2
({v}) = fr

G2
({u}) = 1, which

implies that fr
G2

({v, u}) = 1 + 1 = 2. Following the above
reasoning, we get: ϕv(f

r
G2

) = ϕu(f
r
G2

) = 1.
Next, we lay the theoretical foundation for the coming

sections by showing that the totality of all centrality indices
form a vector space. To this end, let us introduce the class of
unanimity centrality indices.
Definition 1. (Unanimity Centrality Indices) Given a set of
edges, E† ⊆ EV , and a set of nodes, U ⊆ V , the unanimity
centrality index c〈U,E†〉 is defined for every G = (V,E) ∈
GV and every v ∈ V as follows:

c〈U,E†〉
v (G) =

{
1 if v ∈ U and E† ⊆ E,

0 otherwise.

As such, c〈U,E†〉 assigns a value of 1 if and only if the node
belongs to U and the graph contains every edge from E†.

The set of all unanimity centrality indices will be denoted
by UV , or simply U when there is no risk of confusion. The
next lemma provides a sufficient condition for the linear in-
dependence of the class of unanimity centrality indices.
Lemma 2. Let U∗ be a set of unanimity centrality indices
such that for every set of edges, E† ⊆ EV , and every pair,
c〈U,E†〉, c〈U

′,E†〉 ∈ U∗, we have: U = U ′ or U ∩ U ′ = ∅.
Then, U∗ is linearly independent.

Next, we use Lemma 2 to characterize a basis of the class
of all centrality indices, C.
Theorem 3. The class C is a vector space with the basis:

UV
All = {c〈{v},E

†〉 : v ∈ V,E† ⊆ EV }.
Proof. Since C is closed under addition (for every c, c′ ∈ C
we have c + c′ ∈ C) and closed under scalar multiplication
(for every c ∈ C and a scalar k ∈ R we have k·c ∈ C), then C
is a vector space. It remains to prove that UAll is a basis of C.
We know from Lemma 2 that UAll is linearly independent.
Moreover, since |UAll| = |V × E| = |V × G|, the size of
U is the same as the dimension of C. This concludes the
proof.

The above result comes in handy when proving that all
centrality indices from a given class can be generated with
a subclass of GTCs. More in detail, the following lemma
shows that if the basis of a class can be generated, then the
whole class can also be generated.
Lemma 4. Let C∗ be a class of centrality indices with a
basis U∗, and let I ⊆ GT Cϕ be a class of GTCs closed
under addition and scalar multiplication. If U∗ ⊆ [I], then
C∗ ⊆ [I].

In the general class of game-theoretic centrality indices,
for any two distinct graphs, G,G′ ∈ G, a representation
function, r, may output two games, (V, fr

G), (V, f
r
G′) ∈ F ,

that are completely independently from one another. In other
words, the value of every subset of nodes S ⊆ V under fr

G
may be completely different than (or independent from) the
value of the same subset under fr

G′ . This implies that in or-
der to define a game-theoretic centrality in the general form,
one needs to specify all 2V values of fr

G for every G ∈ G.
Such centrality index would clearly be impractical. To over-
come this limitation, every game-theoretic centrality index
studied in the literature to date assumes some kind of depen-
dency between fr

G and fr
G′ (see, e.g., Michalak et al. 2013).

We follow this approach in the next sections, where we de-
fine two classes of game-theoretic centralities by imposing
some natural requirements on the representation function.

Separable Game-Theoretic Centralities

The first subclass of GT C that we consider is the class of
separable game-theoretic centralities.
Definition 2. (Separable GTC (SGT C)) A representation
function, r, is separable if for every coalition S ⊆ V and
every two graphs G,G′ ∈ GV such that G[S] = G′[S] and
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G[V \S] = G′[V \S] it holds that fr
G(S) = fr

G′(S). A GTC,
(r, ϕ), is separable if r is separable. Given a set of nodes,
V , the set of all separable GTCs is denoted by SGT CV .

In words, a game-theoretic centrality index is separable if
the value of every coalition, S ⊆ V , under the representa-
tion function, r, depends solely on the subgraph induced by
S and the subgraph induced by V \S in G. As we will show
later on in this section, separable GTCs are related to the no-
tion of Fairness, proposed by Myerson (1977).

Fairness: For every G = (V,E) and every v, u ∈ V such
that {v, u} 
∈ E, adding the edge e = {v, u} to the graph
G affects the centrality of v and u equally. Formally:

cv((V,E ∪ {e}))− cv(G) = cu((V,E ∪ {e}))− cu(G).

The class of all centralities satisfying Fairness will be de-
noted by CVFair, or simply CFair when there is no risk of
confusion.

For every node, v ∈ V , and edge, e ∈ E , we will use the
notation: Δc

v(e,G) = cv((V,E ∪ {e}))− cv(G). Note that,
if e ∈ E, then Δc

v(e,G) = 0.
The following lemma states that any centrality index in

CFair can be uniquely characterized by only specifying the
sum of node-centralities in every component of the graph
(i.e., there is no need to specify the centrality of every node).

Lemma 5. For every function, g : 2V × GV → R, there
exists at most one centrality index, c ∈ CVFair, that satisfies∑

v∈S cv(G) = g(S,G) for every G ∈ GV and S ∈ K(G).

Building upon Lemma 5, the following theorem identifies
a basis of the class CFair.

Theorem 6. CFair is a vector space with the basis:

UV
Fair = {c〈U,E†〉 ∈ UV : U ∈ K((V,E†))}. (3)

Sketch of Proof. We begin by showing that CFair is a vector
space. To this end, note that if the addition of an edge {v, u}
affects the centrality of v and u equally according to c and
according to c′, then it also affects the centrality of v and
u equally according to c + c′. As such, CFair is closed un-
der addition. Analogously, multiplying c by a scalar k ∈ R
does not violate Fairness, meaning that CFair is closed under
scalar multiplication. Thus, CFair is a vector space.

It remains to prove that UFair forms a basis of CFair. To
this end, we will show that: (1) UFair ⊆ CFair, (2) UFair is
linearly independent, and (3) |UFair| is equal to the dimen-
sion of CFair.

As for (1), let c〈U,E†〉 be an arbitrary centrality index in
UFair. The edge {v, u} affects the centrality of v in c〈U,E†〉
only if v ∈ U and {v, u} ∈ E†. This implies that u ∈ U and
that Δc

v({v, u}, G) = Δc
u({v, u}, G). We have shown that

an arbitrary c〈U,E†〉 ∈ UFair satisfies Fairness, meaning that
UFair ⊆ CFair.

As for (2), the linear independence of UFair is implied by
Lemma 2.

As for (3), let dim(CFair) denote the dimension of CFair.
Linear independence implies that dim(CFair) ≥ |UFair|.
But from Lemma 5 and the fact that |UFair| is equal to the

number of components in all graphs in GV , we have that
dim(CFair) ≤ |UFair|. Therefore, dim(CFair) = |UFair|.

This concludes the sketch of proof of Theorem 6.

Example 2. Consider the degree centrality cD from Exam-
ple 1. Since adding an edge {v, u} increases the centrality of
both v and u by 1, then cD satisfies Fairness. Consequently,
we know from Theorem 6 that cD is a linear combination of
unanimity centralities from UFair. Let us generate cD using
such a combination. To this end, consider c〈{v,u},{{v,u}}〉 ∈
UFair for some arbitrary pair, v, u ∈ V, v 
= u. According
to c〈{v,u},{{v,u}}〉, the centrality of v and u equals 1 if the
edge {v, u} belongs to the graph, otherwise the centrality of
v and u equals 0. Summing over all such pairs, we get the
degree centrality:

cD =
∑

v,u∈V :v �=u

c〈{v,u},{{v,u}}〉.

Lemma 7. Every separable game-theoretic centrality from
GT C+ satisfies Fairness.

We are ready to present our main result of this section.
In the following theorem we state that the class of separable
positive-semivalue based GTCs is characterized by Fairness.
Theorem 8. For every positive semivalue, ϕ ∈ SV+,

CFair = [SGT Cϕ] = [SGT C+].
Sketch of Proof. Since ϕ ∈ SV+, then SGT Cϕ ⊆ SGT C+.
Thus, based on Lemma 7: [SGT Cϕ] ⊆ [SGT C+] ⊆ CFair.
It remains to prove that CFair ⊆ [SGT Cϕ]. In other words,
we need to prove that every c ∈ CFair can be generated by
[(r, ϕ)] for some separable representation function r.

Note that SGT C is closed under addition and scalar mul-
tiplication (because if r ∈ RV and r′ ∈ RV are separable,
then (r + r′) ∈ RV and (c · r) ∈ RV are also separable).
Thus, based on Lemma 4, it suffices to show that every cen-
trality from UFair can be generated by [(r, ϕ)] for some sep-
arable r. To this end, let ϕβ ∈ SV+ be an arbitrary positive
semivalue based on some β, and let c〈U,E†〉 ∈ UFair. Now
consider a representation function, r∗, defined as follows:

fr∗
G (S)=

⎧⎪⎨⎪⎩
1

β∗(|U |)+β∗(|U |−1) if S=U,E†⊆E,
β∗(|U |)

(β∗(|U |)+β∗(|U |−1))β∗(|V |−1) if S=V,E†⊆E,

0 otherwise.

First, we argue that r∗ is separable, i.e., that the value
of fr∗

G (S) depends solely on G[S] and G[V \ S]. Since
c〈U,E†〉 ∈ UFair, then based on Equation (3), if S = U then
S induces a component in (V,E†), i.e., S ∈ K((V,E†)).
This implies that there are no edges between S and V \ S,
meaning that no such edge can influence fr∗

G (S). Next, if
S = V , then, by definition fr∗

G (S) depends solely on S. Fi-
nally, for S 
∈ {U, V } we have fr∗

G (S) = 0 for every graph
G ∈ G. Thus, r∗ is separable.

It remains to show that [(r∗, ϕ)] = c〈U,E†〉. Let G =
(V,E) be an arbitrary graph, and let v ∈ V . Now if
E† 
⊆ E, then from the definition of unanimity we have:
c
〈U,E†〉
v (G) = 0, and from the definition of fr∗

G we have:
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Figure 1: Given a complete graph of 5 nodes, the figure illus-
trates how the value of {v, u} is computed under a general, a
separable, and an induced representation function. The gray
boxes contain the edges that affect the value of {v, u}; all re-
maining edges (i.e., the dashed ones) do not. Since there are
210 possible graphs consisting of 5 nodes each, {v, u} may
have at most 210 distinct values under a general represen-
tation function, r. In contrast, if r is separable, then {v, u}
may have at most 24 distinct values, and if r is induced, then
{v, u} may have at most 21 distinct values.

fr∗
G (S) = 0, ∀S ⊆ V , implying that ϕv(f

r∗
G ) = 0. Thus,

we have: c〈U,E†〉
v (G) = [(r∗, ϕ)]v(G) = 0. On the other

hand, if E† ⊆ E, then we consider two cases: v ∈ U and
v 
∈ U . As for the first case, from the definition of una-
nimity, we have c

〈U,E†〉
v (G) = 1. Furthermore, v has only

two non-zero marginal contributions in Equation (1): one to
coalition S = U\{v} and the other to coalition S = V \{v},
implying that ϕβ

v (f
r∗
G ) = 1. Thus, we have: c〈U,E†〉

v (G) =
[(r∗, ϕ)]v(G) = 1. As for the second case, where v 
∈ U , one

can verify that c〈U,E†〉
v (G) = [(r∗, ϕ)]v(G) = 0. We have

shown that in all cases we have: c〈U,E†〉
v (G) = [(r∗, ϕ)]v(G)

for an arbitrary G = (V,E) ∈ G and an arbitrary v ∈ V .
This concludes the sketch of the proof of Theorem 8.

We end this section with an example showing how the de-
gree centrality, cD, can be generated from a separable GTC.

Example 3. The degree centrality satisfies Fairness, be-
cause ΔcD

v ({v, u}, (V,E)) = 1 for every v ∈ V and ev-
ery {v, u} 
∈ E. Therefore, we know from Theorem 8 that
there exists a separable game-theoretic centrality index that
generates cD. Let us identify such a separable index. Note
that the one used in Example 1 is not separable, because
fr
G1

({v}) = 0 and fr
G2

({v}) = 1, while separability re-
quires that fr

G1
({v}) = fr

G2
({v}). Instead, consider the in-

dex [(rD, ϕShapley)], where ϕShapley is the Shapley value,
and rD is defined as: frD

G (S) = 2 · |{{v, u} ∈ E : v, u ∈
S}|. Given this rD, we show that [(rD, ϕShapley)] = cD.

To this end, we will use the four widely-known axioms
that define the Shapley value, namely: Additivity, Null-
player, Symmetry and Efficiency.1 First of all, observe that:
frD

G (S) =
∑

e∈E frD

(V,{e})(S), ∀S ⊆ V . Thus, based on the

1For more on the various axiomatizations of the Shapley value,
see, e.g., the work by Maschler et al. (2013).

Additivity axiom, we have:

ϕShapley
v (frD

G ) =
∑
e∈E

ϕShapley
v (frD

(V,{e})). (4)

This allows us to focus our analysis on a single-edge graph,
(V, {e}). Let us focus on G∗ = (V, {{v1, v2}}). Here, it is
clear from the definition of frD

G∗ that the only two players
with non-zero marginal contributions are v1 and v2. Thus,
based on the Null-player axiom: ϕShapley

u (frD

G∗ ) = 0, ∀u ∈
V \{v1, v2}. As for v1 and v2, since they are symmetric, then
based on the Symmetry axiom, we have: ϕShapley

v1 (frD

G∗ ) =

ϕShapley
v2 (frD

G∗ ). Finally, since frD

G∗ (V ) = 2, then based on
the Efficiency axiom, we have:

∑
v∈V ϕShapley

v (frD

G∗ ) = 2.
We have shown that the payoffs of all nodes in G∗ add
up to 2, and that v1 and v2 have equal payoffs, whereas
the remaining nodes have zero payoff each, implying that
ϕShapley
v1 (frD

G∗ ) = ϕShapley
v2 (frD

G∗ ) = 1. This as well as
Equation (4) imply that every edge in G increases the pay-
off of each of its ends by 1, which is precisely what degree
centrality does. Thus, [(rD, ϕShapley)] = cD.

Note that rD in Example 3 depends solely on G[S]. Such
representation functions are the subject of the next section.

Induced Game-Theoretic Centralities

In this section, we define a subclass of separable GTCs
which we call induced game-theoretic centralities.

Definition 3. (Induced GTC (IGT C)) A representation
function, r, is induced if for every coalition S ⊆ V and
every two graphs G,G′ ∈ GV such that G[S] = G′[S] it
holds that fr

G(S) = fr
G′(S). A GTC, (r, ϕ), is induced if r

is induced. The set of all induced game-theoretic centralities
is denoted by IGT C.

In words, a GTC is induced if the value of a coalition S in
the representation function depends solely on the subgraph
induced by S in G. Thus, every induced GTC is separable.

Given a complete graph of 5 nodes, Figure 1 illustrates
the edges that affect the value of {v, u} under a general, a
separable, and an induced representation function.

To characterize the class of induced GTCs we introduce a
new property that we call Edge Balanced Contributions.

Edge Balanced Contributions: For every G = (V,E),
and every e = {v, ṽ}, e′ = {u, ũ}, e, e′ 
∈ E, adding
e′ affects the difference in centrality of v caused by the
addition of e in the same way that adding e affects the
difference in centrality of u caused by the addition of e′.
More formally:

Δc
v(e, (V,E ∪ {e′}))−Δc

v, (V,E)) =

Δc
u(e

′, (V,E ∪ {e}))−Δc
u(e

′, (V,E)). (5)

Given a set of nodes, V , the class of all centrality indices
satisfying Edge Balanced Contributions will be denoted by
CVEBC , or just CEBC when V is clear from the context.

The new property is a modification of the Balanced Con-
tributions property, introduced by Myerson in the context of
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coalitional games (Myerson 1980). Balanced Contributions
states that removing player i from the game affects the pay-
off of player j in the same way as removing player j affects
the payoff of player i. If we associate with removing of an
edge the effect this removal has on both adjacent nodes, then
Edge Balanced Contribution is an edge counterpart of Bal-
anced Contributions.

Note that Edge Balanced Contributions implies Fairness.
In particular, by setting u = ṽ and ũ = v, we have e′ = e,
and we get Δc

v(e, (V,E ∪ {e′})) = 0. Then, Equation (5)
simplifies to: −Δc

v({v, u}, (V,E)) = −Δc
u({v, u}, (V,E))

for every {v, u} 
∈ E, which is equivalent to Fairness.
Now, let Ks(G) be the set of nodes that induce single-

node components in G, i.e., Ks(G) = {v ∈ V : {v} ∈
K(G)}, where the “s” in Ks stands for “single-node”. The
following lemma states that any centrality index in CEBC

can be uniquely characterized by specifying (1) the central-
ity of every single-node component in G; and (2) the sum of
node-centralities in every other component in G.

Lemma 9. For every function, g : 2V × GV → R, there
exists at most one centrality index, c ∈ CVEBC that satis-
fies

∑
v∈V \Ks(G) cv(G) = g(V \ Ks(G), G) and cv(G) =

g({v}, G) for every G ∈ GV and every v ∈ Ks(G).

Building upon the above lemma, the following theorem
identifies a basis of the class CEBC .

Theorem 10. CEBC is a vector space with the basis:

UEBC =
{
c〈{v},E

†〉 : v ∈ Ks

(
(V,E†)

)}
∪
{
c〈U,E†〉 : U = V \Ks

(
(V,E†)

)}
.

Sketch of Proof. Since Δc
v(e,G) is a linear function, then if

c and c′ satisfy Edge Balanced Contributions, then c + c′
and k · c, for all k ∈ R also satisfy Edge Balanced Contri-
butions. Thus, CEBC is a vector space. To prove that UEBC

forms a basis of CEBC we use a reasoning similar to that
of the proof of Theorem 6. In particular, we first show that
UEBC ⊆ CEBC , then that UEBC is linearly independent,
and, finally, that |UEBC | is equal to the dimension of CEBC .

As for the first step, let c = c〈U,E†〉 ∈ UEBC . Consider
the value x = Δc

v(e, (V,E ∪ {e′})) − Δc
v(e, (V,E)) for

e = {v, ṽ}, e′ = {u, ũ}. This value is not equal to zero only
if v ∈ U and e, e′ ∈ E† and E contains the other edges
from E†. In such a case, x = 1. However, from the def-
inition of UEBC , if v ∈ U and {v, ṽ} ∈ E†, then U =
V \ Ks(G). Therefore, u ∈ U and Δc

u(e
′, (V,E ∪ {e})) −

Δc
u(e

′, (V,E)) = x, i.e., Edge Balanced Contributions is
satisfied. We proved that an arbitrary c〈U,E†〉 ∈ UEBC satis-
fies Edge Balanced Contributions. Hence, UEBC ⊆ CEBC .

As for the second step, it suffices to note that the linear
independence of UEBC is implied by Lemma 2.

As for the third step, let us denote by dim(CEBC)
the dimension of CEBC . Linear independence implies that
dim(CEBC) ≥ |UEBC |. At the same time, from Lemma 9
as well as the fact that |UEBC | equals the number of single-
node components in all graphs from G plus the number
of graphs from G with at least one edge, we have that

dim(CEBC) ≤ |UEBC |. Consequently, dim(CEBC) =
|UEBC |. This concludes the sketch of proof.

Lemma 11. Every induced game-theoretic centrality index
in GT C+ satisfies Edge Balanced Contributions.

Finally, as the main result of this section, we prove that
the class of induced positive semivalue-based GTCs is char-
acterized by the property of Edge Balanced Contributions.

Theorem 12. For every positive semivalue, ϕ ∈ SV+,

CEBC = [IGT Cϕ] = [IGT C+].

Sketch of Proof. Since ϕ ∈ SV+, then IGT Cϕ ⊆ IGT C+.
Thus, based on Lemma 11 we have that [IGT Cϕ] ⊆
[IGT C+] ⊆ CEBC . It remains to prove that CEBC ⊆
[IGT Cϕ]. In other words, we need to prove that every
c ∈ CEBC can be generated by [(r, ϕ)] for some induced
representation function, r. Note that IGT C is closed under
addition and scalar multiplication (because if r and r′ are
induced, then r + r′ and k · r for every k ∈ R are also in-
duced). Thus, based on Lemma 4, it suffices to show that ev-
ery centrality index from UEBC can be generated by [(r, ϕ)]
for some induced r.

To this end, we will first show that any unanimity cen-
trality index, c〈U,E†〉, such that every edge in E† is between
nodes from U (i.e., {v, u} ∈ E† → v, u ∈ U ) can be gen-
erated by an induced GTC from GT C+. Let ϕβ ∈ SV+ be
a positive semivalue based on an arbitrary β, and let r〈U,E†〉
be a representation function defined as follows:

fr〈U,E†〉
G (S)=

{(∑|V |
k=|U |

(|V |−|U |
k−|U |

)
β∗(k−1)

)−1

if U⊆S,E†⊆E,

0 otherwise.

Since all edges from E† are between nodes from U , and

since U ⊆ S, then fr〈U,E†〉
G (S) depends solely on G[S],

which means that r〈U,E†〉 is induced.
We can show now that [(r〈U,E†〉, ϕ)] = c〈U,E†〉. If E† 
⊆

E, both centralities assign 0 to all nodes. Assume then that
E† ⊆ E. If v 
∈ U , then v has zero marginal contribution to
every coalition and [(r〈U,E†〉, ϕ)]v(G) = 0 = c

〈U,E†〉
v (G). If

v ∈ U , then v has non-zero marginal contribution to coali-
tion S if and only if U \ {v} ⊆ S. Using Equation (1),

we obtain: [(r〈U,E†〉, ϕ)]v(G) = 1 = c
〈U,E†〉
v (G). There-

fore, [(r〈U,E†〉, ϕ)] = c〈U,E†〉. Finally, we are ready to show
that every unanimity centrality from UEBC can be gener-
ated by some separable [(r, ϕ)]. To this end, if c〈U,E†〉 ∈
UEBC , then either U = V \ Ks((V,E

†)), or U = {v} :
v ∈ Ks((V,E

†)). In the first case, we already proved that
[(r〈U,E†〉, ϕ)] = c〈U,E†〉. In the second case, to generate
c〈{v},E

†〉, we use the centrality [(r〈S∪{v},E
†〉− r〈S,E

†〉, ϕ)],
with S = V \Ks((V,E

†)). This concludes the sketch of the
proof of Theorem 12.
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Figure 2: An illustration summarizing our results. Every
small (dotted) arrow connects a game-theoretic centrality,
(ri, ϕi), to the corresponding centrality ci = [(ri, ϕi)]. Ev-
ery large arrow connects some subclass of GTCs, I, to [I]
– the class of centrality indices generated by I. As we have
shown in Theorem 1, [GT C+] encompasses all centralities,
i.e., for every centrality, c, there is an incoming arrow from
some game-theoretic centrality (r, ϕ) ∈ GT C+. In Theo-
rem 8, we proved that all arrows from Separable GTCs go
into centralities that satisfy Fairness, and that for every cen-
trality satisfying Fairness there exists an incoming arrow
from some Separable GTC. In Theorem 12, we showed that
all arrows from Induced GTCs go into centralities that sat-
isfies Edge Balanced Contributions, and that for every cen-
trality satisfying Edge Balanced Contributions there exists
an incoming arrow from some induced game-theoretic cen-
trality. Note that it is possible that a non-separable game-
theoretic centrality generates a centrality satisfying Fairness
or Edge Balanced Contributions (e.g., [(r1, ϕ1)] = c4).

Conclusions

We studied an axiomatic characterization of game-theoretic
centralities. Our results are summarized in Figure 2. We
showed that, while all centralities can be obtained by the
game-theoretic approach, some natural classes of game-
theoretic centralities are characterized by Fairness and its
strengthening – Edge Balanced Contributions. This suggests
that the game-theoretic approach is a good choice when the
nodes are assessed based on some property that agrees with
Fairness (a good example of such a property is “connectiv-
ity”, as in the work by Skibski et al. 2016). Although this
finding does not give us the complete answer to the ques-
tion “which centrality is better for a specific application”, it
brings us closer to it.
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Owen, G. 2011. Centrality in directed social networks. a
game theoretic approach. Social Networks 33(3):191–200.
Dubey, P.; Neyman, A.; and Weber, R. J. 1981. Value the-
ory without efficiency. Mathematics of Operations Research
6(1):122–128.
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