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Abstract

Much recent work in the AI community concerns algorithms
for computing optimal mixed strategies to commit to, as well
as the deployment of such algorithms in real security appli-
cations. Another possibility is to commit not to play certain
actions. If only one player makes such a commitment, then
this is generally less powerful than completely committing to
a single mixed strategy. However, if players can alternatingly
commit not to play certain actions and thereby iteratively re-
duce their strategy spaces, then desirable outcomes can be
obtained that would not have been possible with just a sin-
gle player committing to a mixed strategy. We refer to such
a setting as a disarmament game. In this paper, we study dis-
armament for two-player normal-form games. We show that
deciding whether an outcome can be obtained with disarma-
ment is NP-complete (even for a fixed number of rounds), if
only pure strategies can be removed. On the other hand, for
the case where mixed strategies can be removed, we provide
a folk theorem that shows that all desirable utility profiles
can be obtained, and give an efficient algorithm for (approxi-
mately) obtaining them.

Introduction

Disarmament is often a desired objective in international re-
lations, but it is not always easy to reach the end goal. A key
problem is that by removing military assets, a country may
leave itself vulnerable to attack if the other country does not
disarm. Therefore, disarmament typically happens in a se-
quence of carefully designed stages, so that neither country
is ever too exposed at any stage. Besides reductions in mili-
tary assets, we can also take disarmament as a metaphor for
other strategic situations. For example, two companies may
each hold a portfolio of patents that could be used to inflict
significant damage on the other company, and the companies
may wish to make a sequence of legal agreements to reduce
the risk on both sides. In these situations, once one of the
players deviates from the disarmament protocol, the possi-
ble actions each side has remaining can strategically interact
in complex ways to determine the final payoffs realized.

In order to achieve a high level of generality, in this pa-
per, we consider disarmament in general two-player normal-
form games, as illustrated by the following example.
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Example 1 (Extended Prisoner’s Dilemma). Consider the
following modified version of the prisoner’s dilemma.

Cooperate Defect Painful
Cooperate 3,3 0,4 0.1,0

Defect 4,0 1,1 0.5,0.5
Painful 0,0.1 0.5,0.5 0,0

Table 1: Payoff matrix of Extended Prisoner’s Dilemma

Strategy Defect strictly dominates strategies Cooperate
and Painful for both players. Thus, the only Nash (or even
correlated, or coarse correlated) equilibrium of this game is
(Defect, Defect), with utilities (1, 1). If a single player can
commit, this does not help, because the other player would
still play Defect. On the other hand, suppose both players
can alternatingly remove their strategies and act according
to the following protocol. In the first round, Row removes
Defect. Since Defect is still Column’s dominant strategy, the
only Nash equilibrium of the reduced game is (Painful, De-
fect) with utilities (0.5, 0.5). Next, Column removes his strat-
egy Defect. In the remaining game, Cooperate has become a
dominant strategy, resulting in utilities (3, 3). At each step in
this protocol of removing strategies, deviating from the pro-
tocol and playing the game remaining at that point is domi-
nated by (3, 3). Thus, both players are best off following the
disarmament protocol.

In this paper, we first formalize the idea of a disarmament
game, as played on top of a game represented in normal
form (as illustrated in Example 1). We introduce the com-
putational problem DISARM, which asks whether there is
an equilibrium of the disarmament game leading to some
desired specified outcome, and a variant K-DISARM in
which there are only K rounds of disarmament. We show
both problems to be NP-complete. We then introduce a
mixed disarmament variant that allows the removal of mixed
strategies, by upper-bounding the probabilities on individ-
ual pure strategies. Here our results are positive: we show a
type of folk theorem holds (without repetition of the game!),
namely that for any feasible utilities that exceed players’ se-
curity levels, there is an equilibrium achieving at least those
utilities. Our proof is constructive, and in fact shows that we
can approximately obtain the desired result in approximate
equilibrium using only few rounds of disarmament.
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Related Work

Game-theoretic commitment, especially to mixed strate-
gies, has received significant recent attention in the mul-
tiagent systems literature, in large part due to their ap-
plication in various security domains (Tambe 2011). In a
two-player normal-form game, an optimal mixed strategy
to commit to can be found in polynomial time (Conitzer
and Sandholm 2006; von Stengel and Zamir 2010), though
there are hardness results for Bayesian and extensive-
form games (Conitzer and Sandholm 2006; Letchford,
Conitzer, and Munagala 2009; Letchford and Conitzer 2010;
Bošanský et al. 2015). There is also significant interest in
other types of action one can take before the game in order
to make the outcome more favorable. This includes promis-
ing payments if a certain outcome is reached (Monderer and
Tennenholtz 2004; Anderson, Shoham, and Altman 2010;
Deng, Tang, and Zheng 2016) or getting to choose from
multiple possible utilities in the entries (Brill, Freeman, and
Conitzer 2016). Also, mechanism design involves a special
player, the designer, committing to the mechanism before-
hand. But in all these cases, there is only one commitment
step before the game is played, unlike in this paper.

Definitions

We define disarmament games based on the normal-form
representation, as in the example provided in the introduc-
tion. We restrict attention to two-player games throughout.
A normal-form game is defined by G = 〈S0, S1, u0, u1〉,
such that for each player b, his set of pure strategies is Sb and
his utility function is ub : S0 × S1 → R, where ub(s0, s1)
denotes player b’s utility when player 0 plays s0 and player
1 plays s1. Moreover, for T0 ⊆ S0 and T1 ⊆ S1, the game
induced by T0 and T1 is the two-player normal-form game
GT0,T1

= 〈T0, T1, u0, u1〉, where u0 and u1 are restricted to
T0×T1. As usual, we use −b to denote the player other than
b. For convenience, the utility for each player is normalized
into the interval [0, 1].

We now define the disarmament game GD(G) on top
of this normal-form game. This disarmament game con-
sists of a disarmament stage during which players alter-
natingly remove nonempty sets of strategies from S0 and
S1, and a game play stage—triggered when a player re-
moves nothing—during which they play whatever normal-
form game remains. Note that many disarmament sequences
can result in the same state [T0, T1, b] (where b is the player
to move); rather than duplicate this state many times in the
game tree, we represent the tree as a directed acyclic graph
(DAG) in which each state occurs only once. Note the game
is one of perfect information, except that the players move
simultaneously in the game play stage. We now present the
extensive form of the game precisely.1

Definition 1 (Disarmament Game). The disarmament game
GD(G) is defined as an extensive-form game as follows.

1Formally, what we present is not exactly the extensive form
because (1) we use a DAG rather than a tree and (2) the terminal
nodes are associated with the game to be played in the game-play
stage rather than directly with utilities, but it is straightforward to
extract the formal extensive form from this.

• The set of disarmament actions A: {X0 | ∅ �= X0 �
S0} ∪ {X1 | ∅ �= X1 � S1} ∪ {Play}, where Xb denotes
the set of strategies to keep and Play denotes ending the
disarmament stage;

• The set of non-terminal nodes H:
{[T0, T1, b] | ∅ �= T0 ⊆ S0, ∅ �= T1 ⊆ S1, b ∈ {0, 1}};

• The set of terminal nodes Z:
{[T0, T1] | ∅ �= T0 ⊆ S0, ∅ �= T1 ⊆ S1};

• The player selection function ρ : H → {0, 1}:
ρ([T0, T1, b]) = b;

• The available-actions function χ : H → 2A, where :
χ([T0, T1, b]) = {Xb | ∅ �= Xb � Tb} ∪ {Play};

• The successor function γ : H ×A → H ∪ Z:

– γ([T0, T1, 0], X0) = [X0, T1, 1];
– γ([T0, T1, 1], X1) = [T0, X1, 0];
– γ([T0, T1, b],Play) = [T0, T1];

• The root of the game is root = [S0, S1, 0].

In the terminal nodes z = [T0, T1], players 0 and 1 play the
normal-form game GT0,T1

, resulting in their final utilities.

Definition 2 (Strategy in GD). A strategy σb =
(α, β) for GD consists of disarmament strategy α ∈∏

h∈H | ρ(h)=b χ(h) for non-terminal nodes and play strat-
egy β ∈ ∏

z=[T0,T1]∈Z Δ(Tb) for terminal nodes (where
Δ(Tb) is the set of distributions over Tb).

Note we restrict our attention to deterministic behavior
during the (perfect-information) disarmament stage.

Definition 3 (On-path history & outcome). For a strat-
egy profile (σ0, σ1) with σ0 = (α0, β0) and σ1 =
(α1, β1), denote the on-path history by P = (h0 =
root, h1, · · · , hK , hK+1 = z = [T0, T1]) where for all i,
γ(hi, αρ(hi)(hi)) = hi+1. The outcome of the strategy pro-
file (σ0, σ1) is (β0(z), β1(z)).

We say an on-path history has length K if it contains K
non-terminal nodes, excluding the root. In a slight abuse of
notation, let ub(o) be player b’s (expected) utility for out-
come o. A strategy profile (σ0, σ1) forms a Nash equilibrium
if and only if no player can increase his utility by deviating
to another strategy.

We consider the following computational problem:

Definition 4 (DISARM problem). In DISARM, given a
disarmament game GD(G) and an outcome o∗ = (β∗

0 , β
∗
1),

the objective is to determine whether there exists a Nash
equilibrium (σ∗

0 , σ
∗
1) such that the outcome is o∗.

We also consider a variation of DISARM problem, called
K-DISARM.

Definition 5 (K-DISARM problem). In K-DISARM,
given a disarmament game GD(G) and an outcome o∗ =
(β∗

0 , β
∗
1), the objective is to determine whether there exists a

Nash equilibrium (σ∗
0 , σ

∗
1) such that the outcome is o∗ and

the length of its induced on-path history is at most K.
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Computational Complexity

Since the number of game states is exponential, an efficient
algorithm cannot output the entire strategy profile under the
standard representation that lists each player’s action at ev-
ery game state. We next show that a restricted class of strate-
gies that can be represented efficiently suffices. These strate-
gies directly specify the on-path behavior and require that
minimax strategies are used off-path.

On-path Histories are Sufficient

Recall that the on-path history of a profile of strategies in an
extensive-form game consists of the actions that the players
take when nobody deviates. For every non-terminal node in
the on-path history, one can define the security level for each
player.

Definition 6 (Security level). The security level secb
for player b in a two-player normal-form game G =
〈T0, T1, u0, u1〉 is the utility that player b can guarantee
himself no matter how the other player plays. Formally,

secb(GT0,T1
) = max

βb∈Δ(Tb)
min

β−b∈Δ(T−b)
ub(βb, β−b)

We are going to show that the security level is the essen-
tial quantity to determine whether an on-path history can be
induced by a Nash equilibrium strategy profile or not. In or-
der for a specific outcome to be reached in Nash equilib-
rium, every player must have strong enough incentive to fol-
low the on-path history, rather than deviating, at any point
in the on-path history. To minimize incentive to deviate, we
may assume that if someone deviates, the other player will
act to minimize the deviator’s utility. This does not prevent
the latter player’s strategy from being a best response, be-
cause such punishment will not occur on the path of play.
The most effective punishment will be to bring the deviator
down to his security level, which is possible by the minimax
theorem (von Neumann 1928).

Lemma 1. P is an on-path history induced by a Nash equi-
librium strategy profile with outcome o if and only if for each
non-terminal node [T0, T1, b] ∈ P , secb(GT0,T1

) ≤ ub(o).

Proof. “⇒”: If there exists a non-terminal node h =
[T0, T1, b] ∈ P such that secb(GT0,T1

) > ub(o), then at
the node h, player b can deviate to choose Play and play
a strategy in argmaxβb∈Δ(Tb) minβ−b∈Δ(T−b) ub(βb, β−b)
in the induced game to guarantee himself a utility at least
secb(GT0,T1

), which is larger than ub(o).
“⇐”: If for each non-terminal node h = [T0, T1, b] ∈

P , secb(GT0,T1
) ≤ ub(o), consider a strategy profile that

specifies to:

• For nodes in the on-path history, choose the action to fol-
low the on-path history; and for every non-terminal node
not in the on-path history, choose Play;

• For an off-path terminal node z = [Xb, T−b] with
∅ �= Xb ⊆ Tb (where this node was reached
because b deviated from the path), player −b plays
argminβ−b∈Δ(T−b) maxβb∈Δ(Xb) ub(βb, β−b).

We claim that such a strategy profile forms a Nash equi-
librium with outcome o. Suppose, for the sake of contra-
diction, that player b benefits from deviating to another
strategy resulting in induced on-path history P ′. Let the
longest common prefix of P and P ′ be Ppre, ending with
h∗ = [T0, T1, b]. Thus, player b deviates at h∗. Then, the
disarmament stage ends in at most one round after h∗, since
either player b deviates to choose Play, or player b chooses a
different subset Xb to keep but player −b chooses Play im-
mediately after that. Therefore, the induced game is GXb,T−b

with ∅ �= Xb ⊆ Tb, and −b will act to minimize b’s utility.
By the minimax theorem,

min
β−b∈Δ(T−b)

max
βb∈Δ(Xb)

ub(βb, β−b)

= max
βb∈Δ(Xb)

min
β−b∈Δ(T−b)

ub(βb, β−b)

≤ max
βb∈Δ(Tb)

min
β−b∈Δ(T−b)

ub(βb, β−b) ≤ ub(o)

This proves that we can restrict our attention to strategy
profiles that explicitly specify on-path play and implicitly
assume immediate Play and minimax punishment of devia-
tors off-path. Moreover, note that the length of an on-path
history is O(|S0|+ |S1|) and the security level can be com-
puted via a linear programming. Hence, an on-path history
serves as a polynomial-length, polynomially verifiable cer-
tificate for the DISARM (or K-DISARM) problem, which
is hence in NP.

Complexity of K-DISARM and DISARM
In an on-path history with length K, the total number of
turns in which a player chooses an action other than Play is
at most K. For K ≤ 2, K-DISARM is in P since there is
a unique on-path history leading to the node o∗, namely the
one where each player removes all the strategies he needs
to remove in his one (non-Play) disarmament turn. We now
show that 3-DISARM is NP-complete by a reduction from
the BALANCED-VERTEX-COVER problem.

Definition 7. In VERTEX-COVER, the objective is to
check in graph (V,E) whether there exists a subset of
the vertices V ′ ⊆ V , with |V ′| = L, such that ev-
ery edge e ∈ E has at least one of its endpoints in V ′.
BALANCED-VERTEX-COVER is the special case of
VERTEX-COVER in which L = |V |/2.

BALANCED-VERTEX-COVER is NP-complete via
a reduction from VERTEX-COVER (Conitzer and Sand-
holm 2006).

Theorem 1. 3-DISARM is NP-complete.

Proof. Given an instance of BALANCED-VERTEX-
COVER with |V | = n and |E| = m, we construct a two-
player normal-form game G(V,E) = 〈S0, S1, u0, u1〉, in
which S0 = {�} ∪ V and S1 = {�} ∪ V ∪ E. The utilities
are defined as follows:

• U0(�, �) = U1(�, �) = 1− 2
n ;

• U0(v, �) = 2 for all v ∈ V ;
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• U0(v, v
′) = 1 for all v, v′ ∈ V and v �= v′;

• U1(�, e) = 2 for all e ∈ E;
• U1(v, e) = 1 for all e ∈ E, v ∈ V and v �∈ e;

and unspecified utilities are simply 0. The desired outcome
o∗ is (�, �).

If there exists a BALANCED-VERTEX-COVER with
vertices V ∗ then the on-path history with h1 = [{�} ∪
V ∗, S1, 1], h2 = [{�}∪V ∗, {�}∪V, 0] and h3 = [{�}, {�}∪
V, 1] is induced by a Nash equilibrium strategy profile with
outcome o∗ by Lemma 1. This is because if player 0 deviates
in the first round, player 1 can punish player 0 by playing
any strategy e ∈ E; if player 1 deviates in the second round,
player 0 can punish player 1 by playing uniformly from V ∗,
which will result in a utility of 0 for player 1 at least 2/n
of the time because V ∗ is a vertex cover of size n/2; and
if player 0 deviates in the third round, player 1 can punish
player 0 by playing uniformly from V ∗, which will result in
a utility of 0 for player 0 at least 2/n of the time.

For the other direction, suppose there exists an on-path
history leading to o∗ induced by a Nash equilibrium strategy
profile. Note that (�, �) cannot be a Nash equilibrium in the
induced game if for the terminal node z = [T0, T1], V ∩
T0 �= ∅ or E ∩ T1 �= ∅. Therefore, we have T0 = {�} and
T1 ⊆ {�} ∪ V . In 3-DISARM, there are at most 4 different
induced games in the on-path history. These must be GS0,S1 ,
GS′0,S1

, GS′0,T1
and G{�},T1

, where S′
0 = {�}∪V ′ for some

V ′. According to Lemma 1, we must have sec1(GS′0,S1
) ≤

1− 2
n and sec0(GS′0,T1

) ≤ 1− 2
n .

In GS′0,S1
, since U1(v, e) = 1 for all e ∈ E, v ∈ V

and v �∈ e, if there exists an e′ ∈ E uncovered by V ′,
then player 1 can deviate to Play and then play strategy e′ to
guarantee himself utility 1. Thus, V ′ must be a vertex cover.
As for GS′0,T1

, if |V ′| > n/2, then player 0 can play uni-
formly among the strategies in V ′ to guarantee himself util-
ity 1− 1

|V ′| > 1− 2
n . Thus, |V ′| cannot be larger than n/2.

Therefore, V ′ is a solution to the BALANCED-VERTEX-
COVER problem.

The fact only 3 rounds are available is essential for the
reduction above to work: if there are more rounds, disarma-
ment may be possible even without a balanced vertex cover,
by alternatingly removing vertices for player 0 and edges
for player 1 while ensuring that the remaining vertices for
player 0 form a vertex cover for the remaining edges only.
However, with a number of modifications to the reduction,
we can prove that any successful disarmament of the modi-
fied game requires a balanced vertex cover for all the edges
at some point in the process. We defer all remaining proofs
to the full version due to space limitations,
Theorem 2. DISARM is NP-complete.

Mixed Disarmament

So far, we have considered only removing pure strategies.
But pure disarmament has its limitations. Consider the stan-
dard prisoner’s dilemma:

If either player removes his Defect strategy, the other
player has no motivation to do the same: he would prefer

C D
C 3,3 0,4
D 4,0 1,1

Table 2: Payoff matrix for the prisoner’s dilemma

to play Defect. The former player, anticipating this, would
not remove Defect, either.

However, now suppose that the players are able to remove
mixed strategies. It turns out under this setting, there is a way
to get to cooperation.

Example 2. Consider the prisoner’s dilemma as presented
above, and suppose players can reduce their strategy spaces
by limiting the maximum probability they can put on D. No
matter how players reduce their strategy space, it is always
a dominant strategy to put as much probability on Defect as
possible. Therefore, in any sequence of disarmament steps,
the player who should take the last disarmament step that re-
duces the probability he can put on D will have no incentive
to do so. As a result it is impossible to reduce the probability
that either player puts on D at all.

This is reminiscent of how in a finitely repeated prisoner’s
dilemma, cooperation cannot be attained. But the same is
not true for infinitely repeated prisoner’s dilemma, per the
folk theorem. It turns out we can make a similar move here.
Suppose that after each disarmament step, we flip a coin that
comes up Heads with probability δ. If it comes up Heads, the
players stop disarming and play the game. Otherwise, dis-
armament continues. In this way, neither player ever knows
that she is about to take the last disarmament step.

Specifically, consider the following procedure. In each
disarmament step, each player reduces the maximum prob-
ability he can put on D by a factor k ∈ (0, 1), so that once
each player has taken t disarmament steps, he can put at
most probability kt on D. Once the coin comes up Heads,
of course both players will put maximum probability on D.
For player 0, the expected utility of continuing to follow the
protocol, given that both players have already reduced to kt,
is

∞∑

t′=0

(1− δ)2t
′
δu0(k

t+1+t′ , kt+t′)

+

∞∑

t′=0

(1− δ)2t
′+1δu0(k

t+1+t′ , kt+1+t′)

where u0(p, q) = 1pq + 0(1 − p)q + 4p(1 − q) + 3(1 −
p)(1− q) is the utility to player 0 when the players play the
game with limits p and q on D, respectively. On the other
hand, if player 0 deviates at this point and is immediately
punished by player 1 choosing Play, then 0 obtains utility at
most u0(k

t, kt). In order for player 0 to be best off following
the protocol, the former needs to be no less than the latter;
after simplification, we obtain (3δ − 2)(k − 1) ≥ 0. Since
k < 1, we must have δ ≤ 2

3 . Similarly, for player 1, after
simplification, we have (k − 1)(k − 1

3(1−δ) ) ≤ 0. Since δ ≤
2
3 , we have 1− δ ≥ 1

3 . Therefore, 1
3(1−δ) ≤ k < 1.
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To avoid dealing with nasty expressions involving δ in
what follows, we observe that in the limit as δ → 0, the util-
ity for following the protocol converges to 3, which is the
utility that would be obtained after “infinitely many rounds
of disarmament.” We can use this fiction—that following the
protocol results in playing the game after infinitely many
rounds of disarmament—to facilitate the analysis. Specifi-
cally, in this infinite-length model, all that is needed to en-
sure that nobody deviates is that the utility for deviating
never exceeds 3. (In Lemma 2, we prove formally that as
δ → 0, we reach the infinite-length model in the limit.)

Example 3. Consider now the following slightly different
version of the prisoner’s dilemma in which a player re-
ceives utility 12 instead of 4 when he plays D while the
other player plays C. As it turns out, in this game it is
not possible to reach the (C,C) outcome with the infinite-
disarmament model. The problem is that if we were reach a
point where both players have achieved certain values for
the upper bound on D—for example, 1/2—then deviation at
that point would give at least 0.25·3+0.25·12+0.25·1 = 4,
which is more than the 3 from reaching (C,C). Moreover we
cannot “jump over” these values. On the other hand, this is
not really a problem, in the sense that both players would ac-
tually be better off with this profile than with (C,C). Thus,
this example is consistent with the following claim: any suf-
ficiently high utilities that occur in the game can be obtained
via disarmament.

Specifically, we can attain utilities (4, 4) for the players
with the following disarmament sequence (in the infinite-
length model). Let pt be the maximum probability on D
after 2t disarmament steps, initialized to p0 = 1. Both
players take turns to reduce the maximum probability to
pt+1 = 9pt−1

8pt+3 , which converges to 1
2 as t → ∞. In this

case, player 1’s utility from deviation after t steps is exactly
4 (so player 1 is indifferent2) while player 0’s incentive to
deviate is smaller.

Motivation. In practice, it is easy to imagine how one could
commit to not play a given pure strategy, but perhaps this
is more difficult for the case of mixed strategies. Of course,
the issue is similar for the case of committing to a mixed
strategy, and yet this has found plenty of applications. Com-
mitment to a mixed strategy is usually achieved by repu-
tation, for example by the follower observing the leader’s
actions many times before acting. The same might work in
our model. Alternatively, one could look for some unrelated
random variable, such as the weather. If one can make it so
that one cannot play a given pure strategy if it is (say) cloudy,
then this upper-bounds the probability of the strategy at 70%
(assuming it is cloudy 30% of the time). Finally, rather than
interpreting mixed strategies literally as probability distribu-
tions, one can think of these probabilities as representing a
quantitative choice, such as how much of one’s continuum
of resources to devote to a particular course of action, and
then placing upper bounds on this.

2Player 1 can be made to strictly prefer not deviating by reduc-
ing the upper bounds at a slightly slower rate.

Formal Definition and Basic Properties

In mixed disarmament, each player can reduce his strategies
by reducing the maximum probabilities on each of his pure
strategies (with the requirement that at least one of these de-
creases strictly), or choose Play. For convenience, assume
S0 = S1 = [n] and let 0 (and 1) denote a vector of all zeroes
(ones). Therefore, the representation of the game state be-
comes [p0, p1, b] where pb ∈ Δ+(Sb) is the vector of proba-
bility upper bounds for player b. Here, Δ+(Sb) denotes vec-
tors of probabilities summing to at least 1. In the induced
game Gp0,p1

, player b’s strategy βb must satisfy βb ≤ pb
point-wisely.

Strategies, on-path histories, and outcomes in mixed dis-
armament games are defined similarly as in pure disarma-
ment games. For convenience, let C(p) = {μ | |μ|1 =
1 and 0 ≤ μ ≤ p} denote the set of probability distribu-
tions consistent with upper bounds p. The security level in a
mixed disarmament game is defined as follows.

Definition 8 (Security level in mixed disarmament game).
The security level secb for player b in a two-player normal-
form game G = 〈p0, p1, u0, u1〉 is the utility that player b
can guarantee himself no matter how the other player plays.
Formally,

secb(Gp0,p1) = max
βb∈C(pb)

min
β−b∈C(p−b)

ub(βb, β−b)

Note that in game Gp0,p1
, C(p0) × C(p1) is a compact

convex set. Therefore, the minimax theorem still holds for
Gp0,p1

(von Neumann 1928), and so does Lemma 1. Now,
we are ready to demonstrate that as δ → 0, we reach the
infinite-length model in the limit. Throughout, ε-equilibrium
denotes approximate Nash equilibrium in the (standard) ad-
ditive sense.

Lemma 2. Consider a Nash equilibrium (σ0, σ1) =
((α0, β0), (α1, β1)) of the infinite-length disarmament
game, leading to3 terminal node z = [p∗0, p

∗
1]. Then for any

ε > 0, there exists some D > 0 such that for any 0 < δ < D,
we have that (σ0, σ1) is an ε-equilibrium of the δ-coin-toss
disarmament game (where (β0(z), β1(z)) is played when
the coin toss lands Heads).

A Folk Theorem for Mixed Disarmament

The folk theorem for repeated games shows that any utili-
ties that exceed the players’ security levels can be obtained
as an equilibrium of the infinitely repeated game (as the dis-
count factor approaches 1). We now show a similar result
for (non-repeated) mixed disarmament games. (For pure dis-
armament games, the prisoner’s dilemma provides a coun-
terexample.) Let GM

D (G) denote the infinite-length mixed
disarmament game resulting from normal-form game G, and
let utilities (v0, v1) be feasible for G if there exists a mixed-
strategy profile of G that results in these utilities.

Theorem 3. In mixed disarmament games GM
D (G), for all

feasible utilities (v0, v1) with v0 > sec0(G) and v1 >

3Here, leading to means either that we terminate at this node
after finitely many rounds, or that the disarmament stage continues
forever but the upper bounds converge to [p∗0, p

∗
1].
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sec1(G), there exists a Nash equilibrium of GM
D (G) such

that the terminal node z = [p0, p1] of its induced on-path
history satisfies sec0(Gp0,p1) = v0 and sec1(Gp0,p1) = v1.

For any (β0, β1) constituting an equilibrium of Gp0,p1
,

we have ub(β0, β1) ≥ secb(Gp0,p1
); otherwise, player b can

deviate to the strategy that guarantees his security level.
Corollary 1. In mixed disarmament games GM

D (G), for all
feasible utilities (v0, v1) with v0 > sec0(G) and v1 >
sec1(G), there exists a Nash equilibrium of GM

D (G) such
that its outcome o satisfies u0(o) ≥ v0 and u1(o) ≥ v1.

In Theorem 3 and Corollary 1, the induced on-path history
of the Nash equilibrium may have infinite length. Of course,
by Lemma 2, we can come arbitrarily close to this with a
game that will terminate in finite time with probability 1.

A Constructive Proof

In this subsection, we provide a constructive proof for The-
orem 3 via an algorithm to generate the corresponding on-
path history. Following the intuition provided in Example 3,
in each round, the player reduces his upper bounds as much
as possible, i.e., until his opponent’s security level equals his
target utility.

Formally, given target utilities (v0, v1) with correspond-
ing strategy profile (β0, β1), for each player b, let β′

b =
1 − βb. We introduce two parameters θ0 and θ1, initialized
to 1, such that the upper bound vectors are p0 = β0 + θ0β

′
0

and p1 = β1 + θ1β
′
1. For convenience, let Gβ0,β1,θ0,θ1 =

Gβ0+θ0β′0,β1+θ1β′1 . Define an update function f :

f(b, θb, θ−b) = inf{θ′b | sec−b(Gβb,β−b,θ′b,θ−b
) ≤ v−b}

That is, when p0 = β0 + θ0β
′
0, p1 = β1 + θ1β

′
1 and it is

player b’s turn, function f returns the minimum θb such that
player −b’s security level in the induced game is still lower
than or equal to the target utility.

The function f(b, θb, θ−b) can be computed efficiently by
linear programming:

minimize θ′b
s.t. u−b(μb, μ) ≤ v−b ∀μ ∈ C(β−b, θ−b)

μb ∈ C(βb, θ
′
b)

where C(β, θ) = C(β + θ(1 − β)). This program has in-
finitely many constraints of the first type, so we need to show
that an efficient separation oracle exists. The first type of
constraints is equivalent to

max
μ∈C(β−b,θ−b)

u−b(μb, μ) ≤ v−b

whose left-hand side can be computed by a simple water-
filling method that puts as much probability as possible on
the remaining strategy that provides player −b the most util-
ity, given that player b plays mixed strategy μb. Therefore,
an efficient separation oracle exists.

We now present the algorithm for generating the on-path
history (Algorithm 1). Of course, if we require an infinite-
length history, this algorithm will not terminate, but every
point in the history will be eventually generated by it.
Lemma 3. Algorithm 1 produces an on-path history that is
part of a Nash equilibrium and leads to a terminal node z =
[p0, p1] where sec0(Gp0,p1

) = v0 and sec1(Gp0,p1
) = v1.

Algorithm 1: Generate on-path strategy for feasible util-
ities that exceed security levels

Input: G and a target strategy profile (β0, β1)
Output: An on-path history P for GM

D (G)
1 Let β′

0 = 1− β0;
2 Let β′

1 = 1− β1;
3 Let h0 = [1,1, 0], b = 0, t = 0;
4 Let θ0 = θ1 = 1;
5 while θb − f(b, θb, θ−b) > 0 do
6 θb = f(b, θb, θ−b);
7 ht+1 = [β0 + θ0 · β′

0, β1 + θ1 · β′
1, 1− b];

8 b = 1− b;
9 t = t+ 1;

10 ht+1 = [β0 + θ0 · β′
0, β1 + θ1 · β′

1];
11 return h;

Convergence Rate

Theorem 3 guarantees the existence of a Nash equilibrium
with the desired utilities, but its induced on-path history may
have infinite length. From Lemma 2, we know we can ap-
proximate this with a path that (with probability 1) has finite
length, but this still does not tell us whether this is a reason-
able number of rounds. We next show that we can in fact
approximate it in a reasonable number of rounds. Instead of
using coin tosses, here we simply stop after O(T ) rounds,
resulting in an O(n/T ) approximate equilibrium where the
security levels are within O(n/T ) of the desired values.
Theorem 4. In mixed disarmament games GM

D (G), for all
feasible utilities (v0, v1) with v0 > sec0(G) and v1 >
sec1(G), and ε > 0, there exists an nε-Nash equilibrium of
GM

D (G) such that the length of its on-path history is O(1/ε)
and the terminal node z = [p0, p1] satisfies sec0(Gp0,p1

) >
v0 − nε and sec1(Gp0,p1

) > v1 − nε.

Conclusion

We have shown that while disarmament with pure strate-
gies is NP-hard, with mixed strategies a type of folk the-
orem holds and an efficient algorithm exists. Since this is, to
our knowledge, the first paper on this topic, there are many
directions for future research. These including studying the
topic for representations other than the normal form and so-
lution concepts other than Nash equilibrium. One could also
consider different types of mixed disarmament, where the
mixed strategy space is reduced in a way that is different
from putting upper bounds on the probabilities. Of course,
our result shows that upper bounds already allow us to attain
everything that can reasonably be expected. In any case, as
long as the disarmament procedure ensures that the space of
remaining mixed strategies stays compact and convex and
there exists an efficient separation oracle for the LP to com-
pute the update function f , our results should continue to
hold. Another direction is to design algorithms for the pure
disarmament case that work well in practice; in the full ver-
sion of our paper, we give a mixed-integer linear program
formulation for this. Finally, we can look for new applica-
tions of this framework.

478



Acknowledgement

We are thankful for support from ARO under grants
W911NF-12-1-0550 and W911NF-11-1-0332, NSF under
awards IIS-1527434 and CCF-1337215, the Future of Life
Institute, and a Guggenheim Fellowship. We also thank Josh
Letchford for helpful early discussions.

References

Anderson, A.; Shoham, Y.; and Altman, A. 2010. Internal
implementation. In Proceedings of the Ninth International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), 191–198.
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