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Abstract

We consider a strategic variant of the knapsack problem:
the items are owned by agents, and agents can misrepre-
sent their sets of items—either by hiding items (understat-
ing), or by reporting fake ones (overstating). Each agent’s
utility equals the total value of her items included in the knap-
sack. We wish to maximize social welfare, and attempt to de-
sign mechanisms that lead to small worst-case approxima-
tion ratios at equilibrium. We provide a randomized mecha-
nism with attractive strategic properties: it has a price of anar-
chy of 2 for Bayes-Nash and coarse correlated equilibria. For
overstating-only agents, it becomes strategyproof, and has a
matching lower bound. For the case of two understating-only
agents, we provide a specialized randomized strategyproof
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≈ 1.522-approximate mechanism, and a lower bound
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≈ 1.09. When all agents but one are honest,
we provide a deterministic strategyproof 1+

√
5

2
≈ 1.618-

approximate mechanism with a matching lower bound. The
latter two mechanisms are also useful in problems beyond the
one in consideration.

1 Introduction

We study a strategic variant of the knapsack problem, in
which there are n agents, each owning a set of items, where
each item has a value and size. A social planner must design
a mechanism to choose which items to include in a knapsack
of a certain capacity, where the total size of the chosen items
cannot exceed the capacity. Each agent gets a utility equal
to the total value of her own items included in the knapsack,
while the designer wishes to maximize social welfare (the
sum of the utilities of the agents, which amounts to the to-
tal value of the items in the knapsack). However, the set of
items each agent owns is private information, and an agent
may choose not to disclose all of her items (may report any
subset of them). We call this the understating model (UM).
Revealing all items might not be in an agent’s best interest:
Example 1. Assume the knapsack’s capacity is 1. Consider
a mechanism which always chooses an optimal (social wel-
fare maximizing) solution based on the reported items. As-
sume agent 1’s true item set is {a, b} and agent 2’s true item
set is {c}, where a, b and c have values 1, 3

4 and 3
4 and sizes
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1, 1
2 and 1

2 respectively. If the agents report truthfully, the
mechanism chooses {b, c} as the solution; however, if agent
1 hides item b and reports her set of items to be {a}, the cho-
sen solution becomes {a}, increasing agent 1’s utility from
3
4 to 1 while decreasing social welfare from 3

2 to 1.
To incentivize truthful reporting, we look for strate-

gyproof (SP) mechanisms, where truth-telling is a domi-
nant strategy equilibrium (no agent can benefit from mis-
reporting). As Example 1 suggests, such mechanisms can-
not always achieve optimality, so we seek mechanisms that
approximate optimality well. Specifically, we try to design
SP mechanisms with small worst-case approximation ratios.
A mechanism is α-approximate if it provides, on every in-
stance, social welfare value of at least 1

α times the optimal
welfare, as long as the agents are truthful; the worst-case ap-
proximation ratio of a mechanism is the smallest such α.1
While we aspire to design SP mechanisms, we note that one
of our mechanisms actually fails to be SP, giving agents an
incentive to misreport. Nevertheless, as long as agents’ (usu-
ally non-truthful) reports follow a Bayes-Nash equilibrium
(BNE) or a coarse correlated equilibrium (CCE), our mech-
anism still generates a high fraction of the optimal welfare
on every instance.

We emphasize that agents can misreport the existence of
items, but not their properties—their size and value; that is,
the planner has the power to verify the size and value of
the reported items. One example of such a scenario is the
allocation of a scientific resource, like time on a particle
accelerator or NSF funding. Scientists submit research pro-
posals, each requesting a certain amount of resource, which
would provide a certain expected scientific value. This ex-
pected scientific value is evaluated/confirmed by an impar-
tial expert. Since scientists can avoid submitting some of
their proposals, the problem of choosing which proposals to
accept in order to maximize total expected scientific value
falls within our model.2 Another example is the allocation
of advertising time on a video-sharing website, using a sim-

1The optimal welfare on an instance is the value of an optimal
solution of the knapsack problem defined by the agents’ true sets
of items.

2We assume that scientists are not allowed to make partial use
of the resource allocated to an accepted proposal: they cannot use
a fraction of the resource and produce a corresponding fraction of
the value.
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ple pay-per-sale model, where the website charges a (fixed
and advertiser-independent) constant fraction of the profit
generated directly by the displayed commercial. We assume
that there is some agreed upon formula for estimating the
expected profit generated by a commercial. In this exam-
ple, the capacity is the (estimated) time a user is willing to
watch commercials, the agents are advertisers, and the items
are commercials, with size equal to the duration of the com-
mercial and value being the expected profit it generates. As
advertisers are free to avoid providing some of their com-
mercials to the website, the problem of profit-maximization
by the website falls within our model.

While our primary focus is on UM, we also consider the
overstating model (OM) where an agent is allowed to report
fake items, which she does not actually own (report super-
sets of her true item set); the planner is assumed to be un-
able to differentiate between real and fake items.3 Despite
the fact that the agent derives no value from the inclusion of
fake items in the knapsack, she can use them to indirectly
increase her utility:
Example 2. Consider Example 1, only now agent 1’s true
item set is {a} and agent 2’s true item set is {c}. If the agents
report truthfully, the mechanism chooses {a} as the solution.
However, if agent 2 reports {c, d}, where d is a fake item
of value 3

4 and size 1
2 , the chosen solution becomes {c, d}.

Agent 2 does not derive any benefit from the inclusion of d
in the knapsack, but she does benefit from the inclusion of
c; thus this manipulation increases her utility from 0 to 3

4 ,
while decreasing social welfare from 1 to 3

4 .
Note that since agents only derive utility from real items,
social welfare (the designer’s objective) amounts to the to-
tal value the real items in the knapsack. In the allocation of
scientific resources, fake items are proposals that the scien-
tist has no intention to seriously pursue. Finally, in addition
to UM and OM, we also consider their joint generalization,
the full model (FM), where agents can simultaneously hide
items and report fake ones.

Our paper is part of a growing literature on the subject
of approximate mechanism design without money (Procac-
cia and Tennenholtz 2013) (as well as the price of anarchy
(Roughgarden 2015b)). This approach has been applied to
many types of problems, such as matching (Dughmi and
Ghosh 2010), facility location (Alon et al. 2010; Feldman
and Wilf 2013; Feigenbaum, Sethuraman, and Ye 2013), and
kidney exchange (Ashlagi et al. 2013). The most relevant pa-
per we could find is (Chen, Gravin, and Lu 2011), which
(among other results) provides a randomized SP mecha-
nism for UM with a large constant approximation ratio;
there is no overlap between our results and theirs. Also
related is the “Funding Games” model of (Bar-Noy et al.
2012), where agents wish to maximize the size of their cho-
sen items. In addition, there is other work that considers
manipulation involving the existence of objects rather than
their properties. In the context of exchange markets, such

3The distinction we make between manipulating properties and
existence of real items is meaningless for fake items, as long as
agents are free to report fake items with any properties in any
amount they wish.

manipulation is considered in (Atlamaz and Klaus 2007;
Postlewaite 1979); in connection with approximation, sim-
ilar manipulation is considered in (Ashlagi et al. 2013;
Dughmi and Ghosh 2010; Chen, Gravin, and Lu 2011).
OM bears similarity to the notion of “slot destruction” in
(Schummer and Vohra 2013), where airlines withhold in-
formation regarding cancellation of flights (equivalent to re-
porting fake flights) in order to manipulate a mechanism as-
signing landing times. Finally, examples of price of anarchy
analysis for non-SP mechanisms can be found in (Caragian-
nis et al. 2015; Bhawalkar and Roughgarden 2011).

We note that UM and the problems in (Ashlagi et al. 2013;
Dughmi and Ghosh 2010; Chen, Gravin, and Lu 2011) can
be viewed as private cases of a general class of problems,
which we shall call the hiding class. Let F be a set of fea-
sible solutions. Each agent derives some utility from every
solution in F , and has the ability to hide some subsets of
solutions in F from the designer, who wishes to maximize
social welfare.4 Some of the mechanisms we design are able
to tackle problems other than knapsack in this class.
Our Contributions. Our main contribution is a system-
atic analysis of a randomized mechanism we call HALF-
GREEDY, which we show enjoys strong strategic properties:

• In the overstating model: It is strategyproof and provides a
2-approximation, the best achievable approximation ratio
under strategyproofness.

• In the understating and full models: Although not strate-
gyproof, every Bayes-Nash equilibrium and coarse corre-
lated equilibrium induced is 2-approximate (under a mild
assumption in the case of the full model).

We also study two specialized settings in the understating
model:

1. Duopoly (n = 2 agents): we design a randomized strat-
egyproof 5+4

√
2

7 ≈ 1.522-approximate mechanism, and
provide a lower bound of 5

√
5−9
2 ≈ 1.09 on achievable

approximation ratios under strategyproofness.

2. One-bad-apple, with only one manipulative agent among
an otherwise honest population: we design a deterministic
strategyproof 1+

√
5

2 ≈ 1.618-approximate mechanism,
and a matching lower bound.

These last two mechanisms can be applied to other prob-
lems in the hiding class as well. Due to space constraints,
all proofs, and additional results, appear in the online ap-
pendix at http://www.itaifeigenbaum.com/research/selfish-
knapsack-aaai17-appendix.pdf.

2 Model

The knapsack’s capacity is (w.l.o.g.) 1. N = {1, 2, . . . , n}
denotes the set of agents, n ≥ 2. We define G to be the
universe of all possible items: every item a ∈ G has size
s(a) ∈ (0, 1] and value v(a) ∈ (0,∞), and we assume that
for every s ∈ (0, 1], v ∈ (0,∞), G contains infinitely many

4For example, in UM, if agent i owns items a and b, she may
hide subsets of the form “all solutions including a”, “all solutions
including b” or “all solutions including a or b”.

510



items of size s and value v.5 We denote X to be the col-
lection of all finite subsets of G. For A ∈ X , we define
s(A) =

∑
a∈A s(a) and v(A) =

∑
a∈A v(a).

Each agent i owns a finite set of items Xi ∈ X ; X denotes
the profile (X1, . . . , Xn). The report space of each agent i
with item set Xi is denoted by R(Xi) ⊆ X ; R(X) denotes
(R(X1), ...,R(Xn)). In the understating (UM), overstating
(OM) and full (FM) models, R(Xi) equals 2Xi , {A ∈ X :
Xi ⊆ A} and X respectively. Each agent i reports some
Ri ∈ R(Xi), and R denotes the profile (R1, . . . , Rn).

We disallow all forms of joint ownership: we do not al-
low an item to be owned/reported by more than one agent
(this also excludes an item owned by one agent and reported
by another). This assumption is formalized as follows: we
assume that G is partitioned into G1, . . . , Gn, each Gi con-
tains infinitely many items of every possible size-value com-
bination, and each agent i is assumed to only own and report
items from Gi. To simplify notation, we generally avoid ex-
plicitly mentioning the partition; instead, throughout this pa-
per, any set of items that is indexed by i (such as Xi and Ri)
is assumed implicitly to be a subset of Gi.

A deterministic mechanism is a function f : Xn → X ,
mapping the agents’ reports to a set of items to include in
the knapsack; a randomized mechanism is a function from
Xn to all random variables over X . We restrict our attention
to feasible mechanisms; a deterministic (resp. randomized)
mechanism f is feasible iff, for all R ∈ Xn:

1. f only uses the reported items: f(R) ⊆ ∪i∈NRi (resp.
surely, meaning with probability 1).

2. f doesn’t violate the knapsack’s capacity: s(f(R)) ≤ 1
(resp. surely).

In general, we define A−i to be the tu-
ple (A1, . . . , Ai−1, Ai+1, . . . , An). We slightly
abuse notation and also define (A−i, Bi) =
(A1, . . . , Ai−1, Bi, Ai+1, . . . , An).6 The utility that
agent i derives from a chosen solution S ∈ X is defined
as u(Xi, S) = v(Xi ∩ S). A mechanism is strategyproof
(SP) if truthfulness is a dominant strategy equilibrium.
For a deterministic (resp. randomized) mechanism f ,
this means that for all i ∈ N , X ∈ Xn, Ri ∈ R(Xi),
we have u(Xi, f(X)) ≥ u(Xi, f(X−i, Ri)) (resp.
E[u(Xi, f(X))] ≥ E[u(Xi, f(X−i, Ri))]). We empha-
size that for randomized mechanisms, the requirement
is that truthful reporting maximizes an agent’s utility in
expectation.

Informally speaking, the planner wants to choose a so-
lution S which maximizes social welfare:

∑
i u(Xi, S).

5The fact that our formulation allows us to distinguish between
items with identical size, value and owner is a mere convenience.
All of our results translate to a model where such items are indis-
tinguishable. In addition, the assumption that G contains infinitely
many items of each size-value pair is needed for our lower bounds,
but not needed for any of our positive results.

6The notational abuse stems from the fact that, according to
our definition of A−i, it should be the case that (A−i, Bi) =
((A1, . . . , Ai−1, Ai+1, . . . , An), Bi), that is a 2-tuple where the
first element is in Xn−1. However, throughout this paper we are
never interested in such tuples, so no confusion arises.

However, as we saw in Examples 1 and 2, SP mecha-
nisms cannot always choose the optimal solution. Thus,
we settle for an approximation to optimality: we at-
tempt to design SP mechanisms with small worst-
case approximation ratios. The worst-case approxima-
tion ratio of a deterministic (resp. randomized) mech-
anism f is maxX∈Xn

∑n
i=1 u(Xi,OPT (∪i∈NXi))∑n

i=1 u(Xi,f(X)) (resp.

maxX∈Xn

∑n
i=1 u(Xi,OPT (∪i∈NXi))∑n

i=1 E[u(Xi,f(X))] ), where OPT (A) is an
optimal solution to the knapsack problem when the set of
available items is A.7

Finally, one of our mechanisms fails to be SP in UM and
FM, but still has attractive strategic properties in terms of
Bayes-Nash equilibrium (BNE), suitable when agents have
distributional knowledge of each other’s items, and coarse
correlated equilibrium (CCE), suitable when that knowledge
is exact. We briefly remind the reader of the relevant defini-
tions; for a complete discussion, see (Roughgarden 2015a;
2015b).

1. Let Ẋ be a random variable over Xn with distribution
F . A strategy Si is a function mapping Xi ∈ X to
a random variable over R(Xi); we also define Ṡi =

Si(Ẋi). A strategy profile S is a BNE w.r.t. mechanism
f and distribution F iff, for every i ∈ N and strat-
egy S′

i, E[u(Ẋi, f(Ṡ))] ≥ E[u(Ẋi, f(Ṡ−i, Ṡ
′
i))]. S is α-

approximate iff
∑n

i=1 E[u(Ẋi,OPT (∪i∈N Ẋi))]
∑n

i=1 E[u(Ẋi,f(Ṡ))]
≤ α.

2. For a given X ∈ Xn, a random variable Ṙ over R(X) is a
CCE under mechanism f if for every i ∈ N , R′

i ∈ R(Xi),
we have E[u(Xi, f(Ṙ)] ≥ E[u(Xi, f(Ṙ−i, R

′
i)]. Ṙ is α-

approximate iff
∑n

i=1 u(Xi,OPT (∪i∈NXi))
∑n

i=1 E[u(Xi,f(Ṙ))]
≤ α.

3 The Half-Greedy Mechanism

In this section, we analyze the strategic properties of a ran-
domized mechanism we call HALF-GREEDY. In OM, we
show that HALF-GREEDY is SP and 2-approximate. We
also show that no randomized SP mechanism can beat this
approximation guarantee, and no deterministic SP mecha-
nism can provide a constant worst-case approximation ratio.
In UM, we show that while HALF-GREEDY is not SP, ev-
ery BNE and CCE it induces is 2-approximate; in FM, we
can preserve this result, under a mild additional assumption.
We note that a slightly modified version of HALF-GREEDY
is useful in a different model, where each agent owns a sin-
gle item and can misreport its properties (size and value) in
a restricted fashion; see appendix for details.

To define HALF-GREEDY, we need two auxiliary mech-
anisms. The first is GREEDY (GR), which adds items to the
knapsack by decreasing value-to-size ratio, breaking ties ar-
bitrarily but consistently. The consistent tie-breaking is best
represented by assuming the existence of a total order �
on G. We may assume w.l.o.g. that � satisfies that, for all
a, b ∈ G, if v(a)

s(a) > v(b)
s(b) , then a � b; this can be effectively

7Note that the only source of randomization is f , so there is no
need to take expectation of the numerator in the randomized case.
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ALGORITHM 1: GREEDY
Input: Sets of reported items R ∈ Xn

S ← ∅, T ← ∪i∈NRi

while T �= ∅ do
next ← max� T
T ← T\{next}
if s(S ∪ {next}) ≤ 1 then

S ← S ∪ {next}
else

break
return S

ALGORITHM 2: MAXIMUM-VALUE
Input: Sets of reported items R ∈ Xn

if ∪i∈NRi = ∅ then
return ∅

return
max�{a ∈ ∪i∈NRi : v(a) ≥ v(b) ∀b ∈ ∪i∈NRi}

imposed by sorting the (finite) set of items reported to the
mechanism. GREEDY is defined as Algorithm 1.

The second auxiliary mechanism is MAXIMUM-VALUE
(MV , see Algorithm 2), which returns a single item with the
maximum value possible, breaking ties according to �.8

Now we can define HALF-GREEDY, which is well
known to be 2-approximate (via a simple adaptation of The-
orem 18.5 in (Burke and Kendall 2005)):9

Definition 1. The HALF-GREEDY mechanism HG runs
GR with probability 1

2 and MV with probability 1
2 (prob-

abilities chosen independently of the input).

Overstating Model

HALF-GREEDY’s strategyproofness in OM follows from a
very simple fact: under both GR and MV , every real item
that is included in the knapsack when agent i reports Ri, re-
mains in the knapsack when agent i reports Ri∩Xi, namely
avoids reporting the fake items within Ri:
Lemma 1. Let i ∈ N , X ∈ Xn and Ri ∈ X . Then
Xi ∩ GR(X−i, Ri) ⊆ GR(X−i, Ri ∩ Xi) and Xi ∩
MV (X−i, Ri) ⊆ MV (X−i, Ri ∩Xi).

In other words, an agent never loses from restricting her
report to the real items within that report. This immediately
implies SP in OM, since there avoiding reporting fake items
amounts to truthfulness.

8Any total order on G can be used for consistent tie-breaking in
MV ; it need not be the same as the one used in GR.

9HALF-GREEDY might leave much of the knapsack unused.
This is needed due to the potential existence of items with very
large sizes. Consider the case where such items do not exist, mean-
ing that for some x << 1, s(a) < x for all a ∈ G. In that case,
our analysis gives that replacing HALF-GREEDY with GREEDY
preserves our positive results (Corollary 1 and Theorems 2 and 3),
with an approximation ratio of 1

1−x
instead of 2, while wasting at

most x of the knapsack’s capacity. Thus, we wrote our proofs for
HALF-GREEDY due to theoretical concerns, while in practice we
believe that GREEDY is an appropriate choice for many cases.

Corollary 1. In OM, HALF-GREEDY is strategyproof and
2-approximate.

It is important to note that once GREEDY first fails to
add an item to the knapsack (namely, it attempts to pick up
an item that does not fit in the remaining space), it stops and
returns the items currently in the knapsack; it does not try
to add the next item that fits in the remaining space. This
seemingly trivial choice is actually crucial for maintaining
SP, as the following example shows.
Example 3. Consider the BAD-GREEDY mechanism BG,
obtained from GREEDY by removing the “else break” state-
ment, applied to this n = 2 case: X1 = {a}, X2 = {b},
v(a) = s(a) = 1, v(b) = 1

4 , s(b) = 1
2 . Here, BG(X) = {a}

and the utility of agent 2 is v(X2 ∩ {a}) = 0. However, if
agent 2 reports R2 = {b, c}, where v(c) = 1, s(c) = 1

2
(that is, agent 2 reports a fake item c in addition to her true
item b), then BG(X1, R2) = {b, c}, and agent 2’s utility is
v(X2 ∩ {b, c}) = 1

4 . Thus, BAD-GREEDY is not SP in OM.

We also provide matching lower bounds, which complete
the picture for OM. They show that HALF-GREEDY is best
possible in OM among randomized SP mechanisms, and that
randomization is necessary for good approximation.
Theorem 1. In OM, there is no randomized SP mechanism
with a worst-case approximation ratio strictly smaller than
2. Also, there is no deterministic SP mechanism with a con-
stant worst-case approximation ratio.

Understating and Full Models

In UM, HALF-GREEDY is no longer SP—it is sometimes
beneficial for an agent to hide items.
Example 4. Consider this n = 2 case: X1 = {a, b}, X2 =
{c, d}, v(a) = 2, v(c) = 2 − ε, s(a) = s(c) = 1

4 + ε,
v(b) = 3 + ε, v(d) = 3, s(b) = s(d) = 1

2 , and ε > 0
is very small. It is easy to check that there are no dominant
strategies in this case. For agent 1: ∅ is strictly dominated
by {a}, which is worse than {b}, which is worse than {a, b}
when agent 2 reports ∅, and {a, b} is worse than {b} when
agent 2 reports X2. For agent 2: ∅ is strictly dominated by
{c}, which is a worse response than {d}, which is worse
than {c, d} when agent 1 reports ∅, and {c, d} is a worse
response than {d} when agent 1 reports {b}.

However, that is not necessarily bad news. Both GR and
MV satisfy the following property: fix some agent i ∈ N .
For all other agents j �= i, every item of agent j which is
included in the knapsack when agent i reports Ri, remains
in the knapsack when agent i reports a subset of Ri.
Lemma 2. For an agent i, let Ri, R

′
i ∈ X , R′

i ⊆ Ri, and
R−i,X−i ∈ Xn−1. Then, for every j �= i, Xj ∩GR(R) ⊆
GR(R−i, R

′
i) and Xj ∩MV (R) ⊆ MV (R−i, R

′
i).

Thus, when an agent hides items, all other agents weakly
benefit. Therefore, when an agent benefits from hiding
items, social welfare increases, since then all other agents
benefit as well. Following this observation, it is intuitive (but
not trivial) to expect that the agents’ manipulations would
not hurt social welfare. To model how agents hide items, we
consider two options regarding the knowledge agents have
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of each other’s items. The first option is when that knowl-
edge is distributional (a.k.a. Bayesian game): agents know
a joint distribution from which the real items are drawn.
For this option, we assume that agents behave according
to a BNE. The second option is when the knowledge is ex-
act (a.k.a complete information game): agents can see their
peers’ items. For this option, we merely assume that agents
behave according to a CCE. Note that HALF-GREEDY is
prior independent, namely we do not assume that the plan-
ner has any knowledge (apart from the reports) of the agents’
items, distributional or exact. We use a smoothness-based ar-
gument (Roughgarden 2015b) to show that every BNE and
CCE under HALF-GREEDY results in a weakly greater so-
cial welfare than when the agents are truthful; since truthful-
ness results in 2-approximation, this implies:10

Theorem 2. In UM, for every prior F over Xn, every BNE
w.r.t. HALF-GREEDY and F is 2-approximate. Similarly,
for every X ∈ Xn, every CCE w.r.t. HALF-GREEDY and
X is 2-approximate.

Next, we consider FM. In FM, Theorem 2 almost holds.
The reason we say “almost” is indifference. As Lemma 1
shows, no agent can benefit from reporting fake items. How-
ever, an agent might report fake items in a way that does not
change her utility, but decreases other agents’ utilities. Let
us give an example of such a Nash equilibrium, which is a
special case of both BNE and CCE:

Example 5. Consider this n = 2 case: X1 = {a}, X2 =
{b}, where v(a) = 1, s(a) = 1

M , v(b) = M − 2, s(b) =
M−1
M , where M is some large integer, M >> 2. Truthful re-

porting is a Nash equilibrium. Note that when agents report
truthfully, HALF-GREEDY chooses a with probability 1

2 and
b with probability 1. However, if agent 1 reports R1 = {a, c}
where v(c) = M − 1 and s(c) = M−1

M , and agent 2 reports
truthfully, we still get a Nash equilibrium, in which HALF-
GREEDY still chooses a with probability 1

2 , but b is chosen
with probability 0 (c is chosen with probability 1, but since it
is a fake item, it does not add to the agents’ utilities). In the
latter Nash equilibrium, the approximation ratio is 2M − 2.

We show that problematic equilibria such as the one above
cannot occur if agents are not deliberately malicious.

Definition 2. Ri ∈ X is a malicious report for agent
i when her true set of items is Xi ∈ X , if there exists
R′

i ∈ X where for all X−i, R−i ∈ Xn−1, and all j ∈ N ,
E[u(Xj , HG(R))] ≤ E[u(Xj , HG(R−i, R

′
i))], with the in-

equality being strict for at least one agent in at least one
instance.

In other words, a malicious report is a report that can
never benefit any agent (including the agent reporting it),
and can sometimes hurt an agent. Thus, if the agents are even
very mildly altruistic, they would not report maliciously.
Also, in a Bayesian game, we say that a strategy Si is ma-
licious if Si(Xi) is malicious w.r.t. Xi, for some Xi ∈ X ,
with positive probability.11 Non-malicious reports satisfy an

10Theorem 2 implies that the game induced by HALF-GREEDY
has a price of anarchy of 2 w.r.t. these equilibria concepts.

11Assuming non-maliciousness is weaker and easier to justify

important property—fake items included in those reports
have no impact on the real items included in the solution:

Lemma 3. If Ri ∈ X is not malicious for agent i when her
true set of items is Xi ∈ X , then for every choice of X−i,
R−i ∈ Xn−1, and for every j ∈ N , we have that Xj ∩
GR(R) = Xj ∩GR(R−i, Ri ∩Xi) and Xj ∩MV (R) =
Xj ∩MV (R−i, Ri ∩Xi).

Therefore, non-maliciousness rules out equilibria like the
one in Example 5. Fake items might be reported at equilibria,
but they would have no impact on welfare. This, in addition
to Theorem 2, leads to the following result:

Theorem 3. In FM, for every prior F over Xn, every BNE
w.r.t. HALF-GREEDY and F in which no malicious strategy
is used is 2-approximate. Similarly, for every X ∈ Xn, every
CCE w.r.t. HALF-GREEDY and X in which no malicious
report is used with positive probability is 2-approximate.

4 The Equal-Utility Mechanism

In this section, we consider the special case of n = 2
in UM. We design a specialized randomized mechanism,
called EQUAL-UTILITY for this environment, which is SP
and 5+4

√
2

7 ≈ 1.522-approximate. In the next section, we
show that no deterministic SP mechanism can beat EQUAL-
UTILITY’s approximation ratio, thus randomization leads
to strict improvement. We also provide a lower bound of
5
√
5−9
2 ≈ 1.09 on the approximation ratio attainable by ran-

domized SP mechanisms, showing the necessity of some
approximation gap. We note that our analysis of EQUAL-
UTILITY holds for every problem in the hiding class for
which the following assumption is satisfied: for distinct
agents i and j, there exists at least one utility maximizing
solution for i in F that cannot be hidden by j.

The idea behind EQUAL-UTILITY (see Algorithm 3) is
to solve the knapsack problem optimally, with one additional
constraint: that the agents’ utilities are exactly equal. Since
in general, apart from ∅, there might not be a deterministic
solution that satisfies this additional constraint, we allow for
randomized solutions instead. Formally, we want to solve
the following mathematical program (PROGRAM), where
A is a random decision variable (set of items):12 maximize
E[v(A)] subject to: (1) A ⊆ X1 ∪X2 and s(A) ≤ 1 surely
and (2) E[v(A∩X1)] = E[v(A∩X2)]. As every agent gets
exactly half of the expected welfare, it is in each agent’s best
interest to maximize that welfare. Therefore agents have no

than assuming no fake items are reported. Assuming no fake items
are reported is similar in spirit to the assumption of “no over-
bidding” in generalized second price auctions (Caragiannis et al.
2015). Reporting fake items in our mechanism, much like overbid-
ding in GSP, is a weakly dominated strategy; however, both can
lead to unreasonable and bad equilibria due to indifference, and are
thus ruled out by assumption.

12PROGRAM can be stated as a linear programming prob-
lem with exponentially many variables. Let T = {S ⊆ X1 ∪
X2 : s(S) ≤ 1}. Then PROGRAM can be stated as: maximize∑

S∈T v(S)pS subject to
∑

S∈T v(S ∩ X1)pS =
∑

S∈T v(S ∩
X2)pS ,

∑
S∈T pS = 1 and pS ≥ 0 for all S ∈ T (where the pS’s

are our decision variables).
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ALGORITHM 3: EQUAL-UTILITY
Input: Sets of items X1, X2 ∈ X ; parameter α ∈ [1, 2)
Z1 ← OPT (X1), Z2 ← OPT (X2)
if v(Zi) ≥ (1/α)(v(Z1) + v(Z2)) for some i ∈ {1, 2}
then

return Zi (option 1)
return optimal solution to PROGRAM with input X

(option 2)

incentive to restrict the feasible region of PROGRAM by
hiding items, and thus PROGRAM alone is a SP mechanism.

However, PROGRAM does not always lead to good ap-
proximation. It fails to do so on instances where one agent’s
items are much superior to the other’s. For example, if one
agent has one item of value M , the other agent has one item
of value ε, and M >> ε, the equal utility constraint dic-
tates that the M -valued item is almost never chosen. Thus,
we add a preliminary check meant to catch such instances.
The preliminary check is as follows: say we wish for our
mechanism to be α-approximate. Consider OPT (X1) and
OPT (X2), namely the optimal solutions using just a sin-
gle agent’s items. If OPT (Xi) is significantly bigger than
OPT (Xj), to the extent where OPT (Xi) is guaranteed to
be an α-approximation on its own to the optimal value, then
we simply return OPT (Xi). This is checked via the condi-
tion v(OPT (Xi)) ≥ 1

α (v(OPT (X1)) + v(OPT (X2))).13

If neither agent satisfies this condition, we turn to PRO-
GRAM.
Theorem 4. In UM, for α ≥ 5+4

√
2

7 ≈ 1.522, EQUAL-
UTILITY is strategyproof and α-approximate.

There exist instances on which the approximation ratio
of EQUAL-UTILITY is arbitrarily close to 5+4

√
2

7 (see ap-
pendix). We note that EQUAL-UTILITY requires solving
NP-hard problems: computing OPT (X1) and OPT (X2)
means solving the knapsack problem, which is known to be
NP-hard. In the appendix, we show that solving PROGRAM
is NP-hard as well. We refer the reader to the appendix for a
brief discussion regarding managing this running-time issue.
Finally, we note that no randomized SP mechanism can be
arbitrarily close to optimality—some separation is required:
Theorem 5. In UM, no randomized SP mechanism can pro-
vide a worst-case approximation ratio strictly better than
5
√
5−9
2 ≈ 1.09 (even when n = 2).

5 The Pacify-the-Liar Mechanism

We continue exploring UM. We now allow for a general
number of agents n, however we restrict ourselves to an en-
vironment where there is only one bad apple—specifically,
n − 1 agents are assumed to be honest. We assume with-
out loss of generality that agent 1 is the manipulative agent
(note that our results hold for free even if the honesty of
an agent—whether or not that agent has the ability to be
manipulative—is private information of that agent, since we

13We use v(OPT (X1)) + v(OPT (X2)) instead of
v(OPT (X1 ∪X2)) to maintain strategyproofness.

ALGORITHM 4: PACIFY-THE-LIAR
Input: Sets of items X ∈ Xn; parameter α ≥ 1
Z1 ← OPT (X1), Z2 ← OPT (∪i∈N\{1}Xi)
if v(Z1) ≥ (1/α)(v(Z1) + v(Z2)) then

return Z1 (option 1)
if v(Z2) ≥ (1/α)(OPT (∪i∈NXi)) then

return Z2 (option 2)
S ← {A ⊆ ∪i∈NXi : v(A) > αv(Z2)}
return argmaxA∈S v(A ∩X1) (option 3)

can simply say that if all agents report to be honest, we
include nothing in the knapsack).14 For this environment,
we will provide a φ-approximate deterministic strategyproof
mechanism (φ = 1+

√
5

2 ≈ 1.618 is the golden ratio), along
with a matching lower bound. We note that the analysis
of our mechanism holds for every problem in the hiding
class under the assumption that there is at least one solu-
tion, which cannot be hidden by the manipulative agent, and
which maximizes social welfare for all agents but the ma-
nipulative one.

Our deterministic mechanism, called PACIFY-THE-
LIAR (Algorithm 4), begins with a preliminary test which
checks if agent 1 can guarantee an α-approximation on her
own (option 1), or if agents 2 through n can guarantee an
α-approximation together, without agent 1 (option 2). In the
former case, we return OPT (X1), and in the latter case we
return OPT (∪i∈N\{1}Xi). Note that, unlike in EQUAL-
UTILITY, in option 2 the benchmark used is the optimal
solution v(OPT (∪i∈NXi)) rather than the upper bound
v(Z1) + v(Z2). This is crucial for maintaining a φ approx-
imation ratio, and does not violate SP due to the honesty of
all agents other than 1. If the preliminary test fails, we move
to option 3, where we attempt to “pacify” agent 1 by choos-
ing her favorite solution among a collection of solutions that
guarantee α-approximation.

Note that if we reach option 3, S is nonempty since we did
not stop at option 2 (thus S includes the optimal solution).
By hiding items, agent 1 can only make S smaller; however,
since the mechanism returns agent 1’s favorite solution in S,
she has no incentive to make S smaller, and thus no incentive
to misreport. Furthermore, since we did not stop at option 1,
1

α−1v(Z2) > v(Z1), hence αv(Z2) > (α − 1)(v(Z1) +

v(Z2)) ≥ (α − 1)v(OPT (∪i∈NXi)). Thus, every solution
in S leads to α-approximation as long as α− 1 ≥ 1

α , which
is satisfied as long as α ≥ φ.

Theorem 6. In UM, PACIFY-THE-LIAR is SP and α-
approximate for α ≥ φ.

Finally, there is no better deterministic SP mechanism:

Theorem 7. In UM, no deterministic SP mechanism can
provide a worst-case approximation ratio strictly better than
φ (even when n = 2).

14If we naturally extend our definition of mechanism to allow
reporting of all private data, including honesty. This observation
relies on the honest agents reporting their honesty correctly.
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6 Future Research

There are several natural directions for the continuation of
our research. First, all of our lower bounds hold even when
there are only two agents and only one is manipulative. It
will be interesting to know if having more manipulative
agents necessarily increases the attainable worst-case ap-
proximation ratio under strategyproofness. Second, we did
not provide a strategyproof mechanism for the full model,
and whether one with a constant worst-case approximation
ratio exists is an open problem. Third, we did not pro-
vide a strategyproof mechanism for the general understat-
ing model, only for special cases of it; a randomized strat-
egyproof mechanism with a very large worst-case approx-
imation ratio is given in (Chen, Gravin, and Lu 2011), but
it is unclear whether a smaller worst-case approximation ra-
tio is attainable. Finally, it will be interesting to design more
general techniques for handling problems in the hiding class.
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