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Abstract

Consider a situation with n agents or players, where some of
the players form a coalition with a certain collective objec-
tive. Simple games are used to model systems that can decide
whether coalitions are successful (winning) or not (losing).
A simple game can be viewed as a monotone boolean func-
tion. The dimension of a simple game is the smallest positive
integer d such that the simple game can be expressed as the
intersection of d threshold functions, where each threshold
function uses a threshold and n weights. Taylor and Zwicker
have shown that d is bounded from above by the number of
maximal losing coalitions. We present two new upper bounds
both containing the Taylor-Zwicker bound as a special case.
The Taylor-Zwicker bound implies an upper bound of

(
n

n/2

)
.

We improve this upper bound significantly by showing con-
structively that d is bounded from above by the cardinality of
any binary covering code with length n and covering radius
1. This result supplements a recent result where Olsen et al.
showed how to construct simple games with dimension |C|
for any binary constant weight SECDED code C with length
n. Our result represents a major step in the attempt to close
the dimensionality gap for simple games.

Introduction

Consider a multi-agent system, where a coalition of agents
is formed in order to solve a given task and where we have
to predict if the coalition will succeed or not. We restrict
our attention to cases obeying the natural monotonicity con-
dition saying that the superset of any successful coalition
will also succeed. In such a multi-agent system, we need
some sort of system that can compute a prediction: ”yes”
or ”no”. The so-called simple games model such systems,
and simple games can also be viewed as monotone boolean
functions or monotone hypergraphs. The agents in a simple
game are referred to as players, and successful and unsuc-
cessful coalitions will be referred to as winning and losing
coalitions respectively.

A weighted game is a special type of simple game, where
every player is assigned a weight and where a coalition is
successful if and only if the total weight of the players in
the coalition meets or exceeds a given quota. Any simple
game can be implemented as the intersection of one or more
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weighted games, and the dimension (Taylor and Zwicker
1999) of a simple game is the minimum number of weighted
games that we need to implement the simple game in this
way. The dimension plays a key role with respect to storage
requirements and efficiency if the collective decision proce-
dure for a multi-agent system is implemented as the inter-
section of weighted games. Real-world voting systems can
be seen as simple games, and the dimension aspects of real-
world voting systems have been studied intensively within
the field of Computational Social Choice (Kilgour 1983;
Taylor and Zwicker 1993; Cheung and Ng 2014; Freixas
2004; Kurz and Napel 2016).

In this paper, we consider the maximum dimension, dn,
that we can obtain for a simple game with n players. Tay-
lor and Zwicker (1999) have shown that

(
n

�n/2�
)

is an upper
bound for dn by demonstrating how to implement any sim-
ple game as the intersection of no more than

(
n

�n/2�
)

games
(details will follow later). The main contribution of this pa-
per is a constructive major improvement of the generic upper
bound provided by Taylor and Zwicker that we present in the
form of two new and stronger upper bounds.

We apply a technique that – to the best of our knowledge
– has not been used before to translate any simple game into
the intersection of relatively few weighted games. Recently,
Olsen, Kurz, and Molinero (2016) demonstrated a major im-
provement in the lower bound on dn by using theory of er-
ror correcting codes. We use a significantly different and
novel approach based on covering codes to obtain our upper
bounds. The gap between the upper and lower bound has for
some n gone from a factor n to

√
n (roughly) through our

improvement and to a factor lnn
√
n in general. We con-

clude by suggesting a direction that might lead to a further
reduction of the dimensionality gap.

Related Work

Taylor and Zwicker (1999) have constructed a sequence of
games with dimension at least 2

n
2 −1 for n = 2k with k

odd. The dimension of the simple games presented by Tay-
lor and Zwicker was later shown to be exactly 2

n
2 −1 (Olsen,

Kurz, and Molinero 2016). Freixas and Puente (2001) have
shown how to construct another type of simple games with
dimension 2

n
2 −1 for all even n. This lower bound on dn

was recently improved significantly by Olsen, Kurz, and
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Molinero (2016) by establishing a connection to the theory
on error-correcting codes resulting in the following lower
bound:

dn ≥ 1

n

(
n

�n
2 �

)
∈ 2n−o(n) . (1)

Here it might be useful to consider the following identity for
comparison with the previous lower bound:(

n

�n
2 �

)
= (1− o(1))

√
2

πn
2n . (2)

Kurz and Napel (2016) also present a general approach for
the determination of lower bounds for the dimension of a
simple game.

A maximal losing coalition in a simple game is a losing
coalition that has the property that adding any player will
turn it into a winning coalition. Let LM denote the collection
of maximal losing coalitions. Taylor and Zwicker (1999)
demonstrate how to express any simple game as an inter-
section of at most |LM | weighted games implying an |LM |-
upper bound for dn. Kurz and Napel (2016) provide heuris-
tic algorithms based on integer linear programming for con-
structing a representation of a given simple game as an in-
tersection of weighted games.

As mentioned earlier, the dimension of real-world vot-
ing systems has been the focus for several studies. The
Amendment of the Canadian constitution (Kilgour 1983)
and the US federal legislative system (Taylor and Zwicker
1993) have dimension 2. The voting systems of the Le-
gislative Council of Hong Kong (Cheung and Ng 2014)
and the Council of the European Union under its Treaty
of Nice rules (Freixas 2004) have dimension 3. Kurz and
Napel (2016) have established that the dimension of the vot-
ing system of the Council of the European Union under its
Treaty of Lisbon rules is between 7 and 13368.

There are obviously alternative ways for representing sim-
ple games. The codimension (Freixas and Marciniak 2010)
is the minimum number of weighted games it takes to repre-
sent a simple game as a union of weighted games. Consider-
ing arbitrary combinations of unions and intersections leads
to the notion of boolean dimension, which is introduced and
studied in (Faliszewski, Elkind, and Wooldridge 2009).

Outline of the Paper

The next section introduces the notation and the formal de-
finitions for simple games. We also give a brief introduction
for readers not familiar with covering codes. The algorithm
behind our first upper bound on dn is then presented in two
sections. The first of the sections demonstrates how the al-
gorithm works, and the second section contains the technical
details and proofs, including a formal statement of the upper
bound in terms of a theorem. The second upper bound and
our second theorem is then presented in a section, and fi-
nally, we wrap the paper up in the conclusion.

Preliminaries
In this section, we introduce the concepts and definitions that
we consider in the current paper. We start by presenting
formal definitions for simple games. After that we give a
brief introduction to covering codes.

Simple Games

We now formally define simple games:
Definition 1. A simple game Γ = (N,W ) is a pair, where
N = {1, . . . , n} for some positive integer n and W ⊆ 2N

is a collection of subsets of N such that:
• ∅ /∈ W

• N ∈ W

• S ⊆ T ⊆ N and S ∈ W implies T ∈ W

The members of N are referred to as players, and subsets
of N are referred to as coalitions. A coalition is said to be
winning if it is a member of W , and otherwise it is said to
be losing. The first condition says that the coalition with
no players loses, and the second condition ensures that the
coalition containing all players wins. The third condition is
the monotonicity condition that says that any superset of a
winning coalition is also winning. The set of losing coali-
tions is denoted by L = 2N \W .

A coalition is a maximal losing coalition if it is losing
and all of its supersets are winning. The collection of coali-
tions LM ⊂ 2N contains all the maximal losing coalitions.
The collection of minimal winning coalitions Wm is defined
accordingly. A simple game Γ can be defined by either of
the sets W , L, Wm or LM . As an example of the notation
used in this paper, we write Γ(N,LM ) when Γ is a simple
game with players N defined by the maximal losing coali-
tions LM .

The weighted games, which form a proper subset of the
simple games, are defined as follows:
Definition 2. A simple game Γ = (N,W ) is weighted if
there exists a quota q ∈ R+ and weights w1, w2, . . . , wn ∈
R+ such that S ∈ W if and only if

∑
i∈S wi ≥ q. In this

case, we use the notation Γ = [q;w1, w2, . . . , wn].
The intersection Γ1 ∩ Γ2 of the games Γ1(N,W1) and

Γ2(N,W2) is the simple game with players N and W =
W1 ∩W2. We will illustrate the definitions by an example.
Example 1. Imagine you have to pick a team to participate
in a tug of war competition and that you have 5 candidates
for your team: N = {1, 2, 3, 4, 5}. From experience, you
know that a team will win the competition if and only if the
team consists of at least 3 people with a total weight of 300
kg or more. The weights of the 5 candidates are 80 kg, 92
kg, 120 kg, 65 kg, and 100 kg respectively. You now play a
simple game Γ that can be expressed as the intersection of
two weighted games:

Γ = [3; 1, 1, 1, 1, 1] ∩ [300; 80, 92, 120, 65, 100] .

In order to win the game Γ, you need two win in the two
weighted games forming the intersection. As an example,
the coalition {1, 2, 4} loses in Γ even though the coalition
wins in the game [3; 1, 1, 1, 1, 1]. The coalition loses in Γ,
because it loses in the game [300; 80, 92, 120, 65, 100].

As previously mentioned, Taylor and Zwicker (1999)
have shown that any simple game can be expressed as the
intersection of |LM | weighted games: For any game Γ, we
have Γ = ∩T∈LMΓT , where a coalition S wins in ΓT if
and only if S �⊆ T . A weighted representation of ΓT using
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weights 0 and 1 is given as follows: The game has quota 1
and a player in N \ T is assigned the weight 1, and all other
players are assigned weight 0.

The dimension of a simple game can now be formally de-
fined:

Definition 3. The dimension d of a simple game Γ is the
smallest positive integer such that Γ = ∩d

i=1Γd, where the
games Γi, i ∈ {1, 2, . . . , d}, are weighted.

In this paper, we let dn denote the maximum dimension
that we can observe for a simple game with n players.

A maximal losing coalition cannot contain another
maximal losing coalition, so we can apply Sperner’s
Lemma (Lubell 1966) and obtain the following upper bound
on LM :

∣∣LM
∣∣ ≤ (

n
�n/2�

)
. From the construction by Taylor

and Zwicker, we conclude the following:

dn ≤ |LM | ≤
(

n

�n
2 �

)
. (3)

The main objective of this paper is to improve this upper
bound.

We now illustrate the Taylor-Zwicker construction and the
dimension concept by an example:

Example 2. Let the simple game Γ(N,LM ) be defined as
follows:

N = {1, 2, 3, 4, 5, 6, 7}
LM = {{1, 2, 3}, {3, 4, 5, 6}} .

The coalition {1, 2} loses in Γ since {1, 2} ⊆ {1, 2, 3}. The
coalition {1, 4} wins since {1, 4} �⊆ {1, 2, 3} and {1, 4} �⊆
{3, 4, 5, 6}.

If we use the construction by Taylor and Zwicker, we get
this representation of Γ as the intersection of two weighted
games:

Γ = [1; 0, 0, 0, 1, 1, 1, 1] ∩ [1; 1, 1, 0, 0, 0, 0, 1] .

The dimension of Γ is 2 since Γ cannot be weighted. We can
realize this using a proof by contradiction that illustrates a
classical way of establishing lower bounds for the dimen-
sion:

Assume that Γ was weighted with quota q. The coalitions
{1, 2} and {4, 5} are both losing, so the total weight of the
players in the coalitions must be strictly smaller than 2q.
The two coalitions can exchange players and both win after
the exchange: {1, 4} and {2, 5}. We now arrive at a contra-
diction, since the total weight of the players must be at least
2q.

We now turn our attention to covering codes.

Covering Codes

A binary code is technically a set of bit vectors. A bit vector
x = x1x2 . . . xn ∈ {0, 1}n can be viewed as the coalition
Sx = {i ∈ N : xi = 1}. We will use this perspective
and see a binary code as a collection of coalitions in order
to align the notation of binary codes and simple games. The
Hamming distance between two bit vectors is the number of

coordinates, where the two bit vectors differ. Using the per-
spective just described, we can define the Hamming distance
between two coalitions x and y as follows:

d(x, y) = |x \ y|+ |y \ x| .

A binary covering code (Cohen et al. 1997) of length n
and covering radius 1 can consequently be perceived as a
collection C ⊂ 2N of coalitions such that any coalition in
2N is within Hamming distance 0 or 1 from at least one
member of C: ∀x ∈ 2N∃c ∈ C : d(x, c) ≤ 1. As an
example, covering codes have applications within data com-
pression. In this paper, Kn denotes the minimum cardinality
of a binary covering code of length n with covering radius
1.

Example 3. The following set represents a binary covering
code with length 4 and covering radius 1:

C = {{}, {4}, {1, 2, 3}, {1, 2, 3, 4}}
As an example, the coalition {2, 4} is covered by the coali-
tion {4} in C, since the Hamming distance between these
coalitions is 1.

It is not possible to cover all subsets of {1, 2, 3, 4} with
fewer coalitions, since we cannot cover more than 3 ·5 = 15
coalitions with 3 coalitions, and there are 16 coalitions in
total, so our example shows that K4 = 4.

As we saw earlier, a coalition cannot cover more than
n + 1 other coalitions including itself within radius 1, so
we need at least 2n/(n + 1) coalitions for a binary cover-
ing code with covering radius 1. The well-known Hamming
codes (Berlekamp 2015) defined for n = 2m − 1 are so-
called perfect codes that meet this lower bound. For n =
2m, we have the slightly smaller value in the denominator:
Kn = 2n/n (Østergård and Kaikkonen 1998). In general,
it is hard to establish exact values for Kn, but it is not hard
to prove the upper bound Kn ≤ (ln(n+ 1) + 1)2n/(n+ 1)
using a classical result1 from Alon and Spencer (1992) on
computing dominating sets.

The First Upper Bound

From now on, any simple game will be defined using maxi-
mal losing coalitions. Given a simple game Γ(N,LM ), we
now present an algorithm producing a representation of Γ
as an intersection of no more than Kn weighted games. In
this section, we will show how the algorithm works step by
step. Each step will contain a formal explanation, but we
will also illustrate how each step works through an example.
The technical details, including the proof of correctness, will
follow in the next section.

The key idea for the algorithm is the result of a simple
observation expressed by the following lemma:

1Consider the graph, where we have a vertex for each coali-
tion and an edge between two vertices if and only if the distance
between the corresponding coalitions is 1. A covering code corre-
sponds to a dominating set in this graph, where all vertices have
degree n. Alon and Spencer present an upper bound for the size of
such a dominating set. This upper bound is probably well-known
within the coding theory community.
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Lemma 1. If LM = ∪p
i=1Li, then

Γ(N,LM ) = ∩p
i=1Γ(N,Li) .

Proof. Assume that x ⊆ N is losing in Γ(N,LM ). There
must be an y ∈ LM such that x ⊆ y. This means that x loses
in any of the games Γ(N,Li) with y ∈ Li. On the other
hand, x will lose in Γ(N,LM ) if x loses in ∩p

i=1Γ(N,Li),
since x must be a subset of at least one y that is a member
of LM .

The objective for our algorithm is to use the lemma and
partition LM into a small number of sets such that all the
corresponding games are weighted.

The game that we use as an example is the following sim-
ple game with players {1, 2, 3, 4}: A coalition wins if and
only if both of the players 1 and 2 are members of the coali-
tion or both of the players 3 or 4 are members. As an ex-
ample, the coalition {1, 2, 4} wins, since both of the players
1 and 2 have joined the coalition. On the other hand, the
coalition {1, 3} is losing – and, in fact, it is a maximal los-
ing coalition, since this coalition will turn into a winning
coalition if any of the other players join it. As a side remark,
this game belongs to a class of simple games that has been
studied in detail by Freixas and Puente (2001).

We are now ready to describe how our algorithm works:

Input

The input to the algorithm is a simple game Γ(N,LM ). Ex-
ample:

N = {1, 2, 3, 4}
LM = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}

Step 1

Construct a collection of coalitions C ⊂ 2N such that any
coalition in LM is within Hamming distance 0 or 1 from at
least one coalition in C: ∀x ∈ LM∃c ∈ C : d(x, c) ≤ 1.
Example:

C = {{4}, {1, 2, 3}}

Step 2

Let {Lc}c∈C be a partition of LM such that all members
of Lc have distance 0 or 1 to c: ∀x ∈ Lc : d(x, c) ≤ 1.
Example:

L{4} = {{1, 4}, {2, 4}}
L{1,2,3} = {{1, 3}, {2, 3}}

Step 3

For each c ∈ C, we now represent Γ(N,Lc) as a weighted
game [qc;wc

1, w
c
2, . . . , w

c
n]. We prove that Γ(N,Lc) is

weighted for any c ∈ C and provide the details on how
to compute the weights and the quota in Lemma 2 below.
Example:

Γ(N,L{4}) = [2; 1, 1, 2, 0]

Γ(N,L{1,2,3}) = [2; 1, 1, 0, 2]

Table 1: Lower and upper bounds for dn combining our find-
ings with the results from (Østergård and Kaikkonen 1998)
and (Olsen, Kurz, and Molinero 2016).

n Lower bound Upper bound
(

n
�n/2�

)− 1

6 4 12 19
7 7 16 34
8 14 32 69
9 18 62 125

10 36 120 251
11 66 192 461
12 132 380 923
13 166 704 1715
14 325 1408 3431
15 585 2048 6434

Output

Finally, we can use Lemma 1 and express Γ as the intersec-
tion of the weighted games that we have constructed in Step
3: Γ = ∩c∈C [q

c;wc
1, w

c
2, . . . , w

c
n]. Example:

Γ = [2; 1, 1, 2, 0] ∩ [2; 1, 1, 0, 2]

This concludes the description of our algorithm.
In Step 1, we can actually use a binary covering code

of length n with covering radius 1 for any simple game
involving n players. As a consequence, any simple game
can be implemented as the intersection of no more than Kn

weighted games. This allows us to set up the following up-
per bounds on dn using the facts on Kn from the previous
section:

dn ≤ Kn =
2n

n+ 1
for n = 2m − 1 (4)

dn ≤ Kn =
2n

n
for n = 2m (5)

dn ≤ Kn ≤ (ln(n+ 1) + 1)
2n

n+ 1
for all n . (6)

In all three cases, the upper bounds are considerably smaller
than

(
n

�n
2 �
)

which can be seen from (2). The first two upper
bounds represent an improvement on roughly a factor

√
n

and the bounds are all o(
(

n
�n

2 �
)
).

It is important to observe that it might be a bad idea to use
a binary covering code as a ”one size fits all” solution, since
we do not exploit the structure of LM for the specific game
at hand if we follow this approach.

Østergård and Kaikkonen (1998) have listed some upper
bounds for Kn that we also can use as upper bounds for
dn. Table 1 presents these upper bounds together with lower
bounds from (Olsen, Kurz, and Molinero 2016).

Technical Details for the First Upper Bound

We now take another look at our approach, where we for-
mally prove our first upper bound and state the bound as a
theorem.

We have to ensure that our algorithm is correct in the
sense that it is able to express any input game as an inter-
section of weighted games. It is clearly possible to produce
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the collection C in Step 1 and to construct the partition of
LM in Step 2. The algorithm uses the decomposition ap-
proach suggested by Lemma 1, so we only have to check
that all the games considered in Step 3 are weighted.

Lemma 2. Γ(N,Lc) is weighted for any c ∈ C.

Proof. All the members of Lc are maximal losing coalitions,
so it is not possible to find two members of Lc such that one
of them contains the other. This means there are three cases
that we have to consider:

1. ∀x ∈ Lc : x ⊂ c

2. Lc = {c}
3. ∀x ∈ Lc : c ⊂ x

We now show how to express Γ(N,Lc) as a weighted game
in all three cases.

Case 1: The set Lc consists of coalitions, where ex-
actly one element has been removed from c for each mem-
ber of Lc. Let R denote the set of removed elements:
R = ∪x∈Lc

(c \ x). Let us consider a set S that is winning
and is contained in c. For any x ∈ Lc, we know that S is not
contained in x, so S must contain the element that has been
removed from c to form x. In other words, S cannot win in
Γ(N,Lc) unless S \c �= ∅ or R ⊆ S. On the other hand, it is
not hard see that S wins if S \ c �= ∅ or R ⊆ S. This means
that we can implement Γ(N,Lc) as the weighted game with
q = |R| and weights as follows: wi = |R| for i �∈ c, wi = 1
for i ∈ R and wi = 0 for the remaining players.

As an example, we consider the game Γ(N,Lc) with
N = {1, 2, 3, 4, 5}, c = {1, 2, 3, 4} and Lc =
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}. For this game we have R =
{2, 3, 4} and Γ(N,Lc) = [3; 0, 1, 1, 1, 3].

Case 2: In this case, we can use the weighted game with
quota q = 1, where we assign the weight 0 to all players in
c and the weight 1 to all other players.

Case 3: All the members of Lc are constructed by adding
exactly one element to c. Let A denote the set of added
elements: A = ∪x∈Lc

(x \ c). If a coalition S wins and S
only contains players in c∪A, then S has to contain at least
two players in A (otherwise S would lose). Conversely, S
wins if S contains a player not in c∪A or at least two of the
players in A. This implies that Γ(N,Lc) can be expressed as
a weighted game with quota q = 2 and the following weight
distribution: wi = 2 for i �∈ c ∪ A, wi = 1 for i ∈ A and
wi = 0 for the players in c.

An example for case 3: Γ(N,Lc) with
N = {1, 2, 3, 4, 5, 6, 7}, c = {1, 2, 3} and
Lc = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}}. Here we have
A = {4, 5, 6} and Γ(N,Lc) = [2; 0, 0, 0, 1, 1, 1, 2].

We are now ready to formally state the main contribution
of our paper:

Theorem 1. Let Γ(N,LM ) be a simple game and let C ⊂
2N be a collection of coalitions such that ∀x ∈ LM∃c ∈ C :
d(x, c) ≤ 1. The dimension of Γ(N,LM ) is bounded from
above by |C|.

Proof. We can use our algorithm to produce a representation
of Γ as the intersection of |C| weighted games. Lemma 1
and Lemma 2 guarantee that our algorithm is correct.

It is important to note that the special case C = LM cor-
responds to the |LM |-upper bound presented by Taylor and
Zwicker (1999).

If we have a binary covering code with covering radius 1,
then we can use it as C in the theorem. We therefore have
the following corollary:

Corollary 1.

dn ≤ Kn

It is important to stress that we only require C to ”cover”
the set LM in the theorem above. We might be able to ex-
ploit the structure of LM in order to achieve a better upper
bound than in the corollary, where the underlying collection
covers all possible coalitions. As an example, we might use
the fact that LM is a Sperner family, where no member con-
tains another member of the family. This explains why we
have chosen to express the bound dn ≤ Kn as a corollary,
since the theorem is a stronger result.

The Second Upper Bound

In this section, we will once again use the key idea from
Lemma 1 and prove another upper bound generalizing the
|LM |-upper bound presented by Taylor and Zwicker (1999).
This upper bound is related to a special type of binary codes
referred to as SECDED codes that are defined as follows:
A SECDED code is a binary code, where any two of the
members have pairwise Hamming distance at least 4.

Theorem 2. Let Γ(N,LM ) be a simple game. The dimen-
sion of Γ(N,LM ) is bounded from above by 1

2 (|LM |+ |C|)
for some collection C ⊆ LM of maximal losing coalitions
satisfying ∀x, y ∈ C : d(x, y) ≥ 4.

Proof. Let M be a maximal set of pairs (x, y) ∈ LM ×LM

such that x �= y and d(x, y) ≤ 3 and such that an element
in LM occurs in no more than one pair. We claim that the
game Γ(N, {x, y}) is weighted for any (x, y) ∈ M . One
member of LM cannot contain another member of LM , so
there are only two possible cases to consider: d(x, y) = 2
and d(x, y) = 3.

First, we will prove that Γ(N, {x, y}) is weighted for the
most complicated case d(x, y) = 3. Without loss of gener-
ality, we assume that x \ y contains two players and y \ x
contains one player. A coalition wins in the game if and only
if: 1) the coalition contains at least one player in N \(x∪y),
or 2) the coalition contains one of the players in x\y and the
player in y \ x. We implement the game Γ(N, {x, y}) as a
weighted game with quota q = 3. The players in N \ (x∪y)
get weight 3. The two players in x \ y get weight 1, and the
player in y \ x gets weight 2. All the players in x ∩ y are
assigned the weight 0.

Let us illustrate the construction for d(x, y) = 3 with
the example with N = {1, 2, 3, 4, 5, 6, 7}, x = {1, 2, 3, 4}
and y = {2, 3, 5}. The corresponding weighted game is
[3; 1, 0, 0, 1, 2, 3, 3].
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The case d(x, y) = 2 is similar but simpler. Here, a coali-
tion wins if and only if the following holds: 1) the coalition
contains at least one player in N \ (x ∪ y), or 2) the coali-
tion contains the player in x \ y and the player in y \ x. In
this case, we can use the quota q = 2 and the following
weights to implement the game Γ(N, {x, y}): The players
in N \ (x ∪ y) get weight 2. The player in x \ y gets weight
1, and the player in y \ x gets weight 1. All the players in
x ∩ y are assigned the weight 0.

Let C be the set of coalitions that have not been paired in
M . All the coalitions in C have pairwise distance at least
4 since M is maximal. The pairs in M and the coalitions
in C considered as single element sets constitute a partition
of LM , where all the corresponding games are weighted.
This partition consists of no more than 1

2 (|LM |− |C|)+ |C|
coalitions.

A corollary of the theorem is as follows:

Corollary 2. The dimension of Γ(N,LM ) is less than |LM |
if LM is not a SECDED code.

Conclusion

We have presented two new upper bounds on the maxi-
mum dimension dn for simple games with n players. The
bounds are related to binary codes and they represent im-
provements of the |LM |-upper bound presented by Taylor
and Zwicker (1999).

The recent development (Olsen, Kurz, and Molinero
2016) for the lower bound of dn can be illustrated as fol-
lows:

2
n
2 −1 → 1

n

(
n

�n
2 �

)
= (1− o(1))

√
2

πn

2n

n
≤ dn . (7)

On the other hand, one of the upper bounds in our paper re-
presents the following improvement with respect to the up-
per bound for n = 2m − 1:

dn ≤ 2n

n+ 1
← (1− o(1))

√
2

πn
2n =

(
n

�n
2 �

)
(8)

The dimensionality gap for the simple games is now con-
siderably smaller and the upper bound is roughly within a
factor

√
n away from the lower bound for some values of n.

As previously mentioned, we only have to cover LM with
a binary covering code with radius 1 to obtain an upper
bound on the dimension as expressed by Theorem 1. It is not
known – at least to the author of this paper – whether it is
possible, but it seems plausible to improve the upper bound
from (8) by using the fact that LM has a certain structure.

The key idea behind our upper bounds is to decompose
LM into a union of collections of maximal losing coalitions
such that any of the simple games defined by the component
collections are weighted. This can be done in many ways,
and it is highly likely that there are smarter decompositions
than the ones presented in our paper. It is an open problem
to find smarter decompositions.
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