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Abstract

In real life, decisions are often made under ambiguity,
where it is difficult to estimate accurately the proba-
bility of each single possible consequence of a choice.
However, this problem has not been solved well in ex-
isting work for the following two reasons. (i) Some
of them cannot cover the Ellsberg paradox and the
Machina Paradox. Thus, the choices that they predict
could be inconsistent with empirical observations. (ii)
Some of them rely on parameter tuning without offering
explanations for the reasonability of setting such bounds
of parameters. Thus, the prediction of such a model in
new decision making problems is doubtful. To the end,
this paper proposes a new decision making model based
on D-S theory and the emotion of ambiguity aversion.
Some insightful properties of our model and the vali-
dating on two famous paradoxes show that our model
indeed is a better alternative for decision making under
ambiguity.

.

Introduction

In real life, due to some factors such as time pressure, lack
of data, noise disturbance, and random outcome of some at-
tributes, decisions often have to be made in the case that no
precise probability distributions over the single possible out-
comes are available. In order to distinguish these cases from
the risk cases (in which the possible outcomes of choice are
already formulated in terms of a unique probability distri-
bution), we called such cases decision making under ambi-
guity. Since decision making under ambiguity is inevitable
in real-world applications, this topic is a central concern
in decision science (Tversky and Kahneman 1992) as well
as artificial intelligence (Dubois, Fargier, and Perny 2003;
Liu 2006; Yager and Alajlan 2015).

In the literature, various theoretic models have been pro-
posed with the aim of capturing how ambiguity can affect
decision making and some of them are based on Dempster-
Shafer theory (Shafer 1976). However, the existing models
still have drawbacks: (i) Some of them still violate a series
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of experimental observation on the human’s choices in real
world, for example, the Ellsberg paradox (Ellsberg 1961)
and the Machina Paradox (Machina 2009). (ii) Some of them
can solve the paradoxes but conditionally by applying some
additional parameters setting. In other words, it is unclear
why a decision maker will select different bounds of param-
eter variations in various situation. Thus, the prediction of
such models in new decision problems is doubtful. More de-
tails discussion can be found in related work section.

To tackle the above problems, this paper will identify a set
of basic principles that should be followed by a preference
ordering for decision making under ambiguity. Then we will
construct a decision model to set a determinate preference
ordering based on expected utility intervals and the emotion
of ambiguity aversion by using evidence theory of Dempster
and Shafer (D-S theory) (Shafer 1976) and the generalised
Hartley measure (Dubois and Prade 1985). Accordingly, we
will reveal some insightful properties of our model. Finally,
we will valid our model by solving two famous paradoxes.

This paper advances the state of art in the field of
decision-making under uncertainty in the following aspects:
(i) identify a set of basic principles for comparing interval-
valued expected utilities; (ii) give a normative decision
model for decision making under ambiguity; (iii) disclose
a set of properties, which are consistent with human’s in-
tuitions; and (iv) use our model to solve both well-known
Ellsberg paradox and Machina paradox without any extra
parameters setting, which most of the existing models can-
not.

The remainder of this paper is organised as follows. First,
we recap some basic concepts of D-S theory. Second, we
give the formal definition of decision problems under ambi-
guity. Third, we discuss some principles for setting a proper
preference ordering in decision making under ambiguity.
Fourth, we present the our decision making model that em-
ploys the ambiguity aversion to find an optimal choice based
on a set of basic principles. Fifth, we also reveal some prop-
erties of our model. Sixth, we validate our model by show-
ing that it can solve well both Ellsberg paradox and Machina
paradox. Seventh, we discuss the related work. Finally, we
conclude the paper with the further work.

Preliminaries

This section recaps some basic concepts of D-S theory.
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Definition 1 (Shafer 1976) Let Θ be a set of exhaustive and
mutually exclusive elements, called a frame of discernment
(or simple a frame). Function m : 2Θ → [0, 1] is a mass
function if m(∅)=0 and

∑
A⊆Θ m(A)=1.

For Definition 1, if for any m(A) > 0 (A ⊆ Θ), we
have |A| = 1 (i.e., A is a singleton), then m is probability
function. Thus, probability function is actually a special case
of mass function.

Now, based on Definition 1, we can consider the formal
definition of ambiguity degree for a given choice.

Definition 2 Let mc be a mass function over a frame Θc and
|A| be the cardinality of set A. Then the ambiguity degree of
mc, denoted as δc, is given by:

δc =

∑
A⊆Θc

mc(A) log2 |A|

log2 |Θc| . (1)

Definition 2 is a normalised version of the generalised
Hartley measure for non-specificity (Dubois and Prade
1985). Such a normalised version can guarantee the ambi-
guity degree is in the range of [0, 1].

Also, by the concept of mass function in Definition 1, the
point-valued expected utility function (Neumann and Mor-
genstern 1944) can be extended to an expected utility inter-
val (Strat 1990):

Definition 3 For choice c specified by mass function mc

over Θc = {u1, ..., un}, where ui is a real number indicat-
ing a possible utility of choice c, its expected utility interval
is EUI(c) = [E(c), E(c)], where

E(c) =
∑

A⊆Θ

mc(A)min{ui | ui ∈ A}, (2)

E(c) =
∑

A⊆Θ

mc(A)max{ui | ui ∈ A}. (3)

In Definition 3, when |A| = 1 for any mc(A) > 0 (A ⊆
Θ), we have E(c) = E(c). Thus, the interval-valued ex-
pected utility degenerates to the point-valued one. In other
words, the interval-valued expected utility covers the point-
valued expected utility as a special case.

Problem Definition

Now we give a formal definition for the problem of decision
making under ambiguity as follows:

Definition 4 A decision problem under ambiguity is a 6-
tuple (S,X,C, U,Θ,M,�), where

(i) S is the state space that contains all possible states of
nature (exactly one state is true but a decision-maker
is uncertain which state that is);

(ii) X is the set of possible outcomes;
(iii) C = {c : S → X} is the choice set of all options;
(iv) U = {u(c(s)) | ∀c ∈ C, ∀s ∈ S, u(c(s)) ∈ R}, where

u(c(s)) ∈ R (real number) is the utility of the outcome
x ∈ X that is caused by choice c ∈ C in state s ∈ S;

(v) Θ = {Θc | c ∈ C}, where Θc is the utility set for all
possible outcomes of choice c;

(vi) M = {mc | c∈C}, where mc : 2
Θc → [0, 1] is a mass

function to represent the decision maker’s uncertainty
about the utility that choice c could cause; and

(vii) �⊆ C × C is a binary relation to represent the pref-
erence ordering of decision-maker over choices (as
usual, � and ∼ respectively denote the asymmetric and
symmetric parts of �).

Here we must notice that the mass distribution, which rep-
resents the decision maker’s uncertainty about the outcomes
that choice c could cause, is not based on the state space as
the expected utility theory does, but based on the possible
utilities of a choice c. The reason for such a change is that
the decision maker cares more about the ambiguity of pos-
sible utilities rather than the ambiguity of the states of the
world and in some cases, the ambiguity of the states of the
world does not mean the ambiguity of possible utilities. For
instance, suppose a decision maker obtains $10 when the
result of rolling a dice is odd, but obtains $5 when the re-
sult of rolling a dice is even. Now, the dice is unfair, where
the chance of points 1 or 3 or 5 are 1/2 , and the chance
of other points is 1/2. Clearly, in this example, the states
of the world are ambiguity, and multiple probability-values
can be assigned to points 1 or 3 or 5. However, the possible
utilities are unambiguity since one unique probability distri-
bution can be assigned to u($5) with 1/2 and u($10) with
1/2.

Hence, although we define mass function over the set of
possible utilities for convenience, essentially such a mass
function still is obtained based on the uncertainty of states
of world. Thus, we can transform such a mass function over
the state space as well.

Basic Principles

Now, based on Definition 4, we consider how to set the pref-
erence ordering for the choice set in a decision problem
under ambiguity. More specifically, we present some basic
principles the decision maker should obey when he sets a
preference ordering in order to compare two choices in de-
cision making under ambiguity according to their interval-
valued expected utilities. Formally, we have:

Definition 5 Let C be a finite choice set and the interval-
valued expected utility of choice c ∈ C be EUI(c) =
[E(c), E(c)], the ambiguity degree of choice c ∈ C be δ(c),
and S be a state space. Then a binary relation, denoted as
�, over C is a preference ordering over C if it satisfies that
for all c1, c2, c3 ∈ C:

1. Weak order. (i) Either c1 � c2 or c2 � c1; and (ii) if
c1 � c2 and c2 � c3, then c1 � c3.

2. Archimedean axiom. If c1 � c2 and c2 � c3, then there
exist λ, μ ∈ (0, 1) such that

λc1 + (1− λ)c3 � c2 � μc1 + (1− μ)c3.

3. Monotonicity. If c1(s)�c2(s) for all s ∈ S, then c1 � c2.

4. Risk independence. If E(c3)=E(c3), then ∀λ∈(0, 1],

c1 � c2 ⇔ λc1 + (1− λ)c3 � λc2 + (1− λ)c3.
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5. Representation axiom. There exists a function Q :
EUI→� such that

c1�c2⇔Q(EUI(c1))≥Q(EUI(c2)).

6. Range determinacy. If E(c1) > E(c2), then c1 � c2.

7. Ambiguity Aversion. If EUI(c1) = EUI(c2) and δ(c1) <
δ(c2), then c1 � c2.

Principles 1-3 are the standard axioms in the subjective
expected utility theory (Savage 1954). The first means a
preference ordering can compare any pair of choices and
satisfies the law of transitivity. The second works like a
continuity axiom on preferences. It asserts that no choices
are either infinitely better or infinitely worse than any other
choices. In other words, this principle means no lexico-
graphic preferences for certainty.1 The third is a monotonic-
ity requirement, asserting that if the decision maker consid-
ers a choice not worse than the utility of another choice on
each state of world, then the former choice is conditionally
preferred to the latter.

The rest of principles are our own. The fourth means when
comparing two choices, it is unnecessary to consider states
of nature in which the probability value is determined and
these choices yield the same outcome. Moreover, since in
decision making under risk, the probability value of each
state is determined, under this condition, the fourth principle
in fact means when comparing two decisions, it is unneces-
sary to consider states of nature in which these choices yield
the same outcome. That is, this principle requires the prefer-
ence ordering to obey the sure thing principle (Savage 1954)
in case of decision making under risk. The fifth means the
preference ordering can be represented by the quantitative
relation of the real number evaluations based on expected
utility intervals.

By principles 1-5, we can find that the Q function is
monotonic, linear function that satisfies:

Q(EUI(c1) + EU(c2)) = Q(EUI(c1)) + EU(c2),

where EU(c2)=E(c2)=E(c2) is the unique expected util-
ity of choice c2. Clearly, such function also satisfies:

(i) Q(EUI(c1)+a)=Q(EUI(c1))+a; and

(ii) Q(k × EUI(c1))=k ×Q(EUI(c1)),

where a ∈ � and k ≥ 0.
The sixth principle means if the worst situation of a choice

is better than the best situation of another, we should choose
the first one. In fact, together with the fifth principle, it re-
stricts

E(c)≤Q(EUI(c))≤E(c).

The seventh principle reveals the relation of ambiguity de-
gree and the preference ordering. That is, a decision maker
will select a choice with less ambiguity, ceteris paribus.

1Lexicographic preferences describe comparative preferences,
where an economic agent prefers any amount of one good (X) to
any amount of another (Y).

The Ambiguity-Aversion Model

Now we turn to construct an apparatus that considers the im-
pact of ambiguity aversion effect in decision making under
ambiguity. Accordingly, we will be able to set a proper pref-
erence ordering over a set of choices with different expected
utility intervals.

Definition 6 Let EUI(c) = [E(c), E(c)] be the expected
utility intervals of choices c, and δ(c) be the ambiguity de-
gree of choice c. Then the ambiguity-aversion expected util-
ity of choice c, denoted as ε(c), is defined as

ε(c) = E(c)− δ(c)(E(c)− E(c)). (4)

For any two choices c1 and c2, the preference ordering � is
defined as follows:

c1 � c2 ⇔ ε(c1) ≥ ε(c2). (5)

When binary relation � expresses preference ordering, we
can use it to define two other binary relations:

(i) c1 ∼ c2 if c1 � c2 and c2 � c1; and
(ii) c1 � c2 if c1 � c2 and c1 �∼ c2.

From formula (4), we can see that E(c) ≤ ε(c) ≤ E(c),
and the higher ambiguity degree δc is, the more E(c) (the
upper bound of the expected utility interval of a choice) will
be discounted. In particular, when δ = 1 (meaning abso-
lute ambiguity, i.e., m(Θ) = 1), E(c) is discounted to E(c)
(the lower bound of the expected utility interval of a choice).
And when δ = 0 (meaning no ambiguity at all, i.e., all focal
elements are singletons and thus the mass function degener-
ates to a probability function), ε(c) = E(c) = E(c) (i.e., no
discount is possible).

Hence, by Definition 6, we can easily obtain that

ε(c) = δcE(c) + (1− δc)E(c).

In other words, if we consider the parameter δc as the in-
terpretation of an ambiguity attitude. Then, our ambiguity-
aversion expected utility exactly is a special case of the
α-maxmin model (Ghirardato, Maccheroni, and Marinacci
2004), which extends the well-known Hurwicz criterion
(Jaffray and Jeleva 2007) for ambiguity. In other words, we
show a method to obtain the exactly value of ambiguity at-
titude of a decision maker based on the ambiguity degree of
the potentially obtained utility. Nonetheless, we must notice
that the α-maxmin model does not really give a method
to calculate the ambiguity degree, thus it is arbitrary to as-
sume different choices have different ambiguity degrees in
their model. As a result, the α-maxmin model somehow
requires a decision maker to have the same ambiguity atti-
tude to all the choices in a decision making problem, while
in our model, since we give a method to calculate the ambi-
guity degree, it allows the case that the decision maker has
different ambiguity attitudes to different choices.

In the following, we will check whether or not the prefer-
ence ordering � in Definition 6 enables us to compare any
two choices properly based on the basic principles presented
in Definition 5.

Theorem 1 The preference ordering that is set in Definition
6 satisfies the principles listed in Definition 5.
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Proof: We check the theorem according to the principles
listed in Definition 5 one by one.

(i) Since ε(c1) ≥ ε(c2) or ε(c1) ≤ ε(c2) holds for any
c1, c2 ∈ C, by Definition 6, we have c1 � c2 or c2 � c1.
Moreover, suppose c1 � c2 and c2 � c3. Then by Definition
6, we have ε(c1) ≥ ε(c2) and ε(c2) ≥ ε(c3). As a result,
ε(c1) ≥ ε(c3). Thus, by Definition 6 we have c1 � c3. So,
principle 1 in Definition 5 holds for the preference ordering.

(ii) Suppose c1 � c2 and c2 � c3. Then by Definition 6,
we have ε(c1) ≥ ε(c2) and ε(c2) ≥ ε(c3). Since ε(ci) ∈ �
for i = 1, 2, 3, by continuity of the real numbers, we can
always find some λ, μ ∈ (0, 1) such that

λc1 + (1− λ)c3 � c2, c2 � μc1 + (1− μ)c3.

Thus, principle 2 in Definition 5 holds for the preference
ordering.

(iii) Suppose c1(s) � c2(s) for all s ∈ S, then by Defini-
tions 4 and 6, we have u(c1(s))≥u(c2(s)), ∀s∈S. Hence,
by Definitions 2, 3 and 6, and the fact that E(c) ≤ ε(c) ≤
E(c), we can obtain c1 � c2. Thus, principle 3 in Definition
5 holds for the preference ordering.

(iv) By EU(c3)=E(c3)=E(c3) and λ∈ (0, 1] , we have
(1 − λ)EU(c3) ∈ �. Thus, by Definition 6 and λ ∈ (0, 1],
we have

c1 � c2

⇔ ε(c1) ≥ ε(c2)

⇔ λε(c1) + (1− λ)EU(c3) ≥ λε(c2) + (1− λ)EU(c3)

⇔ λc1 + (1− λ)c3 � λc2 + (1− λ)c3.

Thus, principle 4 in Definition 5 holds for the preference
ordering.

(v) Principle 5 can be obtained by Definition 5 directly.
(vi) By the fact that E(c)≤Q(EUI(c))≤E(c), principle

6 always holds for the preference ordering.
(vii) By Definitions 2 and 6, it is straightforward that prin-

ciple 7 holds for the preference ordering. �

Properties

Now we release some insightful properties of our model.
In the theory of rational choice (Hindmoor and Taylor

2015; Suzumura 2016), there are some axioms that we can
impose on our choice rules. One of them is well-known
Houthakker Axiom of Revealed Preference (Houthakker
1950):

“Suppose choices x and y are both in choice sets A
and B. If x ∈ c(A) and y ∈ c(B), then x ∈ c(B) (and,
by symmetry, y ∈ c(A) as well), where c(A) and c(B)
is an optimal choice set for set A or set B.”

The above axiom means that if x is chosen when y is avail-
able, then x is also chosen whenever y is chosen and x is
available. For example, suppose the quality of food in all
the branches of McDonald restaurant is the same in China
and so is that of KFC. Now McDonald and KFC both have
restaurants in Beijing and Shanghai in China. If a girl likes
to have meals in McDonald in Beijing and have meals in
KFC in Shanghai, the axiom states that she should also like

to have meals in KFC in Beijing and in McDonald in Shang-
hai.

Actually, many researchers in the field of the decision-
making (e.g., Suzumura (2016)) advocate that Houthakker
Axiom of Revealed Preference provides a necessary and suf-
ficient condition for observing whether a set of choice func-
tions can be generated by a set of preferences that are well-
behaved (meaning that these preferences satisfy the reflex-
ive, transitive, complete, monotonic, convex and continuous
axioms). Fortunately, we have:

Theorem 2 The preference ordering that is set in Definition
6 satisfies the Houthakker axiom.

Proof: Let choices x and y are in both choice sets A and
B. Suppose that x ∈ c(A) and y ∈ c(B) (c(A) and c(B) are
the optimal choice sets of choice sets A and B, respectively).
Then, by Definition 6, we have ε(x) ≥ ε(y) and ε(y) ≥
ε(z), where z ∈ B (z �= y). Hence, we have ε(x) ≥ ε(z).
Thus, x ∈ c(B). �

Now, we reveal the relation of our models and the ex-
pected utility theory with the following theorem:

Theorem 3 For a decision problem under ambiguity
(S,X,C, U,Θ,M,�), if for two choices c1, c2 ∈ C, we
have |A| = 1 for any mci(A) > 0 (A ⊆ Θ) and i = 1, 2.
Then the ambiguity-aversion expected utility of choice ci is
an expected utility EU(ci) and the preference ordering sat-
isfies:

c1 � c2 ⇔ EU(c1) ≥ EU(c2). (6)

Proof: By |A| = 1 for any mci(A) > 0 (A ⊆ Θ) and
i = 1, 2, we have mci is probability function. Suppose A =
{uj}, then by Definition 3, we have

EU(ci) = E(ci) = E(ci) =
∑

mci(A)uj .

Thus, by Definition 6, we have

c1 � c2 ⇔ EU(c1) ≥ EU(c2).

�
Theorem 3 shows that preference ordering defined in the

expected utility theory is a special case of our model. In
other words, for a choice c under risk (i.e., |A| = 1 for all
mc(A) > 0, where A ⊆ Θ ), the ambiguity-aversion ex-
pected utility ε(c) is the same as the expected utility EU(c).
That is, ε(c) = EU(c).

Also, some properties related to the comparison of two
choices based on the relation of expected utility intervals are
shown as follows:

Theorem 4 Let C be a finite choice set and the interval-
valued expected utility of choice ci ∈ C be EUI(ci) =
[E(ci), E(ci)], and its ambiguity degree be δ(ci). A binary
relation � over C, which is defined by Definition 6, satisfies:

(i) if E(c1) > E(c2), E(c1) > E(c2), and δ(c1) ≤ δ(c2),
then c1 � c2; and

(ii) if E(c1)≥E(c2) and δ(c1)=δ(c2)=1, then c1�c2.
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Table 1: Three Color Ellsberg Paradox
30 balls 60 balls
R: red B: blue G: green

c1 $100 $0 $0

c2 $0 $100 $0

c3 $100 $0 $100

c4 $0 $100 $100

Proof: (i) When E(c1) > E(c2), E(c2) > E(c2) and 0 ≤
δ(c1) ≤ δ(c2) ≤ 1, by Definition 6, we have

ε(c1)− ε(c2)

≥ (1−δ(c2))(E(c1)−E(c2))+δ(c2)(E(c1)−E(c2))

> 0.

Thus, we have c1 � c2.
(ii) By δ(c1) = δ(c2) = 1 and Definition 6, we have

ε(ci)=E(ci)+(1−δci)(E(ci)−E(ci))=E(ci) for i = 1, 2.

Thus, by E(c1) ≥ E(c2), we have c1 � c2. �
Item (i) of Theorem 4 means that if the ambiguity degree

of a choice is not more than that of the other choices, and the
worst and best situations of this choice is better than those of
the other choices respectively, we should make this choice.
And item (ii) of Theorem 4 means that in the case of abso-
lute ambiguity, the decision maker should take the maximin
attitude (i.e., compare their worst cases and choose the best
one).

Paradoxes Analyses

Now we validate our ambiguity-aversion model by solving
two paradoxes (Ellsberg 1961; Machina 2009).

The Ellsberg paradox is a well-known, long-standing ex-
ample about ambiguity (Ellsberg 1961). Suppose in an urn
containing 90 balls, among which 30 are red, and the rest
are either blue or green. Table 1 shows two pairs of decision
problems, each involving a decision between two choices:
c1 and c2, or c3 and c4. A ball is randomly selected from the
urn. And the return of selecting a ball for each choice is $100
or $0. Ellsberg (1961) found that a very common pattern of
responses to these problems is: c1 � c2 and c4 � c3, which
actually violates the expected utility theory.

Now we use our model to analyse this paradox. Firstly,
since the possible utilities of all the choices could be 100 or
0 (here we regard the monetary prizes as the utility values to
simplify the problem), we have

Θc1 = Θc2 = Θc3 = Θc4 = {0, 100}.
Further, since the number of red balls is 30 out of 90 balls,
the probability of that the selected ball is red is 30

90 = 1
3 ; and

although the number of blue or green balls is unknown, it is
known that their total number is 60, and so the probability
that the selected ball is blue or green is 200

300 = 2
3 . Then, by

Definition 4, we have

mc1({100}) =
1

3
, mc1({0}) =

2

3
;

mc2({0}) =
1

3
, mc2({0, 100}) =

2

3
;

mc3({100}) =
1

3
, mc3({0, 100}) =

2

3
;

mc4({0}) =
1

3
, mc4({100}) =

2

3
.

Hence, by Definition 2, the ambiguity of each choice is

δc1 = 0, δc2 =
2

3
, δc3 =

2

3
, δc4 = 0.

Thus, by Definition 3, we have

EUIc1 =
100

3
, EUIc2 = [0,

200

3
],

EUIc3 = [
100

3
, 100], EUIc4 =

200

3
.

Finally, by Definition 6, we have

ε(c1) =
100

3
,

ε(c2) =
200

3
− 2

3
×(

200

3
−0)=

200

9
,

ε(c3) = 100− 2

3
×(100− 100

3
)=

500

9
,

ε(c4) =
200

3
.

Thus, we have c1 � c2 and c4 � c3. Since Ellsberg Para-
dox shows that decision maker exhibits a systematic prefer-
ence for the choices with a deterministic probability distri-
bution for the potentially obtained utility over the choices
with undetermined probability distribution for the poten-
tially obtained utility, a phenomenon known as ambiguity
aversion and our method can solve such a type of paradox.
Thus, our ambiguity-aversion expected utility indeed shows
the decision maker’s ambiguity aversion. Actually, by the
structure of Ellsberg paradox, we will find that it is con-
structed based on the uncertainty of the probability values
that are assigned to some possible utilities and the violation
of the sure thing principle in the subjective expected util-
ity theory. That is, by changing the utilities of the states of
world that two choices yield the same outcome, the prefer-
ence of the decision maker might be changed (e.g., the utility
of green ball have changed from 0 in c1 and c2 to 100 in c3
and c4). However, it does not mean such phenomenon will
happen for any state. In fact, by the fourth principle about
risk independence and our model, we can reveal the essence
of Ellsberg paradox by the following claim:

Claim 1 A paradox of Ellsberg type will not exist if we only
change the utility of all the choices in a state satisfying two
conditions:

(i) the probability value assigned to the state is deter-
mined; and

(ii) all the choices yield the same outcome in such a state.
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Table 2: 50:51 Example
50 balls 51 balls

E1 E2 E3 E4

c1 $80 $80 $40 $40

c2 $80 $40 $80 $40

c3 $120 $80 $40 $0

c4 $120 $40 $80 $0

Recently, Machina (2009) posed the following questions
regarding the ability of Choquet expected utility theory (Co-
letti, Petturiti, and Vantaggi 2014) and some well-known de-
cision making models under ambiguity to cover variations
of the Ellsberg paradox that appear plausible and even natu-
ral. We refer to these variations as examples of the Machina
paradox.

More specifically, considering the first example with two
pairs of choice selections as shown in Table 2. In this 50:51
example, the comparison of c1 and c2 vs. that of c3 and c4
differ only in whether they offer the higher prize $80 on the
event E2 or E3. As argued by Machina, an ambiguity averse
decision maker will prefer c1 to c2, but the decision maker
may feel that the tiny ambiguity difference between c3 and
c4 does not offset c4 objective advantage (a slight advantage
due to that the 51st ball may yield $80), and therefore prefers
c4 to c3.

In our method, since the possible utilities of c1 or c2 could
be 40 or 80 and that for c3 or c4 could be 120 or 80 or 40
or 0, we have Θc1 = Θc2 = {40, 80} and Θc3 = Θc4 =
{0, 40, 80, 120}. Then, by Definitions 4, 2, 3 and 6, we have

ε(c1)=80× 50

101
+40× 51

101
=59.8,

ε(c2)=80−(
50

101
+

51

101
)×(80− 40)× log2 2

log2 2
=40,

ε(c3)=79.6− log2 2

log2 4
×(

50

101
+

51

101
)×(79.6−39.6)=59.6,

ε(c4)=99.8−log2 2

log2 4
×(

50

101
+

51

101
)×(99.8−19.8)=59.8.

Thus, we have c1 � c2 and c4 � c3. Moreover, we will find
that for c1 and c2, although c2 has a small advantage due to
that the 51st ball may yield $80, the decision maker still take
choice c1 for the reason of ambiguity aversion. Whilst, for
c3 and c4, although the ambiguity degree for both choices
are the same, the slight advantage of c4 can still influence
the decision maker’s selection. In other words, our method
can consider the ambiguity aversion of the decision maker
as well as the advantage of higher utility for a decision mak-
ing under ambiguity. So, our method covers well the 50:51
example. Thus, we can make the following claim:

Claim 2 A 50:51 type Machina paradox can be solved by a
decision model that considers both the expected utility inter-
val and the ambiguity aversion attitude of a given decision
maker.

Now we turn to the second type of Machina paradoxes
called the reflection example in Table 3. In this example,

Table 3: Reflection Example
50 balls 51 balls

E1 E2 E3 E4

c1 $40 $80 $40 $0

c2 $40 $40 $80 $0

c3 $0 $80 $40 $40

c4 $0 $40 $80 $0

since c4 is an informationally symmetric left-right reflec-
tion of c1 and c3 is a left-right reflection of c2, any decision
maker who prefers c1 to c2 should have the “reflected” rank-
ing, i.e., c4 is preferred to c3. And if c2 � c1 then c3 � c4.
In recent experimental analyses, some authors found that
over 90 percent of subjects expressed strict preference in the
reflection problems, and that roughly 70 percent with the
structure c1 � c2 and c4 � c3 or c2 � c1 and c3 � c4. And
among those subjects, roughly 2

3 prefer “packaging” the two
extreme outcomes together. That is, c2 � c1 and c3 � c4
(L’Haridon and Placido 2008). And such a result cannot be
explained well by five famous ambiguity models (Baillon
and Placido 2011).

Similarly, in our method, since the possible utilities for all
choices could be 80 or 40 or 0, we have

Θc1 = Θc2 = Θc3 = Θc4 = {0, 40, 80}.
Then, by Definitions 4, 2, 3 and 6, we have:

ε(c1) = 60−(
1

2
+
1

2
)× log2 2

log2 3
×(60−20)=34.8,

ε(c2) = 60− 1

2
× log2 2

log2 3
×(60−20)=47.4,

ε(c3) = 60− 1

2
× log2 2

log2 3
×(60−20)=47.4,

ε(c4) = 60−(
1

2
+
1

2
)× log2 2

log2 3
×(60−20)=34.8.

Thus, we have c2 � c1 and c3 � c4. So our method cov-
ers the reflect example in Machina paradoxes well. In fact,
based on the structure of the reflect example in Machina
paradoxes, we will find that it considers two factors to con-
struct the paradoxes. (i) The ambiguity attitude of different
choices will be different. Thus, even both c1 and c2 have
same expected utility interval, most of the decision mak-
ers still expressed strict preference in the reflection prob-
lems. (ii) The decision maker will be indifferent between
the choices that have the same mass function over the same
set of possible obtained utilities. In this vein, we can make
the following claim to reveal the essence of such a paradox
as follows:
Claim 3 An reflect type Machina paradox can be solved by
a decision model satisfying two conditions:

(i) the decision model can distinguish the ambiguity de-
grees of different choices; and

(ii) the evaluation of two choices should be the same if they
have the same mass function over the same set of utili-
ties.
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Related Work

There are three strands of literature related to our research.
First, there have been various decision models that con-

sider the impact of ambiguity in decision making under
uncertainty. For example, Choquet expected utility model
(Chateauneuf and Tallon 2002; Coletti, Petturiti, and Van-
taggi 2014; Schmeidler 1989) successfully captures the type
of ambiguity aversion displayed in Ellsberg paradox by ap-
plying the Choquet integral to model the expected utility.
Maxmin expected utility (Gilboa and Schmeidler 1989) con-
siders the worst outcome in a decision making under ambi-
guity to find a robust choice. And the α-MEU model (Ghi-
rardato, Maccheroni, and Marinacci 2004) distinguishes dif-
ferent ambiguity attitudes of the decision makers. Also, a
general model called variational preferences (VP) has been
proposed (Maccheroni, Marinacci, and Rustichini 2006) to
capture both MEU and multiplier preferences. Hence, the
smooth ambiguity model (Klibanoff, Marinacci, and Muk-
erji 2005) enables decision makers to separate the effect of
ambiguity aversion from that of risk aversion. However, they
cannot provide an explanation for both two paradoxes that
we analysed in this paper (Baillon and Placido 2011).

Second, some decision models based on D-S theory have
been proposed to solve decision problems under ambiguity.
Generally speaking, various decision models based on D-S
theory can be regarded as the Unique Ranking Order Satis-
faction Problem (UROSP) where the point-value probabil-
ity of each single outcome is unknown or is unavailable.
Ordered weighted averaging model (Yager 2008), Jaffray–
Wakker approach (Jaffray and Wakker 1993), and partially
consonant belief functions model (Giang 2012) have devel-
oped different formulas based on a decision maker’s attitude
to search for solutions to UROSP. However, these models
are based on the assumption that a decision maker’s atti-
tude can be elicited accurately. Unfortunately, it is difficult
to obtain a determinate point value of a decision maker’s
attitude in a uncertain environment. Therefore, to this end
some authors apply some basic notions and terminology of
D-S theory without any additional parameter. TBM (Smets
and Kennes 2008) and MRA (Liu, Liu, and Liu 2013) are
this kind. Nevertheless, both cannot solve the two famous
paradoxes so well as our model proposed in this paper.

Third, in recently years, some decision models (Gul and
Pesendorfer 2014; Siniscalchi and Marciano 2008) have
been proposed with the claim of solving both of these two
paradoxes with some parameter variations. For example, the
expect uncertainty utility (EUU) theory (Gul and Pesendor-
fer 2014) will solve the paradoxes based on the interval-
valued expected utility and the utility indexes (a parameter
variation) applied to the upper and lower bounds of the inter-
val. However, such a model has the following limitations: (i)
It is unclear why a decision maker needs to choose different
utility indexes in different decision problems. (ii) Since such
utility indexes will be obtained after we know the human se-
lection of a given decision problem or a paradox, it is ques-
tionable whether or not such utility indexes have the same
predication power for any new problems. (iii) Such a model
is somehow descriptive rather than normative. As a result, it
has few benefits for the decision support issues. Neverthe-

less, our ambiguity-aversion model can work as a normative
decision making model solving two paradoxes without set-
ting any additional parameters setting.

Finally, for the belief expected utility model in (Jaffray
1989; Jaffray and Philippe 1997), which can be recovered
the mathematical form considered in our model as

V (c) = αV +(c) + (1− α)V −(c),

where α ∈ [0, 1] is a constant, and

V +(c) =
∑

B

φ(B)u(MB),

V −(c) =
∑

B

φ(B)u(mB),

where φ is the Mobius transform of a belief function that acts
as mass function m, B is a set of outcomes, mB and MB are
respectively the worse and best outcomes in set B. However,
since the value of α is the value of a pessimism index func-
tion, determined by the risk attitude or ambiguity attitude of
decision-maker, it should be not changed for the same para-
dox. Thus, for the 50:51 example of Machina paradox, we
find that it is hard to determine a value of α that satisfies the
preference ordering. And if we change the utilities of some
outcomes in Ellsbergs Paradox, the range of α will change.
Therefore, as mentioned in (Jaffray and Philippe 1997), they
just give a descriptive model to accommodate the paradoxes.
And since such α is a parameter, the Jaffray’s model also has
the limitations as the decision model with additional param-
eters. Rather, in our method, since we give a way to calculate
the ambiguity degree, which can change accordingly, we can
avoid the issues of Jaffray’s model.

Conclusion

This paper proposed an ambiguity aversion decision model
based on D-S theory and normalised version of the gener-
alised Hartley measure for nonspecificity for decision mak-
ing under ambiguity. First, we introduce the basic principles
that should be followed when setting the preference ordering
in decision making under ambiguity. Then, we proposed an
ambiguity-aversion model to instantiate these principles and
revealed some insightful properties of our model. Finally, we
validated our models by solving the two famous paradoxes
(i.e., Ellsberg paradox and Machina paradox).

There are many possible extensions to our work. Perhaps
the most interesting one is the axiomatisation and some psy-
chological related experimental studies of our method. To
achieve this goal, we need identify further axioms to de-
rive the ambiguity degree as well as construct a representa-
tion theorem based on the axioms proposed. Another tempt-
ing avenue is to apply our decision model into game the-
ory as (Zhang et al. 2014) did. Finally, although our method
can model the general human behaviour in decision mak-
ing under ambiguity as shown by solving some well-known
paradoxes in the research field of decision-making, it is still
worth discussing the construction of a parameterised model
based on our ambiguity aversion model to describe the indi-
vidual’s behaviour for real world application.
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