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Abstract

A repeated game is a formal model for analyzing cooperation
in long-term relationships, e.g., in the prisoner’s dilemma. Al-
though the case where each player observes her opponent’s
action with some observation errors (imperfect private moni-
toring) is difficult to analyze, a special type of an equilibrium
called belief-free equilibrium is identified to make the analy-
sis in private monitoring tractable. However, existing works
using a belief-free equilibrium show that cooperative rela-
tions can be sustainable only in ideal situations.
We deal with a generic problem that can model both the pris-
oner’s dilemma and the team production problem. We exam-
ine a situation with an additional action that is dominated by
another action. To our surprise, by adding this seemingly ir-
relevant action, players can achieve sustainable cooperative
relations far beyond the ideal situations. More specifically,
we identify a class of strategies called one-shot punishment
strategy that can constitute a belief-free equilibrium in a wide
range of parameters. Moreover, for a two-player case, the ob-
tained welfare matches a theoretical upper bound.

Introduction
A repeated game, where players repeatedly play the same
stage game over an infinite time horizon, is a formal model
for analyzing cooperation in long-term relationships and has
received considerable attention in AI, multi-agent systems,
and economics literature. The case of perfect monitoring,
where each player can observe other players’ actions, is now
well understood. There is also a large body of literature on
the imperfect monitoring case, where players’ actions are
only imperfectly observed through some signals. Such im-
perfect monitoring cases are further classified into public
and private monitoring cases.

If all players observe the same set of signals that im-
perfectly indicate players’ actions, we have an imperfect
public monitoring case. An example is the repeated Pris-
oner’s Dilemma (PD) game with action-errors, investigated
by Nowak and Sigmund (1993). In contrast, suppose that
each player observes her opponent’s action with some ob-
servation errors. Assume that each player chooses coopera-
tion (C) or defection (D), and a signal, which determines a
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player’s outcome, can be either good (g) or bad (b). If the
opponent plays C, a player usually observes g, but she may
observe b with a small probability. An important feature of
this model is that a player’s observation is her private infor-
mation that is not known to the opponent. This is an example
of imperfect private monitoring, where each player privately
receives signals about the actions of other players.

In private monitoring, verifying an equilibrium becomes
hard since we need to check that no player has an incen-
tive to deviate under any possible belief she might have on
the past histories of other players. To overcome this diffi-
culty, a special type of equilibrium called belief-free equi-
librium is identified, where checking whether a profile of
strategies forms such an equilibrium is more tractable (Ely
and Välimäki 2002; Piccione 2002). Also, what kinds of co-
operative relations can be sustainable in the repeated PD
is examined (Ely, Hörner, and Olszewski 2005). However,
these works show that cooperative relations can be sustain-
able only in ideal cases where the discount factor (δ) is close
to 1 and/or the observation error rate (ε) is close to 0.

The original contributions of this paper are the follow-
ing. We deal with a generic problem that can model both
the repeated PD and the team production problem.1 In the
team production problem for two players, playing (C,D) or
(D,C) maximizes players’ total welfare, i.e., players should
work (i.e., play C) and rest (i.e., play D) in turns. When
there exist more than two players, players’ total welfare is
maximized when a certain number of players work and the
other players rest.

Furthermore, we introduce an additional action that we
call C ′ as well as an associated signal g′ for this action.
This action is dominated by another action, and playing it
decreases the players’ total welfare. Thus, adding it is ir-
relevant in a one-shot game, i.e., it does not affect equi-
libria at all; the probability that the action is taken is zero.
As far as we are aware, we are the first to introduce such a
dominated action and theoretically analyze equilibria in the
generic game with imperfect private monitoring. Note that
introducing such an action is not interesting with perfect or
imperfect public monitoring, since it is well-known that co-

1The works on the team production problem are scarce.
Kobayashi, Ohta, and Sekiguchi (2014) study such a model, as-
suming public monitoring.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

677



Table 1: Stage game payoff (n = 2, two actions)
a2 = C a2 = D

a1 = C 1, 1 −y, 1 + x
a1 = D 1 + x,−y 0, 0

operative relations are sustainable without introducing such
an action due to the celebrated folk theorem (Fudenberg and
Maskin 1986; Fudenberg, Levine, and Maskin 1994). With
imperfect private monitoring, introducing an action that can
severely punish other players can be effective even if the ac-
tion is dominated by another action, i.e., the equilibria of a
repeated game may significantly change if the added action
changes the players’ minimax values. We emphasize that our
argument is not based on this logic because our newly intro-
duced action does not change the players’ minimax values.

To our surprise, it turns out that by adding this action,
players can achieve sustainable cooperative relations far
beyond the ideal cases identified in existing works. More
specifically, we identify a class of strategies called one-shot
punishment strategy that constitutes a belief-free equilib-
rium in a wide range of δ and ε. Moreover, when the number
of players is two, we show that the sum of the discounted
average payoffs achieved by the one-shot punishment strate-
gies is actually theoretically optimal.

Here is the intuition why adding a seemingly irrelevant
action is effective in the private monitoring case. In the re-
peated PD, a player needs to start punishment when she ob-
serves b to achieve sustainable cooperation; otherwise, her
opponent clearly has an incentive to play D. However, if
she uses D for punishment, her opponent might believe that
she is defecting, and then the opponent starts punishment.
Such an exchange of punishments will decrease their total
discounted average payoffs and harm sustainable coopera-
tion. When C ′ is available, players can use it for punish-
ment. Since a player has no incentive to switch from C to
C ′, C ′ and its associated signal g′ can be used as a method
to warn her opponent that she is starting punishment, which
is less likely to cause an exchange of punishments due to a
misunderstanding.

Preliminaries

Model

There exists a set of players N = {1, 2, . . . , n}. Each player
i ∈ N repeatedly plays the same stage game over an infinite
horizon t = 0, 1, 2, . . .. In each period, player i takes some
action ai from a finite set A. Assume an action profile in
that period is a = (a1, . . . , an) ∈ An. Then, her expected
payoff in that period is given by stage game payoff function
ui(a). Let a−i = (a1, . . . , ai−1, ai+1, . . . , an) denote the
action profile of players N \ {i}.

Let us show an example for N = {1, 2}, A = {C,D},
where u is given as Table 1, where x, y > 0.

When x < y + 1, this stage game corresponds to the
well-known PD, where (C,C) is the outcome that maxi-
mizes the total payoff of two players. When x > y + 1,
this stage game corresponds to the team production prob-

lem (Kobayashi, Ohta, and Sekiguchi 2014), where the out-
come that maximizes the total payoff of two players is either
(C,D) or (D,C).

Within each period, player i observes her private sig-
nal ωj

i ∈ Ω that is related to player j’s action. In the re-
peated PD with private monitoring, Ω = {g, b}. Let �ωi =
(ω1

i , ..., ω
i−1
i , ωi+1

i , ..., ωn
i ) ∈ Ωn−1 denote the profile of

the private signals of player i. Also, let o(ωj
i | aj) denote

the marginal distribution of ωj
i given player j’s action aj .

The signals are independent, i.e., the probability that player
i receives the profile of private signals �ωi when players take
a−i is given as o(�ωi | a−i) =

∏
j∈N\{i} o(ω

j
i | aj).

Let us describe a typical private monitoring sce-
nario called nearly-perfect monitoring. When an opponent
chooses C (or D), the “correct” signal is g (or b). A player
receives a correct signal with high probability but she re-
ceives a wrong signal with small probability.

We assume no player can infer which action was taken
(or not taken) by another player for sure: each signal
ωj
i ∈ Ω occurs with a positive probability for any aj ∈

A (full-support assumption). Player i’s realized payoff,
which is determined by her own action and signals, is de-
noted as πi(ai, �ωi). Hence, her expected payoff is given by∑

�ωi∈Ωn−1 πi(ai, �ωi)·o(�ωi | a−i). We assume this expected
value of the realized payoff is identical to stage game pay-
off ui(a). This formulation ensures that realized payoff πi

conveys no more information than ai and �ωi. The particu-
lar values of the realized payoffs are not important for ana-
lyzing equilibria since their expected value, which is equal
to ui(a), depends only on the action profile a. Thus, we
do not specify the particular values of the realized payoffs.
This model is standard in the literature of repeated games
with private monitoring (Mailath and Samuelson 2006).

Let us introduce a scenario called secret price-cutting, in
which the assumption in this model, i.e., the realized payoff
of a player is determined by her own action and signals, is
appropriate. Assume that players are managers of two com-
peting stores that have a price agreement. A manager can
either keep the agreement (play C) or secretly cut her price
(play D). A player’s signal represents the number of cus-
tomers who visit her store (g or b). The signal is affected
by the action of the other player, but even when the other
player keeps the agreement, the number of customers might
be accidentally low. Also, her realized payoff is determined
solely by her own action and signal, i.e., the price and the
number of customers in her store.

Player i’s expected discounted payoff from a sequence of
action profiles a0,a1, . . . is

∑∞
t=0 δ

tui(a
t), with discount

factor δ ∈ (0, 1). The (expected) discounted average payoff
(payoff per period) is defined as (1− δ)

∑∞
t=0 δ

tui(a
t).

Strategy representation and equilibrium concept

For player i, the set of her private histories at pe-
riod t is Ht

i := (A × Ωn−1)t. Each element ht
i =

(a0i , �ω
0
i , ..., a

t−1
i , �ωt−1

i ) ∈ Ht
i represents the sequence of her

actions and observation profiles until the end of period t−1.
H0

i is interpreted as a singleton, which represents an ini-
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(a) n = 2, L∗ = 1
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(b) n = 2, L∗ = 2
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(c) n = 5, L∗ = 3

Figure 1: Pre-FSA of one-shot punishment strategy: σL∗/n

tial history. A (pure) strategy for player i is represented as
function si : Hi → A, which returns the action that player i
should choose at period t given her history ht

i. Here, Hi is all
the possible histories of i, i.e.,

⋃
t≥0 H

t
i . Let s = (si, s−i)

denote the profile of strategies, where si is i’s strategy and
s−i is the profile of the strategies of the other players. Let
Ei(s) denote player i’s discounted average payoff when all
the players act based on strategy profile s. We say si is a
best response to s−i if for any possible strategy s′i of player
i, Ei((si, s−i)) ≥ Ei((s

′
i, s−i)) holds.

A standard equilibrium concept in repeated games is a se-
quential equilibrium, which is a refinement of a subgame
perfect equilibrium as well as a perfect Bayesian equilib-
rium (Kreps and Wilson 1982). In a private monitoring set-
ting, profile of strategies s is a sequential equilibrium if for
each i ∈ N , for any t, for any history ht

i ∈ Ht
i , and a possi-

ble belief reached after observing ht
i, acting according to si

(for given history ht
i) is a best response under the belief.

A Finite-State Automaton (FSA) is a popular approach
for concisely representing a strategy in an infinitely repeated
game. Player i’s FSA Mi is defined by 〈Θi, θ̂i, fi, Ti〉, where
Θi is a set of states, θ̂i ∈ Θi is an initial state, fi :
Θi → A determines the action choice in each state, and
Ti : Θi × Ωn−1 → Θi specifies a deterministic state tran-
sition. Specifically, Ti(θ

t
i , �ω

t
i) returns next state θt+1

i when
the current state is θti and player i’s private signal profile is
�ωt
i . For Mi and ht

i, the action to choose in period t is defined
as fi(θti), where θti is the state reached after history ht

i.
An FSA without specification of the initial state, i.e.,

mi = 〈Θi, fi, Ti〉, is a Finite-State preAutomaton (pre-
FSA). (mi, θ̂i) denotes an FSA obtained by mi, where
the initial state is θ̂i. Let M denote a profile of FSAs
(M1, . . . ,Mn).

Figure 1(a) shows an example of a pre-FSA for a two-
player stage game with three actions and three observa-
tions; n = 2, A = {C,D,C ′}, and Ω = {g, b, g′}. Here,
a node represents a state and a directed link represents a
state transition according to an observation. Since we as-
sume n = 2, there is only one observation for each player.
Symbol “∗” represents any observation in {g, b, g′}. There
are three states: W,R, and P . Each state represents a “work-

ing”, “resting”, or “punishing” state, and a player in each
state should choose C,D, or C ′.

For Mi, let Θt
i ⊆ Θi denote a set of states reachable in

period t. By the full-support assumption, Θt
i is determined

independently from the strategies of other players.
Now, we are ready to define a belief-free equilibrium.

Definition 1 (Belief-free equilibrium) We say M =

((m1, θ̂1), . . . , (mn, θ̂n)) is a belief-free equilibrium if for
all t, for all (θ1, . . . , θn) ∈ ∏i∈N Θt

i, and for all i ∈ N ,
(mi, θi) is a best response when player j 	= i is going to
behave based on (mj , θj) .
Note that we are not restricting the possible strategy spaces
of players (i.e., we are not assuming that players can only
use FSAs). The requirement that (mi, θi) is a best response
implies that her discounted average payoff cannot be im-
proved even if she uses a very sophisticated strategy, which
cannot be represented by an FSA.

Let us show an example. Let m denote the pre-FSA in
Figure 1(a). Assume player 1 uses FSA (m,W ) and player 2
uses (m,R), i.e., player 1 starts from state W and player 2
starts from state R at period 0. When t is an even num-
ber, Θt

1 = {W,P} and Θt
2 = {R}. When t is an odd

number, Θt
1 = {R} and Θt

2 = {W,P}. In order that
((m,W ), (m,R)) is a belief-free equilibrium, we require
the following: (i) (m,W ) must be a best response when the
other player is going to behave based on (m,R) and vice
versa, and (ii) (m,P ) must be a best response when the
other player is going to behave based on (m,R) and vice
versa. At each even period t, player 1 is either in state W or
P , and player 2 is unsure where player 1 is located. Thus,
she has a certain belief about this probability distribution.
The fact that ((m,W ), (m,R)) is a belief-free equilibrium
implies that behaving based on (m,R) is a best response
for player 2, regardless of her belief. This is the reason that
this equilibrium is called “belief-free”, i.e., a player’s best
response is determined independently from her belief.

It is obvious that a belief-free equilibrium is a special case
of a sequential equilibrium, since a sequential equilibrium
requires that the strategy of each player be a best response
under all beliefs that are reachable, while a belief-free equi-
librium requires that her strategy be a best response under
all beliefs including the unreachable ones.
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Table 2: Stage game payoff (n = 2, three actions)
a2 = C a2 = D a2 = C ′

a1 = C 1 −y 1− α
a1 = D 1 + x 0 1 + x− α
a1 = C ′ 1 −y 1− α

Stage game

We introduce a generic game that can model both the re-
peated PD and the team production problem, where A =
{C,D,C ′} and Ω = {g, b, g′}. Here, C ′ is an additional ac-
tion and g′ is its “correct” signal. We set o(ωj

i | aj) to 1−2ε

when ωj
i is the correct signal for aj , and otherwise to ε. We

assume 0 < ε < 1/3, i.e., a correct signal is more likely.
When n = 2, the stage game payoff is shown in Table 2.

Here, we only show player 1’s payoff since the game is sym-
metric. We assume x, y > 0. Here, the payoff for playing C ′
is identical to C for the player who plays it. On the other
hand, the player can hurt the other player (by α) by playing
C ′ instead of C. Since action C ′ is dominated by D, adding
it is irrelevant when the stage game is played only once.

In general cases where n ≥ 2, let #(A′,a−i) denote the
number of actions in a−i, which are included in A′ ⊆ A.
We assume the stage game payoff is given as follows:

ui((C,a−i)) = ui((C
′,a−i))

= v(#({C,C′},a−i))− α#({C′},a−i),

ui((D,a−i)) = v(#({C,C′},a−i))− α#({C′},a−i)

+w(#({C,C′},a−i)).

Here, v and w are some functions, which determine how
many players should play C to maximize the total payoff.
We assume w(k) is non-negative for 0 ≤ k ≤ n− 1. When
n = 2, if we set v(0) = −w(0) = −y, v(1) = 1 and w(1) =
x, these payoffs become identical to those in Table 2.

In words, the payoff of player i is basically determined by
the number of other players who play either C or C ′. She
incurs a loss in proportion to the number of other players
who play C ′. Also, if she plays D, she obtains a profit based
on the number of other players who play either C or C ′.

An action similar to C ′ would be available in actual ap-
plication domains. For example, in the secret price-cutting
scenario, C ′ can be considered a small price-cut. By doing
so, the opponent suffers a certain loss, but the increase of
her own customers is just enough to compensate the loss
caused by the discount. Furthermore, let us assume there are
two workers, one of whom is required to arrive at the office
early in the morning and clean it. Doing so improves team
productivity, but just one worker is adequate for cleaning.
C ′ means that a worker shows up early but does not clean
her co-worker’s desk. Such a relatively mild spiteful action
would be possible without incurring an additional cost.

One-shot punishment strategy

We define a class of pre-FSAs called one-shot punishment
strategy. Different pre-FSA instances can be obtained by
changing parameter L∗ (0 ≤ L∗ ≤ n), which represents
the number of players who should play C simultaneously.

Two-player case

First, we consider the case with n = 2. When L∗ = 1, play-
ers should work (i.e., play C) and rest (i.e., play D) in turns.
When L∗ = 2, both players should work at all times. Each
player basically follows a prescribed cycle of two states as
long as they observe “correct” signals. When L∗ = 1, the
action of one prescribed state is C, and the action of the
other state is D. When L∗ = 2, the actions of both states are
C. Each player starts from different states in this prescribed
cycle. When the game begins, each player monitors her op-
ponent’s behavior. Player i checks whether player j deviates
to D when she should play C (or C ′), while player i does
not care about any other possible deviations (e.g., player j
plays C instead of D). More precisely, if player i observes
b when she is supposed to observe g (or g′), she punishes
player j once by playing C ′ in the next period. If she detects
a possible deviation by player j again (assuming player j
continues the prescribed cycle), she punishes player j again.
Otherwise, she returns to the prescribed cycle.

Figure 1(b) shows a pre-FSA where L∗ = 2. Player 1
starts from W1 and player 2 starts from W2. Here, the upper-
side cycle of W1 and W2 is the prescribed cycle. When
player 1 is at W1, player 2 should be at W2 (or P2) and
should play C (or C ′). If player 1 observes b, she punishes
player 2 in the next period by moving to P2. Figure 1(a)
shows a pre-FSA where L∗ = 1. Here, the prescribed cycle
has two states: W and R. If player i is at W , player j is at
R. Thus, player i never starts punishment in the next period.
Therefore, only one punishment state P exists.

General case

Next, we consider cases with three or more players. Let
σL∗/n denote a pre-FSA for n players, in which L∗ play-
ers are supposed to simultaneously work (i.e., play C). Fig-
ure 1(c) shows an example of a pre-FSA for n = 5, L∗ = 3.
As in the two-player case, each player basically follows a
prescribed cycle of n states. First L∗ states W1, . . . ,WL∗ are
working states with prescribed action C, and the last n−L∗
states RL∗+1, . . . , Rn are resting states with prescribed ac-
tion D. Each player starts from her own initial state in this
prescribed cycle. We assume player i starts from Wi when
1 ≤ i ≤ L∗ and from Ri when L∗ + 1 ≤ i ≤ n.

When the game begins, each player i monitors the behav-
ior of player i+1 (player n monitors player 1). For example,
player 1 monitors the behavior of player 2. Player i checks
whether player i + 1 deviates to D when she should play
C (or C ′), while player i does not care about other possible
deviations (e.g., player i + 1 plays C instead of D). More
precisely, if player i observes b when her correct signal of
player i+ 1 is supposed to be g (or g′), she punishes player
i+ 1 once by playing C ′ in the next period.

Characteristics of one-shot punishment

strategy

Let EN (s) denote the sum of all the players’ discounted
average payoffs obtained by strategy profile s, i.e.,
EN (s) =

∑
i∈N Ei(s). Let σL∗/n denote strategy profile
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((σL∗/n,W1), . . . , (σ
L∗/n,WL∗), (σL∗/n, RL∗+1), . . . ,

(σL∗/n, Rn)). The following theorem holds for σL∗/n.

Theorem 1 σL∗/n forms a belief-free equilibrium if and
only if the following Inequality (1) holds:

α ≥ w(L∗ − 1)

δ · (1− 3ε)
. (1)

Also, EN (σL∗/n) is given by the following Equation (2):

EN (σL∗/n)

= L∗v(L∗ − 1) + (n− L∗){v(L∗) + w(L∗)}
−(n− 1)δεαL∗. (2)

Proof. We are going to show that player i has no incentive
to deviate from σL∗/n, regardless of the current states of
other players. Although there exist infinitely many possible
deviations, by Proposition 12.2.3 in (Mailath and Samuelson
2006), it is sufficient to check the following three cases, each
of which chooses a different action only once, and immedi-
ately returns to the original strategy2: (i) θi is Wk and player
i chooses C ′ instead of C, or θi is Pk and player i chooses
C instead of C ′, (ii) θi is Wk and player i chooses D instead
of C, or θi is Pk and player i chooses D instead of C ′, (iii)
θi is Rk and player i chooses C or C ′ instead of D.

There is only one player, j whose action is affected by
player i’s action (here, j = i − 1 when i ≥ 2, and j = n
when i = 1). Player i’s action in current period t affects only
player j’s action in next period t + 1, but it does not affect
any other actions. Thus, it is sufficient to compare the sum of
the discounted payoffs for two periods: periods t and t+ 1.

For Case (i), the payoff differences by taking this devia-
tion are ±0 in both periods; she has no incentive to do so.

For Case (ii), the differences are +w(L∗ − 1) in period t
and −αδ{o(b | D) − o(b | C)} in period t + 1. We require
the sum must be at most 0. Then, we obtain Inequality (1).

For Case (iii), the differences are −w(L∗) in period t and
±0 in period t + 1. Since the sum is negative, she has no
incentive to choose this deviation.

From these results, we obtain that σL∗/n forms a belief-
free equilibrium if and only if (1) holds.

Next, we calculate EN (σL∗/n). In each period, L∗ play-
ers are either in Wk or Pk and choose C or C ′. Then,
#({C,C ′},a−i) = L∗ − 1 for L∗ players in Wk or Pk,
while #({C,C ′},a−i) = L∗ for n− L∗ players in Rk.

When one player chooses C ′ instead of C, #({C ′},a−i)
increases by one for the other players. Thus, if the number
of players who choose C ′ instead of C increases by one, the
sum of all the players’ payoffs decreases by (n−1)α. In the
initial period, no player selects C ′, and #({C ′},a−i) = 0.
For t ≥ 1, each of the L∗ players is either in Wk or Pk.
The probability that she is actually in Pk equals ε, since the
player monitored by her plays either C or C ′, and o(b | C) =
o(b | C ′) = ε. Thus, the effect that several players choose
C ′ instead of C toward the total discounted average payoff
is given as: −(n− 1)δεαL∗. �

2This property is called one-shot deviation principle or one-
deviation property (Mailath and Samuelson 2006).

One possible implication of Theorem 1 is that, for any
given δ, x, y, and ε, if we appropriately set the amount of
punishment α, σL∗/n forms a belief-free equilibrium. Let
us show several concrete examples. Strategy σ1/2 forms a
belief-free equilibrium when α ≥ y/δ(1 − 3ε) holds. The
sum of the players’ discounted average payoffs is given as
EN (σ1/2) = −y+(1+x)−δεα. Let E∗

N (σL∗/n) denote the
maximum of EN (σL∗/n) by varying α in the range where
Inequality (1) is satisfied. Then E∗

N (σ1/2) is given as:

E∗
N (σ1/2) = −y + (1 + x)− ε · y

1− 3ε
.

If δ = 0.9, ε = 0.05, and y = x = 1, the optimal/minimum
value of α is around 1.3. Since ui((C,C

′)) ≈ −0.3, the
degree of punishment is large enough to offset the mutual
cooperation gain. On the other hand, since ui((D,C ′)) ≈
0.7, it is not large enough to offset the gain of deviation.

Similarly, σ2/2 forms a belief-free equilibrium when α ≥
x/δ(1− 3ε) holds. Then E∗

N (σ2/2) is given as follows:

E∗
N (σ2/2) = 2− 2

ε · x
1− 3ε

.

Furthermore, σ0/2 is a belief-free equilibrium for any
α ≥ 0. Then, E∗

N (σ0/2) is given as follows: E∗
N (σ0/2) = 0.

Note that a = (D, . . . ,D) is a Nash equilibrium of the stage
game for any α ≥ 0.

We show that these values are actually optimal for any
belief-free equilibria when n = 2 by the following theorem.
Theorem 2 When n = 2, for any given δ, x, y, and ε, if a
profile of strategies s forms a belief-free equilibrium, then
the following Inequality (3) holds:

EN (s) ≤ max(E∗
N (σ2/2), E∗

N (σ1/2), E∗
N (σ0/2)). (3)

Proof. Assume s gives the maximum EN in strategies that
constitute belief-free equilibria. Let Ei(s | ωi, ωj) denote
the discounted average payoff of player i after she observes
ωi and her opponent j observes ωj in period 1 when their
strategy profile is s. Since s forms a belief-free equilibrium,
this continuation payoff depends only on ωj , i.e., the follow-
ing condition holds:

∀ωi, ω
′
i, ωj ∈ Ω, Ei(s | ωi, ωj) = Ei(s | ω′

i, ωj).

Let Ei(s | ωj) denote Ei(s | ωi, ωj) for any ωi ∈ Ω. We
can rewrite Ei(s) as follows:

(1− δ)ui(a) + δ
∑
ωj∈Ω

o(ωj | ai)Ei(s | ωj). (4)

Since s provides the maximum EN in all equilibrium
strategies, the following condition is satisfied3:
∀ω1, ω2 ∈ Ω, EN (s) ≥ E1(s | ω2) + E2(s | ω1). (5)
In addition, player i has no incentive to change her action

from ai to a′i if the following condition is satisfied:
(1− δ){ui(ai, aj)− ui(a

′
i, aj)}

+δ
∑
ωj∈Ω

{o(ωj | ai)− o(ωj | a′i)}Ei(s | ωj) ≥ 0.

3If this condition does not hold, s can be modified so that
EN (s) is improved, while it still forms a belief-free equilibrium.
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First, let us assume the prescribed action profile by s in
the initial period is (C, aj). The fact that player i has no
incentive to change her action to C ′ or D is given as:

Ei(s | g′) ≤ Ei(s | g),

Ei(s | b) ≤ Ei(s | g)− (1− δ){ui(D, aj)− ui(C, aj)}
δ(1− 3ε)

.

From the above, we obtain:
∑

ωj∈{g,g′,b}
o(ωj | C)Ei(s | ωj)

≤ Ei(s | g)− ε
(1− δ){ui(D, aj)− ui(C, aj)}

δ(1− 3ε)
.(6)

When aj = C, from Inequalities (5) and (6), we obtain:
∑

ω2∈Ω

o(ω2 | C)E1(s | ω2) +
∑

ω1∈Ω

o(ω1 | C)E2(s | ω1)

≤ E1(s | g) + E2(s | g)− 2ε
(1− δ)x

δ(1− 3ε)

≤ EN (s)− 2ε
(1− δ)x

δ(1− 3ε)
.

From the above and Equation (4), we obtain:

EN (s) ≤ (1− δ)2 + δ
{
EN (s)− 2ε

(1− δ)x

δ(1− 3ε)

}
.

Therefore, we obtain:

EN (s) ≤ 2− 2
ε · x
1− 3ε

= E∗
N (σ2/2).

Similarly, when aj = D, we obtain:

EN (s) ≤ (1 + x− y)− ε · y
1− 3ε

= E∗
N (σ1/2).

Next, we assume the prescribed action profile by s in pe-
riod 0 is (D,D). From condition (5), we obtain:

EN (s) ≤ (1− δ)0 + δEN (s).

Then, we obtain EN (s) ≤ 0 = E∗
N (σ0/2).

We need to check similar conditions where the prescribed
action profile in period 0 is (C ′, C ′), (C ′, D), or (C,C ′) but
we only obtain weaker conditions. Thus, from the above dis-
cussions, we obtain Inequality (3). �

Discussions

Nondeterministic strategy: For notational simplicity, we
describe a strategy with pure actions and deterministic state
transitions. However, our analysis is applicable to any gen-
eral strategy that includes mixed action and nondeterminis-
tic state transitions, since its expected utility is just a lin-
ear combination of values obtained in the proof. Thus, our
one-shot punishment strategy is optimal even in all general
strategies including nondeterministic strategies.

Welfare for n ≥ 3: When three or more players exist, we
cannot prove that the welfare obtained by a profile of one-
shot punishment strategies is optimal. In a one-shot punish-
ment strategy, the action of player i+1 is only monitored by
player i. Thus, players might be able to integrate their ob-
servations and to detect possible deviations more precisely.
However, such a sophisticated strategy seems very complex;
we currently have no good idea for constructing it.

Related literature: In the literature of AI and multi-agent
systems, there are many streams associated with repeated
games (Burkov and Chaib-draa 2013): the complexity of
equilibrium computation (Andersen and Conitzer 2013;
Borgs et al. 2010; Littman and Stone 2005), multi-agent
learning (Blum and Monsour 2007; Conitzer and Sandholm
2007; Shoham and Leyton-Brown 2008), repeated conges-
tion games (Tennenholtz and Zohar 2009), partially observ-
able stochastic games (POSGs) (Doshi and Gmytrasiewicz
2006; Hansen, Bernstein, and Zilberstein 2004), and so on.

The repeated PD with imperfect observability has been
extensively studied, but most papers assume public mon-
itoring. A well-known result by Radner, Myerson, and
Maskin (1986) states that any pure strategy equilibrium pay-
off sum is bounded away from full efficiency however pa-
tient the players are. Abreu, Milgrom, and Pearce (1991) ex-
tend the analysis and explicitly derive an upper bound on the
equilibrium total payoff. The upper bound obtained in this
paper has a similar structure. One contribution of our work
is generalizing their results to private monitoring settings.

The literature on the repeated PD with imperfect pri-
vate monitoring first studies sequential equilibria by ran-
domized strategies under nearly-perfect monitoring (e.g.,
Sekiguchi 1997), and then extends to arbitrarily noisy moni-
toring structure (e.g., Sugaya 2015). This paper also allows
arbitrarily noisy monitoring and adopts the belief-free equi-
librium (Ely, Hörner, and Olszewski 2005; Ely and Välimäki
2002) by pure strategies. Piccione (2002) constructs coop-
erative equilibria in the repeated PD under ideal situations
based on Sekiguchi (1997). Because of the third action, we
are able to provide an upper bound on the total equilibrium
payoffs and construct simple belief-free equilibria that attain
the bound even if the players are not excessively patient.

Conclusions

This paper investigated repeated games with imperfect pri-
vate monitoring. We introduced a generic problem that can
model both the repeated PD and the team production prob-
lem, and examined a situation where seemingly irrelevant
(i.e., dominated) action C ′ is added. We identified the one-
shot punishment strategy, which can constitute a belief-free
equilibrium in a wide range of parameters. The strategy is
easy to adapt since it is a pure strategy and is concisely rep-
resented by an FSA. Moreover, when the number of players
is two, we showed that the obtained welfare of this equilib-
rium matches a theoretical upper bound. Our future works
will apply a similar idea to different settings, e.g., C ′ re-
quires an additional cost, a player can choose the level of
punishment, and so on.
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