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Abstract

The optimal pricing problem is a fundamental problem that
arises in combinatorial auctions. Suppose that there is one
seller who has indivisible items and multiple buyers who want
to purchase a combination of the items. The seller wants to sell
his items for the highest possible prices, and each buyer wants
to maximize his utility (i.e., valuation minus payment) as long
as his payment does not exceed his budget. The optimal pricing
problem seeks a price of each item and an assignment of items
to buyers such that every buyer achieves the maximum utility
under the prices. The goal of the problem is to maximize the
total payment from buyers. In this paper, we consider the case
that the valuations are submodular. We show that the problem
is computationally hard even if there exists only one buyer.
Then we propose approximation algorithms for the unlimited
budget case. We also extend the algorithm for the limited
budget case when there exists one buyer and multiple buyers
collaborate with each other.

1 Introduction

1.1 Background and motivation

In a combinatorial auction (Blumrosen and Nisan 2007;
Cramton, Shoham, and Steinberg 2006), a seller has a set
of indivisible items, and buyers purchase a combination of
the items. The seller wants to sell his items to the buyers
for the highest possible prices, and each buyer wants to pur-
chase a set of items that is valuable for him and also has
a reasonable price. More precisely, each buyer purchases a
set of items that maximizes his utility within the limits of
his budget; here, the utility for a set of items is the valua-
tion for him (minus the payment for purchase). Thus, the
seller seeks a price of each item (not bundle) and an assign-
ment of items to buyers such that they are stable, i.e., no
buyer can gain more utility by changing the set of items
that he purchases. The goal is to maximize the total profit
obtained from the buyers. The stability captures a fairness
condition for the individual buyers (Goldberg and Hartline
2003; Guruswami et al. 2005; Cheung and Swamy 2008;
Anshelevich, Kar, and Sekar 2015). In general, such a prob-
lem is called the optimal pricing problem and studied in many
situations.
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In this paper, we assume that the valuations of buy-
ers are represented by submodular functions, which cap-
ture the notion of the diminishing returns property. Sub-
modular functions appear in many situations (Bach 2010;
Soma and Yoshida 2015), and have been studied extensively.
For simplicity, we assume that every buyer truthfully tells
the seller his valuation and his budget. The purpose of this
paper is to analyze theoretical properties of the optimal pric-
ing problems with submodular valuations, and to propose
(approximation) algorithms for the problems. We analyze
the performance of the algorithms in terms of the curva-
tures of the valuations, which capture the degree of non-
linearity. The curvature has been used to derive better ap-
proximation ratios for several submodular optimization prob-
lems (Iyer and Bilmes 2013; Iyer, Jegelka, and Bilmes 2013;
Sviridenko, Vondrák, and Ward 2015; Vondrák 2010).

1.2 Our contributions

We summarize our results for the optimal pricing problem.
We first show that the optimal pricing problem with sub-

modular valuations is NP-hard even for instances derived
from our application (Theorem 5). Moreover, there exists an
instance that requires exponentially many oracle evaluations
in the oracle model (Theorem 6).

Our main result is to propose approximate pricing algo-
rithms for the following three cases: single buyer case (Algo-
rithm 1), multiple buyers case (Algorithm 2), and multiple
collaborating buyers case (Algorithm 3). Then we show the
approximation ratios for these algorithms in terms of the
curvatures of the valuations (Theorems 7, 10, 12). Our al-
gorithms output a nearly optimal solution if the curvatures
are small. We will point out that a practical application of
our problem has submodular valuations whose curvatures are
typically small by using a general upper bound on curvatures
(Theorem 2). This justifies our analysis of the optimal pric-
ing problem using curvatures. The application is a similar
problem to the budget allocation problem, which is widely
studied both theoretically and practically in computational
advertising. Due to the space constraint, we omit the proofs,
which can be found in the full version (Maehara et al. 2016).

We also conduct computational experiments on some syn-
thetic and realistic datasets to evaluate the proposed pricing
algorithms (Section 6). Our algorithm performs better than
baseline algorithms. To the best of our knowledge, no prior
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work proposed a suitable algorithm for the optimal pricing
problem with submodular valuations.

1.3 Related Work

The optimal pricing problem is also referred to as the profit
maximizing pricing problem. There are many works for the
case when valuations of buyers are unit-demand or single-
minded (Aggarwal et al. 2004; Goldberg and Hartline 2003;
Goldberg, Hartline, and Wright 2001; Guruswami et al. 2005;
Cheung and Swamy 2008; Anshelevich, Kar, and Sekar
2015). A valuation f is called unit-demand if f(X) =
maxx∈X f(x) for any X with |X| ≥ 2, and called single-
minded if for some S∗, it holds that f(X) = f(S∗) > 0 for
any X ⊇ S∗ and f(X) = 0 otherwise. Any unit-demand
valuation is submodular, while single-minded valuations are
not necessarily submodular. Guruswami et al. (2005) proved
the APX-hardness of the optimal pricing problem where the
valuations are all unit-demand or all single-minded. Thus,
the general optimal pricing problem is computationally in-
tractable. They also provided logarithmic approximation al-
gorithms under the assumption that the valuations are all
unit-demand or all single-minded. Since these algorithms
fully rely on the assumption, they do not extend to our case.

We remark that the optimal pricing problem is different
from the problem of finding a Walrasian equilibrium. A pair
of a pricing and an assignment is called a Walrasian equi-
librium (or competitive equilibrium) if it is stable and all
positive-price items are allocated to some buyer (Blumrosen
and Nisan 2007). In our model, the seller can decide a subset
of items that are not allocated. This difference may improve
the seller’s profit. We give such an example in Remark 8.

The winner determination problem is also similar to the
optimal pricing problem. This is the problem of finding an al-
location of items to buyers that maximizes the sum of buyers’
valuations in combinatorial auctions. Rothkopf et al. (1998)
proved the NP-hardness of the winner determination problem.
Sandholm (2002) provided an inapproximability result on
the problem and some approximation algorithms for special
cases. For more details of this problem, see, e.g., (Blumrosen
and Nisan 2007; Cramton, Shoham, and Steinberg 2006). The
winner determination problem maximizes the total valuation
of buyers whereas our problem maximizes the profit of the
seller. In general, these problems have different optimal solu-
tions (see Remark 8 for an example). So our problem setting
is different from the winner determination problem.

2 Preliminaries

In this section, we review submodular functions and the op-
timal pricing problem, and describe our motivation to study
the optimal pricing problem.

2.1 Submodular function and curvature

Let V be a finite set. A function f : 2V → R is submodular
if it satisfies

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (1)

for all X,Y ⊆ V (Fujishige 2005). This condition is equiva-
lent to the diminishing returns property: f(X)− f(X \x) ≥

f(Y ) − f(Y \ x) for all X ⊆ Y ⊆ V ; here we denote
“X \{x}” by “X \x” for notational simplicity. We say that f
is monotone nondecreasing if f(X) ≤ f(Y ) for all X ⊆ Y .
In this paper, we assume that f(∅) = 0.

The diminishing returns property is a fundamental prin-
ciple of economics (Samuelson and Nordhaus 2004). Thus,
submodular functions are often used to model user utilities
and preferences. They also appear in combinatorial opti-
mization (Fisher, Nemhauser, and Wolsey 1978; Fujishige
2005), social network analysis (Kempe, Kleinberg, and Tar-
dos 2015), and machine learning (Bach 2010; Pan et al. 2014;
Soma and Yoshida 2015).

For a monotone nondecreasing function f : 2V → R and
an integer s ∈ {0, . . . , |V |}, the curvature κ(s) is defined by
the largest nonnegative number that satisfies

(1− κ(s))f(x) ≤ f(X)− f(X \ x) (2)

for all |X| = s and x ∈ X (Conforti and Cornuéjols 1984).1
If f is submodular, then its curvature κ(s) is a monotone
nondecreasing sequence by the diminishing returns property.

We remark that computing κ(s) is difficult since it requires
exponentially many function evaluations; therefore, we can-
not use explicitly the value in an algorithm.

2.2 Optimal pricing problem

Here we define the optimal pricing problem. Suppose that
a seller wants to sell indivisible items V to buyers N =
{1, . . . , n} simultaneously. Each buyer i ∈ N has a budget
Bi and a valuation function fi : 2V → R, where fi is a
monotone nondecreasing submodular function. We denote by
κi the curvature of fi for i ∈ N . In this problem, we find a
price vector p ∈ R

V and an assignment (X1, . . . , Xn) which
is a subdivision of V . For a price vector p and an item set
X ⊆ V , let p(X) =

∑
x∈X p(x). Buyers are assumed to

have quasi-linear utility, i.e., the utility of i ∈ N is given by
fi(Xi)− p(Xi).

The seller wants to maximize the total profit p(X1)+ · · ·+
p(Xn). On the other hand, each buyer also wants to maxi-
mize his utility, as long as his payment to the seller does not
exceed his budget. Therefore, the assignment must satisfy
some “agreement” condition. We say that a price vector p
and assignment (X1, . . . , Xn) pair is stable if it satisfies

fi(Xi)− p(Xi) ≥ fi(X)− p(X) (3)

for any i ∈ N and all X ⊆ V . The stability condition means
that each buyer i has no incentive to change his allocation
Xi under the pricing p. For a price vector p, we define the
demand set of buyer i as a family of sets X satisfying (3),
denoted by

Di(p) = argmax{fi(X)− p(X) | X ⊆ V, p(X) ≤ Bi}.
(4)

The stability condition is necessary to avoid a grudge or an
antipathy of buyers even when each buyer i knows his own
allocated items Xi and every price of the items V .

1Originally, Conforti and Cornuéjols (1984) introduced total
curvature and greedy curvature for monotone nondecreasing sub-
modular functions.

623



The optimal pricing problem seeks a price vector p ∈ R
V

and an assignment (X1, . . . , Xn) that maximizes the total
profit p(X1) + · · ·+ p(Xn) under the stability condition. It
is formulated as

maximize
∑

i∈N p(Xi)

subject to Xi ∈ Di(p) (i ∈ N), (5)
Xi ∩Xj = ∅ (i �= j).

We propose algorithms for the problem (5) where all buyers
have unlimited budgets, i.e., Bi = +∞ for all i ∈ N . We
extend our results to the limited budget case (see (Maehara
et al. 2016)).

2.3 Application

We present an application that motivates us to study the op-
timal pricing problem with submodular valuations. We will
claim that the curvatures of valuations are small in practice.

Consider that the publisher (= seller) has a set V of mar-
keting channels, and that there is a set N of advertisers (=
buyers) that have budgets Bi (i ∈ N) . Each advertiser i ∈ N
purchases a subset X of channels for advertising under the
budget constraint, i.e., p(X) ≤ Bi. The valuation fi(X) of
X ⊆ V for advertiser i is the expected value of the total rev-
enue from loyal customers influenced by marketing channels
in X . Let p ∈ R

V be the price vector, i.e., p(v) is the price to
publish an advertisement through marketing channel v. Each
advertiser i wants to buy Xi that maximizes the total revenue
minus the cost, i.e., fi(Xi) − p(Xi), under the budget con-
straint p(Xi) ≤ Bi. In the following, we explicitly formulate
the valuation function fi of each advertiser i.

We adopt the bipartite influence model of advertising pro-
posed by Alon et al. (Alon, Gamzu, and Tennenholtz 2012).
Let W be set of customers. We consider a bipartite graph
G = (V ∪W,E). Each edge (v, w) ∈ E indicates that mar-
keting channel v affects customer w. Each edge (v, w) is
assigned probabilities qi(v, w) (i ∈ N), called activation
probability. If advertiser i puts an advertisement on market-
ing channel v, then customer w will become a loyal customer
of buyer i with probability qi(v, w).

The probability Qi(X,w) that customer w becomes a
loyal customer when a advertiser i runs advertisements on
X ⊆ V is given by Qi(X,w) = 1 − ∏

x∈X,(x,w)∈E(1 −
qi(x,w)). Thus, the expected number of his loyal customers
is

∑
w∈W Qi(X,w). Let γi be the expected revenue from

one loyal customer. The expected total revenue is given by

fi(X) = γi ·
∑

w∈W Qi(X,w). (6)

Since Qi(X,w) is a monotone nondecreasing submodular
function in X , fi(X) is also a monotone nondecreasing sub-
modular function.

Here, we can observe that each curvature κi of fi is small
(i ∈ N ). This implies that our analysis based on the curvature
is particularly effective for this application.
Lemma 1. For each i ∈ N and s ∈ {1, . . . , |V |}, κi(s) ≤
max|X|=s, x∈X, (x,w)∈E Q(X \ x,w).
Theorem 2. For each i ∈ N and s ∈ {1, . . . , |V |}, if
qi(e) ≤ q for any e ∈ E, then it holds that κi(s) ≤

1 − (1 − q)min{s,d}−1, where d is the maximum degree of
the right vertices W .

In practice, d is relatively small (e.g., d ≤ 100) since it
is the number of incoming information channels of a cus-
tomer. Moreover, q is very small (e.g., q ≤ 0.001) since
it is the probability of gaining a customer through a single
advertisement.

3 Single buyer

In this section, we analyze the optimal pricing problem with
a single buyer (i.e., n = 1). We prove the NP-hardness of the
problem and present a nearly optimal approximate algorithm
for the buyer with an unlimited budget.

Consider that there is only one buyer with an unlimited
budget. For notational convenience, let f : 2V → R be his
valuation, which is a monotone nondecreasing submodular
function. For a price vector p, we denote by D(p) the demand
set for p. When we fix an assignment, we can easily obtain
the maximum profit for the assignment.
Lemma 3. Let X be an assignment. An optimal price vector
for (5) with fixed X is given by p(x) = f(X)− f(X \ x) if
x ∈ X , and p(x) = +∞ otherwise.

From this lemma, we obtain the following characterization
of optimal solutions to (5).
Lemma 4. Let X be an assignment. There exists a price
vector p such that (p,X) is optimal to (5) if and only if X
achieves

maxX′⊆V

∑
x∈X′(f(X ′)− f(X ′ \ x)). (7)

This implies that problem (5) is equivalent to (7). For any
X ⊆ V , we denote h(X) =

∑
x∈X(f(X)− f(X \ x)).

We show the NP-hardness of (5) by reducing the one-
in-three positive 3-SAT problem. Given a boolean formula
in conjunctive normal form with three positive literals per
clause, the one-in-three positive 3-SAT problem determines
whether there exists a truth assignment to the variables so
that each clause has exactly one true variable. This problem
is known to be NP-complete (Schaefer 1978).
Theorem 5. Problem (5) is NP-hard even when the function
f is of the form (6).

Furthermore, we obtain the result below.
Theorem 6. If f is given by an oracle, problem (5) requires
exponentially many oracle evaluations.

Since (5) is NP-hard, we propose an algorithm to find an
approximate pricing. Once we determine an assignment, an
optimal price vector for the assignment is easily obtained
from Lemma 3. Thus, we only need to find an assignment X
maximizing h(X). However, an overly large assignment X
may have small h(X) value. In our algorithm, we assign the
top s elements in order of their value, for each s = 1, . . . , |V |.
The formal description is given in Algorithm 1.

This algorithm can be implemented to run in
O(|V | log |V | + A|V |2) time, where A is the compu-
tational cost of evaluating f(X). For a variant of budget
allocation problem with the bipartite graph model, if we
implement the algorithm carefully, it runs in O(|V ||E|) time.

We analyze the approximation ratio of our algorithm.
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Algorithm 1 Pricing algorithm for a single buyer.
For s = 1, 2, . . . , |V |

Let Xs be the largest s elements of f(x)
Price ps(x) = f(Xs) − f(Xs \ x) (x ∈ Xs) and

ps(y) = +∞ (y ∈ V \Xs)
Return p and X that attains maximum of ps(Xs)

Theorem 7. Let (p∗, X∗) be an optimal solution to (5), and
let (p,X) be the output of Algorithm 1. Then, it holds that
X ∈ D(p) and (1− κ(|X∗|))p∗(X∗) ≤ p(X).

Remark 8. Selling all items (i.e., s = |V |) is not always op-
timal, even when the function f is of the form (6). To demon-
strate this, let us consider the instance of the application in
Section (2.3) where there are two channels u, v and one user
w with γ = 1. The activation probabilities from u and v to w
are 0.9. When we use the both channels, the activation prob-
ability is 1 − (1 − 0.9)2 = 0.99. Thus f(u) = f(v) = 0.9
and f(u, v) = 0.99. The optimal pricing sells only a single
channel X∗ = {u} at price p∗(u) = 0.9, and p∗(X∗) = 0.9.
On the other hand, to sell all items X ′ = {u, v}, the price
should be p′(u) = p′(v) = 0.99 − 0.9 = 0.09, and hence
p′(X ′) = 0.18.

We also remark that this example shows the difference be-
tween our problem and related problems, namely, the problem
of finding Walrasian equilibrium and the winner determina-
tion problem. There are two Walrasian equilibria (p′, X ′) and
(p′′, X ′) where p′′(u) = p′′(v) = 0. Thus (p′, X ′) achieves
the maximum profit p′(X ′) = 0.18 among Walrasian eqiulib-
ria whereas the optimal value for our problem is 0.9. When
we regard this example as an instance of the winner determi-
nation problem, the optimal solution is X ′ and its valuation
of the buyer is 0.99. However, the optimal solution for our
problem sells only X∗, and the profit of the seller is 0.9.

We also show that if the curvature of f is small, then
the optimal values of (5) and the one without the stability
condition is almost the same; see the full version (Maehara,
Yabe, and Kawarabayashi 2015).

4 Multiple buyers

In this section, we deal with the general optimal pricing
problem (5) that admits more than one buyer. Recall that
if n = 1, then for any assignment X , there always exists a
price vector p satisfying X ∈ D(p) (see Lemma 3). However,
in general, there may not exist a price vector p such that
Xi ∈ Di(p) for some assignment (X1, . . . , Xn). Moreover,
it is difficult to determine whether or not such a price vector
exists for a given assignment.

We first approach the coNP-hardness of deciding the ex-
istence of a stable price vector for a given assignment by
reducing the exact cover by 3-sets problem (X3C), which
is NP-complete (Garey and Johnson 1979). In this prob-
lem, we are given a set E with |E| = 3l and a collection
C = {C1, . . . , Cm} of 3-element subsets of E. The task is to
decide whether or not C contains an exact cover for E, i.e., a
subcollection C′ ⊆ C such that every element of E occurs in
exactly one member of C′.

Algorithm 2 Pricing algorithm for multiple buyers
For s = 1, 2, . . . , |V |

Let Xs be s largest elements of maxi∈N fi(x)
Price ps(x) = maxi∈N (fi(X

s)−fi(X
s\x)) (x ∈ Xs)

and ps(y) = +∞ (y ∈ V \Xs)
Let (Xs

1 , . . . , X
s
n) be a partition of Xs such that

ps(x) = fi(X
s)− fi(X

s \ x) (∀x ∈ Xs)
Return p and (X1, . . . , Xn) that attains maximum of∑

i∈N ps(Xs
i )

Theorem 9. It is coNP-hard to determine, for a given assign-
ment (X1, . . . , Xn), the existence of price vector p such that
Xi ∈ Di(p) for all i ∈ N .

We also show that, given a price vector p, it is NP-hard
to decide the existence of an assignment X = (X1, . . . , Xn)
such that (p,X) is stable (see the full version (Maehara et al.
2016)).

By above results, it is difficult to find a stable pair (p,X)
for given p (or X). Therefore in order to obtain efficiently
an approximate solution, we take a natural approach that we
slightly relax the stability condition.

For any positive number α ≤ 1 and each buyer i,
we define the α-demand set of buyer i as Dα

i (p) =
{X ⊆ V | fi(X)− p(X) ≥ αfi(Y )− p(Y ), ∀Y ⊆ V }.
For a price vector p and an assignment X = (X1, . . . , Xn),
we say that (p,X) is α-stable if Xi ∈ Dα

i for all i ∈ N .
We propose a pricing algorithm in Algorithm 2. The algo-

rithm can be implemented to run in O(An|V |2+ |V | log |V |)
time, where A is the computational cost of evaluating fi(X)
(i ∈ N ). It has the following theoretical guarantee. Here we
denote κ(s) = maxκi(s).

Theorem 10. Let p∗ and X∗ = (X∗
1 , . . . , X

∗
n) be the op-

timal solution to (5) and let p and X = (X1, . . . , Xn)
be the solution obtained by Algorithm 2. Then, for s =
|X1∪· · ·∪Xn| and s∗ = |X∗

1∪· · ·∪X∗
n|, (p,X) is (1−κ(s))-

stable and (1− κ(s∗))
∑

i∈N p∗(X∗
i ) ≤

∑
i∈N p(Xi).

5 Multiple collaborating buyers

In this section, we analyze the optimal pricing problem with
collaborating buyers, i.e., the case where buyers cooperate
to maximize the total utilities. This occurs when buyers are
employed by the same organization. We present an approxi-
mation algorithm for this problem.

We first describe the model. Assume that there are buyers
N = {1, . . . , n}, whose valuation functions are given by
f1, . . . , fn. Let (X1, . . . , Xn) be an assignment. Since the
goal of buyers is to maximize the sum of their utilities, the
stability condition is written as

∑
i∈N (fi(Xi) − p(Xi)) ≥∑

i∈N (fi(Yi)− p(Yi)) for any assignment (Y1, . . . , Yn).
Because only the total amount of the utilities matters, the

publisher only needs to find a set X and a price vector p that
satisfies the above stability condition for some partition of X .
Thus, in the following, we assume that there exists one buyer
who represents the set of original buyers. Let f : 2V → R

be an aggregated valuation function defined by f(X) =
max(X1,...,Xn): partition of X

∑
i∈N fi(Xi) for X ⊆ V . Note
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Algorithm 3 Pricing algorithm for collaborating buyers
For s = 1, 2, . . . , |V |

Let Xs be s largest elements of f(x) (= maxi fi(x))

Price ps(x) = mini∈N
fi(X

s)−fi(X
s\x)

fi(x)
f(x) (x ∈ Xs)

and p(y) = +∞ (y ∈ V \Xs)
Return p and X that attains maximum of ps(Xs)

that f(X) is monotone nondecreasing but not necessarily
submodular (See the full version (Maehara et al. 2016)).

By using the aggregated valuation function, the stability
condition is equivalent to the condition that f(X)− p(X) ≥
f(Y )− p(Y ) for all Y ⊆ V . Thus, the demand set is defined
as (4), and the optimal pricing problem for collaborating
buyers is formulated as

maximize p(X) subject to X ∈ D(p). (8)

Although the aggregated valuation function is not neces-
sarily submodular, problem (8) has a similar formulation to
(5) with a single buyer. We obtain a similar result to Lemma
3.

Lemma 11. Let X be an assignment. An optimal price vector
for (8) with fixed X is given by p(x) = minY⊆X:x∈Y (f(Y ∪
x)− f(Y )) if x ∈ X , and p(x) = +∞ otherwise.

From this lemma, we see that problem (8) is equiv-
alent to the problem of finding X ⊆ V maximizing∑

x∈X minY⊆X:x∈Y (f(Y )−f(Y \x)). Thus, we can apply
the same principles as the ones of Algorithm 1. In fact, setting
prices ps(x) = minY⊆Xs:x∈Y (f(Y )− f(Y \ x)) implies a
similar result. However, computing f(X) is intractable (this
problem is called submodular welfare problem) and hence it
is hard to evaluate the value minY⊆X:x∈Y (f(Y )−f(Y \x)).
Thus, we need a further modification.

Our algorithm, summarized in Algorithm 3, finds an ap-
proximate solution to (8) in O(An|V |2 + |V | log |V |) time,
where A is the computational cost of evaluating fi(X)
(i ∈ N ). We analyze the approximation ratio of our al-
gorithm. Let κ1, . . . , κn be curvatures of f1, . . . , fn and
κ(s) = maxj κj(s) for s = 1, . . . , |V |.
Theorem 12. Let (p∗, X∗) be an optimal solution to (8), and
let (p,X) be the output of Algorithm 3. It then holds that
X ∈ D(p) and (1− κ(|X∗|))p∗(X∗) ≤ p(X).

To prove this theorem, we show the following two lemmas.

Lemma 13. For a set X and x ∈ X , it holds that f(X) −
f(X \ x) ≤ f(x).

Lemma 14. For a set X and x ∈ X , it holds that
f(X) − f(X \ x) ≥ mini∈N

fi(X)−fi(X\x)
fi(x)

f(x) ≥ (1 −
κ(|X|))f(x).

6 Experiments

In this section, we present experimental results on our pricing
algorithms for a variant of budget allocation problem, which
are described in Section 2.3. All experiments were conducted
on an Intel Xeon E5-2690 2.90GHz CPU (32 cores) with

Table 1: Ranking by #plays.
rank artist – music #play UU

1 The Postal Service – Such Great Heights 3992 321
2 Boy Division – Love Will Tear Us Apart 3663 318
3 Radiohead – Karma Police 3534 346
4 Muse – Supermassive Black Hole 3483 263
5 Death Cab For Cutie – Soul Meets Body 3479 233
6 The Knife – Heartbeats 3156 177
7 Muse – Starlight 3060 260
8 Arcade Fire – Rebellion (Lies) 3048 292
9 Britney Spears – Gimme More 3004 59
10 The Killers – When You Were Young 2998 235

Table 2: Ranking by prices.
rank original artist – music price

1 1 The Postal Service – Such Great Heights 3.330
2 8 Arcade Fire – Rebellion (Lies) 2.101
3 4 Muse – Supermassive Black Hole 2.029
4 11 Interpol – Evil 2.026
5 3 Radiohead – Karma Police 2.003
6 6 The Knife – Heartbeats 1.992
7 12 Kanye West – Love Lockdown 1.893
8 17 Arcade Fire – Neighborhood #1 (Tunnels) 1.868
9 23 Kanye West – Heartless 1.788

10 24 Radiohead – Nude 1.770

256GB memory running Ubuntu 12.04. All codes were im-
plemented in Python 2.7.3.

We performed the following five experiments: For the sin-
gle advertiser case, (1) we computed prices of each channel
for a realistic dataset; (2) we compared the proposed algo-
rithm with other baseline algorithms; (3) we evaluated the
scalability of the proposed algorithm; and (4) we observed
the relationship between the activation probabilities and the
number of allocated channels. For the multiple advertisers
case and the multiple collaborating advertisers case, (5) we
observed the relationship between the obtained profit and the
number of advertisers.

For these experiments, we used two random synthetic
networks (Uniform, PowerLaw) and three networks con-
structed from real-world datasets (Last.fm, MovieLens,
BookCrossing). Throughout the experiments, we assume
that the expected revenue from one loyal customer is 1, i.e.,
γi = 1. Due to the space constraint, the description of the
datasets is given in the full version (Maehara et al. 2016).

(1) Typical result First, we ran Algorithm 1 to Last.fm
dataset to compute prices for the musics played in Last.fm.
Top 10 frequently played musics and top 10 high price mu-
sics are displayed in Table 1 and Table 2, respectively. We
can observe that some musics with a large number of plays
(or unique users) are not assigned high prices. This occurs
because of the stability condition.

(2) Comparison with other pricing algorithms Next, we
compared Algorithm 1 with the following four baseline algo-
rithms:

Selling all items. Assign X = V and price p(v) = f(V )−
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Table 3: Comparison of pricing algorithms on several datasets.
Each value is the ratio of the profit obtained by the algorithm
and the proposed algorithm.

Proposed SellAll Random Scaled Ascend
Uniform 1.00 0.89 0.55 0.98 0.96
PowerLaw 1.00 0.89 0.65 0.98 0.51
Last.fm 1.00 0.71 0.46 0.99 0.78
MovieLens 1.00 0.58 0.48 0.96 0.67
BookCrossing 1.00 1.00 0.39 0.78 0.43

f(V \ v) for each v ∈ V . This algorithm gives a stable
assignment.

Random pricing. Price p(v) ∈ [0, f(v)] uniformly at ran-
dom for each v ∈ V and find an assignment X by the
greedy algorithm.

Scaled pricing. Price p(v) = αf(v) for each v and find
an assignment X by the greedy algorithm. α is chosen
optimally from {0.1, . . . , 1.0}.

Ascending pricing. Start from X = V and p(v) =
0 (v ∈ V ), repeat the following process: Price p(v) =
minX:x∈X(f(X) − f(X \ x)) for each v ∈ X , re-
move x̃ that attains the minimum from X , and then price
p(x̃) = +∞. This algorithm is motivated by the ascending
auction (Krishna 2009).

We remark that there are no existing algorithms that are
directly applicable to the optimal pricing problem with sub-
modular valuations (see also Section 1.3).

We used all the networks described above; we set |V | =
100, |W | = 10000, d = 10 and qmax = 0.3 for Uniform
and PowerLaw. The result is summarized in Table 3. The
proposed algorithm outperforms all compared algorithms for
all datasets

(3) Scalability We evaluated the scalability of the
proposed algorithm. We used Uniform with |V | ∈
{16, 32, . . . , 1024}, |W | ∈ {100, 1000, 10000, 100000},
d = 10, and qmax = 0.3. We also conducted the same ex-
periment on PowerLaw but we omit it since it yields very
similar results.

The result is shown in Figure 1. The elapsed times were
(roughly) proportional to both |V | and |W |. This is consis-
tent with our analysis that the proposed algorithm runs in
O(|V ||E|) time, and the number of edges is proportional to
|W | for these networks. Therefore, the proposed algorithm
scales to moderately large networks.

(4) Number of allocated channels and activation prob-
abilities We observe the relationship between activation
probability and the obtained allocation. We used Uniform
and PowerLaw with the parameters |V | = 100, |W | =
10000, and d = 10. We controlled the maximum activation
probability qmax ∈ {0.05, 0.10, . . . , 0.95} and observe the
number of assigned marketing channels.

The result is shown in Figure 2. For both networks, when
qmax was small the proposed algorithm assigned all chan-
nels, and when qmax was large it assigned a few channels.
The number of assigned channels decreased much faster in
PowerLaw than in Uniform, since there were highly cor-
related marketing channels in PowerLaw.
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Figure 1: Scalability of the
proposed algorithm.
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(5) Profit and the number of advertisers Next, we con-
ducted experiments on the multiple advertisers case and the
multiple collaborating advertisers case. Here we observe the
relationship between the profit and the number of advertis-
ers in these settings. For these experiments, we modified
Uniform and PowerLaw to assign multiple probabilities
q1(e), . . . , qn(e) for each edge, each of which follows the
uniform distribution on [0, qmax].

The result is shown in Figure 3. By comparing two results
obtained by the multiple (non-collaborating) advertisers case,
the number of advertisers had little influence on the profit.
On the other hand, by comparing the results obtained by col-
laborating advertisers, the profit increased when the number
of advertisers increased. Moreover, the profits obtained from
the collaborating advertisers consistently outperformed those
obtained from non-collaborating advertisers. This means that
collaboration of advertisers yields a better profit to the pub-
lisher. Note that we could not observe the difference between
Uniform and PowerLaw.

7 Conclusion

We propose some future works. One is to develop an approxi-
mate pricing algorithm for the case that multiple buyers have
limited budgets. Another one is to analyze the optimal pric-
ing problem with multiple sellers. In this study, we assumed
there is one seller; who can be regarded as a monopolist.
The seller can select both the assignment and the price as
long as they satisfy the stability condition. This situation
is highly advantageous for the seller. Finally, in this study,
we do not consider nonlinear or non-anonymous pricing. It
would be interesting in future work to analyze the effect of
such generalizations of pricing.
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Sviridenko, M.; Vondrák, J.; and Ward, J. 2015. Optimal
approximation for submodular and supermodular optimiza-
tion with bounded curvature. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
1134–1148. SIAM.
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