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Abstract

In studies of social dynamics, cohesion refers to a group’s
tendency to stay in unity, which – as argued in sociometry
– arises from the network topology of interpersonal ties. We
follow this idea and propose a game-based model of cohe-
sion that not only relies on the social network, but also re-
flects individuals’ social needs. In particular, our model is a
type of cooperative games where players may gain popularity
by strategically forming groups. A group is socially cohesive
if the grand coalition is core stable. We study social cohe-
sion in some special types of graphs and draw a link between
social cohesion and the classical notion of structural cohe-
sion (White and Harary 2001). We then focus on the problem
of deciding whether a given social network is socially cohe-
sive and show that this problem is CoNP-complete. Never-
theless, we give two efficient heuristics for coalition struc-
tures where players enjoy high popularity and experimentally
evaluate their performances.

1 Introduction

Human has a natural desire to bind with others and needs
to belong to groups. By understanding the basic instruments
that generate coherent social groups, one can explain im-
portant phenomena such as the emergence of norms, group
conformity, self-identity and social classes (Festinger 1950;
Huisman and Bruggeman 2012; Hogg 1992). For example,
studies reveal that on arrival to Western countries, immi-
grants tend to form cohesive groups within their ethnic com-
munities, which may hamper their acculturation into the new
society (Nee and Sanders 2001). Another study identifies co-
hesive groups of inhabitants in an Austrian village that cor-
respond to stratified classes defined by succession to farm-
land ownership (Brudner and White 1997).

Most theories of group dynamics rely on two fundamen-
tal drives: cooperation and social needs. Indeed, every group
exists to accomplish certain tasks. Cooperation is desirable
because combining skills and resources leads to better out-
comes. The theory of cooperative games studies distribu-
tion of collective gains among rational agents (Peleg and
Sudhölter 2010). Social need is another important drive of
group dynamics. A society contains complex interpersonal
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relations. The theory of self-categorization asserts that indi-
viduals mentally associate themselves into groups based on
relations such as friendship and trust (Hogg 1992).

Cohesion denotes a tendency for a social group to stay
in unity, which traditionally consists of two views. Firstly,
cohesion refers to a “pulling force” that draws members to-
gether (Festinger 1950); Secondly, cohesion also means a
type of “resistance” of the group to disruption (Gross and
Martin 1952). In (2001), White and Harary propose a notion
of structural cohesion, which unifies these two views.

However, we identify insufficiencies in the existing mod-
els for social cohesion: 1) Cooperative game theory often
misses the crucial social network dimension. 2) The struc-
tural cohesion of a network refers to the minimum number
of nodes whose removal results in network disintegration
(White and Harary 2001); this is a property of the network
on the whole, and does not embody individual needs. Since
cohesion embodies both the micro-focus of psychology (ful-
fillment of personal objectives and needs) and the macro-
focus of sociology (emergence of social classes) (Carron and
Brawley 2000), the main challenge is to build a general but
rigorous model to bridge the micro- and the macro-foci.

In this paper, we define a type of cooperative games
on networked agents. Outcomes of the game not only rely
on the network topology but also reflect individuals’ so-
cial needs. Our model is consistent with existing theories:
Firstly, we follow the network approach to study social phe-
nomena, which is initiated by early pioneers such as Simmel
and Durkheim. Secondly, our game-theoretic formulation is
in line with group dynamics theories that focus on the in-
terdependence among members (Lewin 1943). Thirdly, we
verify that networks with high structural cohesion also tend
to be socially cohesive according to our definition.

People prefer to be in a group where they are seen as valu-
able and popular members. Hence the payoff should reflect
in some sense players’ social positions. Popularity – an im-
portant indicator of social position – arises from interper-
sonal ties such as liking or attraction (Lansu and Cillessen
2011). In particular, (Conti et al. 2013) uses the degrees of
nodes as a measure of popularity and identify the economic
benefits behind gaining popularity. Therefore, payoffs in our
games are defined based on degrees of players.

We summarize our main contributions: (1) We propose
popularity games on a social network and define social co-
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hesion using core stability of the grand coalition. (2) We
show that our notion is consistent with intuition for several
standard classes of networks and connect structural cohesion
with our notion of social cohesion (Thm. 6). (3) We prove
that deciding socially cohesion of a network is computation-
ally hard (Thm. 7). (4) Finally, we present two heuristics that
decide social cohesion and compute group structures with
high player payoffs and evaluate them by experiments.

Related works. The series of works (Narayanam et al.
2014; Michalak et al. 2013; Szczepański et al. 2015a; 2015b;
Szczepański, Michalak, and Wooldridge 2014) investigates
game-based network centrality. Their aim is to capture a
player’s centrality using various instances of semivalues,
which are based on the player’s expected payoff. In con-
trast, our study aims at games where the payoff of players
are given a priori by degree centrality and focus on core sta-
bility. (Chen et al. 2011) uses non-cooperative games to ex-
plain community formation in a social network. Each player
in their game decides among a fixed set of strategies (i.e.
a given set coalitions); the payoff is defined based on gain
and loss which depend on the local graph structures. (Mc-
Sweeney, Mehrotra, and Oh 2014) studies community for-
mation through cooperative games. The payoffs of players
are given by modularity and modularity-maximizing parti-
tions correspond to Nash equilibria. The focus is on com-
munity detection but not on social cohesion. (Moskvina and
Liu 2016) studies strategies to build social networks by es-
tablishing interpersonal ties. Furthermore, our payoff func-
tion is not additively separable and hence does not extends
from their model. Lastly, our work is different from commu-
nity detection (Fortunato 2010). The notion of community
structure originates from physics which focuses on a macro
view of the network, while our work is motivated from group
dynamics and focus on individual needs and preferences.

2 Popularity Games and Social Cohesion
A social network is an unweighted graph G = (V,E) where
V is a set of nodes and E is a set of (undirected) edges. An
edge {u, v} ⊆ V (where u �= v), denoted by uv, repre-
sents certain social relation between u, v, such as attraction,
interdependence and friendship. We do not allow loops of
the form uu. The reader is referred to (Peleg and Sudhölter
2010) for more details on cooperative game theory.
Definition 1. A cooperative game (with non-transferrable
utility) is a pair G = (V, ρ) where V is a set of players, and
ρ : V×2V→R is a payoff function.
A coalition formation of G is a partition of V W =
{V1, . . . , Vk}, i.e.,

⋃
1≤i≤k Vi = V , ∀1≤i<j≤k : Vi ∩Vj =

∅; each set Vi is called a coalition. The grand coalition for-
mation is WG = {V } where V is called the grand coali-
tion. Cooperative games describe situations where players
strategically build coalitions based on individual payoffs. Set
ρW(u) := ρ(u, S) where u ∈ S and S ∈ W .
Definition 2. A non-empty set of players H ⊆ V is blocking
for W if ∀u ∈ H : ρ(u,H) > ρW(u); In this case we say
that W is blocked by H . A coalition formation W of G is
core stable w.r.t. (V, ρ) if it is not blocked by any set H ⊆ V .

Social positions, as argued in sociometry, arise from the
network topology (Cillessen and Mayeux 2004). A long
line of research studies how different centralities (e.g. de-
gree, closeness, betweenness, etc.) give rise to “positional
advantage” of individuals. In particular, degree centrality
refers to the number of edges attached to a node. Despite
its conceptual simplicity, degree centrality naturally repre-
sents (sociometric) popularity, which plays a crucial role
in a person’s self-efficacy and social needs (Zhang 2010;
Conti et al. 2013). Popularity depends on the underlying
group: a person may be very popular in one group while
being unknown to another. Hence individuals may gain pop-
ularity by forming groups strategically. We thus make our
next definition. The sub-network induced on a set S ⊆ V is
G�S = (S,E�S) where E�S = E ∩ S2. degS(u) denotes
|{v : uv ∈ E�S}| and we write deg(u) for degV (u).

Definition 3. The popularity of a node u in a subset S ⊆ V
is pS(u) := degS(u)/|S|.

Note that p{u}(u) = 0 for every node u. If u ∈ S has an
edge to all other nodes in the graph G�S, then u is the most
popular node in S with pS(u) = (|S| − 1)/|S|.
Definition 4. The popularity game on G = (V,E) is a co-
operative game Γ(G) = (V, ρ) where ρ : V × 2V → [0, 1)
is defined by ρ(u, S) = pS(u).

An outcome of the popularity game Γ(G) assigns any
player u with a coalition S	u. The sum of popularity
of members of S equals their average degree in S, i.e.∑

u∈S pS(u) =
∑

u∈S degS(u)/|S| = 2|E�S|/|S|. The
average degree measures the density of the set S, which re-
flects the amount of interactions within S, and thus can be
regarded as a collective utility. In this sense, the popularity
game is efficient in distributing such collective utility among
players according to their popularity.

Social cohesion represents a group’s tendency to remain
united (Cartwright and Zander 1953). We express cohesion
through core stability w.r.t. the popularity game Γ(G): Sup-
pose a coalition formation W is not core stable. Then there
is a set S ⊆ V every member of which would gain a higher
popularity in S than in their own coalitions in W . Thus
there is a latent incentive among members of S to disrupt
W and form a new coalition S. On the contrary, a core sta-
ble W represents a state of the network that is resilience to
such “disruptions”. Thus, when the grand coalition forma-
tion WG = {V } is core stable, all members bind naturally
into a single group and would remain so as long as the net-
work topology does not change.

Definition 5. A network G = (V,E) is socially cohesive
(or simply cohesive) if the grand coalition formation WG is
core stable w.r.t. the popularity game Γ(G).

Example 1. Fig. 1(a) displays G1 = (V1, E1). The popu-
larity pV (i) is 1/3 for i = b, f , and is 1/2 for i = a, c, d, e.
The set {a, b, c} blocksWG1

as each member has popularity
2/3. The only core stable formation is {{a, b, c}, {d, e, f}}.
Adding the edge ad makes G1 cohesive as the popularity
of both a, d in V1 reaches 2/3. Fig. 1(b) displays G2 =
(V2, E2) where pV (a) = 4/5 and pV (i) = 1/5 for all
i = b, . . . , e. This graph is cohesive as WG2 is not blocked.
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Figure 1: The graphs considered in Example 1 are in black.
The added edges are highlighted in red.

However, adding the edge bc will destroy social cohesion as
then {b, c} blocks WG2

. Social psychological studies often
presume that more ties leads to higher cohesion; this exam-
ple displays a more complicated picture: Adding an edge
may establish cohesion, but may also sabotage cohesion.

Theorem 1 (Connectivity). If a coalition formationW of G
is core stable then any S∈W induces a connected subgraph.
Thus any socially cohesive graphs are connected.

Proof. Suppose S = V1 ∪ V2 where V1, V2 are non-empty
and no edge exists between any pair in V1 × V2. Then for
every u ∈ V1, pV1

(u) =
degV1

(u)

|V1| >
degV1

(u)

|S| = degS(u)
|S| =

pS(u). HenceW does not contain S.

By Thm. 1, it is sufficient to consider only coalitions that
induce connected sub-networks of a social network.

Definition 6. A set S ⊆ V is called a social group of G if
S induces a connected sub-network. A group structure is a
coalition formation containing only social groups.

The next theorem shows that socially cohesive networks
have bounded size.

Theorem 2. Let δ(G) be the maximum degree of nodes in
G=(V,E). Then G is socially cohesive only when |V | ≤
2δ(G) unless |V | = 1.

Proof. Suppose |V | > 2δ(G) and |V | > 1. If E = ∅, G is
not socially cohesive by Thm. 1. Otherwise, pick an edge uv.
Then max{deg(u), deg(v)} ≤ δ(G) < |V |/2. This means
that max{pV (u), pV (v)} < 1/2, and the edge {u, v} forms
a blocking set. Thus G is not socially cohesive.

We now investigate our games on some standard classes
of graphs and characterize core stable group structures.
Complete networks. A graph G = (V,E) is complete if any
pair of nodes is linked. Naturally, one would expect com-
plete networks to be socially cohesive.

Theorem 3. Let G be a complete network. The grand coali-
tion is the only core stable group structure.

Proof. Any induced sub-network G�S of a complete net-
work G = (V,E) is also complete. Thus pS(u) =

|S|−1
|S| <

|V |−1
|V | = pV (u). Therefore any player’s popularity is maxi-

mized in the grand coalition V .

Star networks. A star network contains a node c (centre), a
number of other nodes u1, . . . , um (tails) where m > 1, and
edges {cu1, . . . , cum}. Intuitively, the centre c would like to
be in a social group with as many players as possible, while
a tail would like to be with as few others as possible.

Theorem 4. A group structure W of a star network is core
stable iff the centre is in the same social group with at least
half of the tails. Thus, any star network is socially cohesive.

Proof. Take any group structure W and suppose the centre
c is in a social group S with � tails. Then pS(c) = �/(�+ 1)
and for any tail ui ∈ S, pS(ui) = 1/(�+1). All players not
in S has popularity 0.

Suppose � ≥ m/2. Take any set S′ �= S that contains
c. If |S′| ≤ |S|, then pS′(c) ≤ pS(c). If |S′| > |S|, then
pS′(v) < pS(v) for some tail v. In either case S′ does not
block W . Hence W is core stable. Suppose � < m/2. Then
let N be the set of all tails not in S. Then N ∪ {c} blocks
W . ThusW is core stable iff � ≥ m/2.

Complete Bipartite Graph. A complete bipartite graph
Kn,n consists of disjoint sets of nodes V1, V2 with n nodes
each and E = {uv | u ∈ V1, v ∈ V2}. Let W be a group
structure. For every S∈W , we use �(S) and r(S) to denote
|{v | v ∈ S ∩ V1}| and |{v | v ∈ S ∩ V2}|, respectively.
Lemma 1. W is core stable only if ∀S∈W : �(S)≥r(S).
Proof. Suppose there is S ∈ W with �(S) < r(S). Since
m ≥ n, there is H ∈ W with �(H) > r(H). Take any
u ∈ S ∩ V2 and v ∈ H ∩ V1. Then we have pS(u) =

r(S)
�(S)+r(S) < 1

2 and pH(v) =
�(H)

�(H)+r(H) < 1
2 . Hence, the

set {u, v} blocksW as p{u,v}(u) = p{u,v}(v) = 1/2.

We next characterize core stable group structure in Kn,n. In
particular, perfect matchings, i.e., situations when every v ∈
V1 is matched with a unique player in V2, are core stable.
Theorem 5. A group structure W of Kn,n is core stable iff
∀S ∈ W : �(S) = r(S).

Proof. By Lem. 1, if W is core stable then ∀S ∈
W : �(S) = r(S). Conversely, if ∀S ∈ W : �(S) = r(S),
then any v has payoff 1

2 . Thus W is core stable as every
H ⊆ V contains some player with payoff at most 1

2 .

3 Structural Cohesion and Social Cohesion

Definition 7 (White and Harary 2001). The structural co-
hesion κ of a connected graph G is the minimal number of
nodes upon removal of which G become disconnected.
By Def. 7, a larger κ implies that G is more resilient to
conflicts or the departure of group members, and is thus
more cohesive. Moreover, Menger’s theorem states that κ is
the greatest lower bound on the number of paths between
any pairs of nodes. Hence κ is a reasonable measure of
cohesion. We next link κ with our notion of social cohesion.
In (Granovetter 1973), a pair uv /∈ E is seen as a “structural
hole” that forbids communication and is thus referred to as
an absent tie. For each S ⊆ V and u ∈ S, we define:
- fin(u, S) := degS(u) and fout(u, S) := |{v /∈ S | uv ∈
E}| are the numbers of actual ties of u within the group S
and outside S, resp.
- sin(u, S) := |S| − fin(u, S) and sout(u, S) := |{v /∈ S |
uv /∈ E}| are the number of absent ties in S (including u
itself) and outside S, resp.
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Intuitively, if S ⊆ V is blocking, each member u tends
to have many actual ties within S and absent ties outside S,
i.e., high fin(u, S) and sout(u, S), and u tends to have few
absent ties in S and actual ties outside S, i.e., low fout(u, S)
and sin(u, S). Thus, we define for all S ⊆ V , u ∈ S,

γ(u, S) := fin(u, S)sout(u, S)− fout(u, S)sin(u, S) (1)

Lemma 2. For all S ⊆ V , S blocks WG = {V } iff ∀u ∈
S : γ(u, S) > 0.

Proof. For each u ∈ S, pS(u) =
fin(u,S)

fin(u,S)+sin(u,S) and

pV (u) =
fin(u, S) + fout(u, S)

fin(u, S) + fout(u, S) + sin(u, S) + sout(u, S)

The set S blocks WG iff ∀u ∈ S : pS(u) > pV (u), which
can be shown to be equivalent to fin(u, S) ·sout(u, S) >
fout(u, S)·sin(u, S) using the above equalities.

A network G contains a minimal cut A0 ⊆ V of size κ, i.e.,
removing A0 from G decomposes the graph into m distinct
connected components A1, . . . , Am ⊆ V where m ≥ 2. We
further assume that |A1| ≤ · · · ≤ |Am| and A0 is chosen
in a way where |A1| is as small as possible. Let χ be the
size |A1|, and let μ be the largest possible length m of the
sequence of Ai’s. We first look at the case when κ = 1.
Lemma 3. If κ=1 and G is socially cohesive, then χ<2.

Proof. Suppose κ = 1 and χ ≥ 2. Let (A1, . . . , Am) be an
optimal cut sequence. Take u ∈ A1. As G contains a cut
node, fout(u,A1) ≤ 1 and sout(u,A1) ≥ |V | −χ− 1. Then
γ(u,A1) ≥ fin(u,A1) · (|V | − χ − 1) − sin(u,A1). Since
fin(u,A1) + sin(u,A1) = χ,

γ(u,A1) ≥ fin(u,A1)(|V | − χ− 1)− (χ− fin(u,A1))

= fin(u,A1)(|V | − χ)− χ.

Since |V | − χ>χ, γ(u,A1)>0. Thus by Lem. 2, A1 blocks
the grand coalitionWG.

Lemma 4. Suppose μ > 2. Then any network G is socially
cohesive only if χ < κ

μ−2 .

Proof. Suppose μ > 2. Take an optimal cut sequence
(A1, ..., Aμ) and u ∈ V1. Since deg(u) < χ + κ and |V | ≥
μχ+ κ, we have pV (u) <

χ+κ
μ·χ+κ . Suppose χ ≥ κ

μ−2 . Then
μχ − 2χ ≥ κ. One can then derive pV (u) <

χ+κ
μ·χ+κ ≤ 1

2 .
Thus any edge {u, v} in G�V1 forms a blocking set of the
grand coalition formationWG.

Lem. 4 can be used as a (semi-)test for social cohesion
when μ > 2: whenever χ exceeds κ

μ−2 , G is not socially
cohesive. Clearly, more graphs become socially cohesive as
κ gets larger. Summarizing Lem. 3 and 4, we get:
Theorem 6. Let G be a network. (1) If κ = 1, then G is not
socially cohesive for all χ ≥ 2. (2) If κ > 1 and μ > 2, then
G is not socially cohesive for all χ ≥ κ

μ−2 .

Remark. The only case left unexplained is when κ > 1 and
μ = 2. In this case there exist graphs with arbitrarily large χ
but are socially cohesive.

4 The Computational Complexity of

Deciding Social Cohesion

We are interested in the decision problem COH: Given a net-
work G = (V,E), decide if G is socially cohesive.

The distance between two nodes u and v, denoted by
dist(u, v), is the length of a shortest path from u to v in G.
The eccentricity of u is ecc(u) = maxv∈V dist(u, v). The
diameter of the network G is diam(G) = maxu∈V ecc(u).
A graph G = (V,E) is diametrically uniform if all v ∈
V have the same eccentricity; otherwise G is called non-
diametrically uniform. We use NDU2 to denote the set of all
non-diametrically uniform connected graphs whose diame-
ter is at most 2. Our goal is to show that the COH problem
is computationally hard already on the class NDU2.

Theorem 7. The network G belongs to NDU2 iff its nodes V
can be partitioned into two non-empty set V1 and V2, where
V1 = {u | vu ∈ E for all v �= u}.
Let G be a graph in NDU2. We call {V1, V2} as described in
Thm. 7 the eccentricity partition of G. We first present some
simple properties of NDU2.

Lemma 5. The network G in NDU2 is socially cohesive iff
no set S ⊆ V2 blocksWG.

Proof. One direction (left to right) is clear. Conversely,
suppose the network is not socially cohesive. Let S⊂V
be a blocking set of the grand coalition formation, i.e.,
∀u∈S : pS(u)>pV (u). If S ∩ V1 �= ∅. Then ∀u ∈ S ∩
V1 : pV (u) =

|V |−1
|V | . However, pV (u) ≥ |S|−1

|S| ≥ pS(u)

which contradicts that fact that S is a blocking set.

By Lem. 5, the structure of G�V2 is crucial in determining
social cohesion of G. For any S ⊆ V2 and u ∈ S, we recall
the notions fin(u, S), fout(u, S), sin(u, S), and sout(u, S)
from Section 3, but re-interpret these values within the sub-
network G�V2. Hence, we now set fout(u, S) as |{v ∈
V2 \ S | uv ∈ E}|, i.e., the number of ties that u has within
V2 but not in S, the other variables remain as originally de-
fined. Thus

|V2| = fin(u, S) + fout(u, S) + sin(u, S) + sout(u, S) (2)

We then define the value

λ(u, S) =
fin(u, S) · sout(u, S)

sin(u, S)
− fout(u, S)

Theorem 8. A network G in NDU2 is socially cohesive iff
for all S ⊆ V2 there exists v ∈ S s.t. |V1| ≥ λ(v, S)

Proof. By Lem. 5, we only need to examine subsets S ⊆ V2.
Every u ∈ S has pS(u) =

fin(u,S)
fin(u,S)+sin(u,S) and

pV (u) =
fin(u, S) + fout(u, S) + |V1|

|V2|+ |V1| .

Applying (2), S blocks WG iff ∀u ∈ S : pS(u)>pV (u), iff
∀u ∈ S : |V1|< fin(u,S)sout(u,S)

sin(u,S) −fout(u, S)=λ(u, S).
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We now give a sufficient condition for social cohesion
of NDU2. The size of a network is its number of nodes. A
clique is a complete subgraph. The clique number of G, de-
noted by ω(G), is the size of the largest clique. Turán’s the-
orem relates ω(G) with the number of edges in G:

Theorem 9 (Turán 1941). For any p≥2, if a graph G of size
n has more than p−2

2(p−1)n
2 edges, then ω(G)≥p.

Lemma 6. For any social group S ⊆ V , there exists u ∈ S

with fin(u,S)
sin(u,S)≤ω(G�S)−1.

Proof. Let k = ω(G�S) and suppose for all u ∈ S,
fin(u,S)
sin(u,S) > k − 1. Since |S| = fin(u, S) + sin(u, S),

k − 1 < fin(u, S)/(|S| − fin(u, S))

fin(u, S) > k|S| − kfin(u, S)− |S|+ fin(u, S)

fin(u, S) > (k − 1)|S|/k
Thus E�S contains > k−1

2k |S|2 edges. By Thm. 9, G�S con-
tains a (k + 1)-clique, contradicting k’s definition.

The set V1 contains the most socially active members –
those who interact with everyone else. Hence the larger V1

gets, the more likely G will be socially cohesive. There is
a bound such that once |V1| exceeds it, the network G is
guaranteed to be socially cohesive.

Lemma 7. Suppose c = ω(G�V2) and |V2| > c(c−1). Then
G is socially cohesive if |V1| ≥ (c− 1)(|V2| − c).

Proof. Suppose |V2| > c(c − 1), |V1| ≥ (c − 1)(|V2| − c).
Take any S ⊆ V2. If S has a size-c clique, by Lem. 6 there
exists u∈V2 with fin(u,S)

sin(u,S) ≤c−1. Since sout(u, S)≤|V2|−c,

|V1| ≥ (c − 1)(|V2| − c)≥ fin(u,S)
sin(u,S)sout(u, S)>λ(u, S) and

thus G is socially cohesive by Thm. 8.
Let k=ω(G�S). If S contains no c-clique, k≤c−1.

By Lem. 6, fin(u,S)
sin(u,S)≤k−1<c−1. Thus c− |V2|

sin(v,S)≥1.
Since sout(u, S)=|V2|−fin(u, V2)−sin(u, S), λ(u, S) =
fin(u,S)(|V2|−fin(u,V2))

sin(u,S) − fin(u, V2). Since fin(u, S)=|S| −
sin(u, S),

λ(u, S) =
|S| · |V2|
sin(u, S)

− |S|fin(u, V2)

sin(u, S)
− |V2|

Hence, |V1| − λ(u, S) is at least

(c− 1)(|V2| − c)−
( |S| · |V2|
sin(u, S)

− |S|fin(u, V2)

sin(u, S)
− |V2|

)

= |V2|
(
c− |S|

sin(u, S)

)
− c(c− 1) +

|S|fin(u, V2)

sin(u, S)
≥ 0

The last step is by c− |S|
sin(v,S)≥1 and |V2|>c(c−1). By

Thm. 8, G is socially cohesive.

Theorem 10. The problem COH is CoNP-complete. Fur-
thermore CoNP-hardness holds for the class NDU2.

Proof. The complement of COH, COH, asks whether a set
S blocks the grand coalition WG of a given network G;
this problem is clearly in NP and thus COH is in CoNP.
For hardness, we reduce MaxClique (asking whether a graph
contains a clique of a given size k) to COH. CoNP-hardness
of COH then follows from the NP-hardness of MaxClique
(Garey and Johnson 1979).

Algorithm 1 Construction of H given G=(V,E) and k>2

1: Set d := k ·max{deg(u) | u ∈ V }
2: Create G′ by adding k(k−1)+d isolated nodes to G
3: Let V2 be the set of nodes in G′
4: Create a complete graph with (k−1)(|V2|−k)−d nodes;

Let V1 be the set of these nodes
5: Create edges {uv | u ∈ V1, v ∈ V2} to connect V1, V2.

The resulting graph is H

To this end, we construct, for a given G = (V,E) and k > 2,
a graph H ∈ NDU2 as in Alg. 1. Our goal is to show that H
is not socially cohesive iff G contains a clique of size k. It is
clear that H is a NDU2 network with eccentricity partition
{V1, V2}. Let c = ω(G). Suppose c < k. By definition of V1

and V2, we have |V1| − (c − 1)(|V2| − c) = |V2|(k − c) −
k(k − 1) + c(c − 1) − d. Since k>c and |V2|>k(k−1)+d,
|V1|≥(c−1)(|V2|−c). By Thm. 7, H is cohesive.

Conversely, suppose ω(G) ≥ k. Let C ⊆ V2 be a clique
of size k. Take u ∈ C. Since fin(u,C)=k−1, sout(u,C)=
|V2|−k−fout(u,C) and sin(u,C) = 1,

λ(u,C) = (k − 1)(|V2| − k − fout(u,C))− fout(u,C)

= (k − 1)(|V2| − k)− k · fout(u,C)
Hence, λ(u,C)−|V1| = d − kfout(u,C). Since d ≥
k deg(u), λ(u,C) − |V1| > 0. By Lem. 8, G is not socially
cohesive. Therefore, G contains a clique of size k iff H is
not socially cohesive and the reduction is complete.

5 Efficient Heuristics

We propose two heuristics that construct group structures
of a given network where players enjoy high popularity.
These heuristics (partially) solve COH despite COH’s inher-
ent complexity: Each heuristic builds a group structure W
and checks if any set S∈W blocksWG. If G is socially co-
hesive, then no such S will be found; On the other hand, if a
blocking set S is found, G is surely not socially cohesive.
Heuristic 1: Louvain’s method (LM) We observe that
blocking sets of WG are usually tightly connected within,
but are sparsely connected with nodes outside. This prop-
erty corresponds to the well-studied notion of communities
(Fortunato 2010). Therefore, the first heuristic uses a well-
known community detection algorithm, Louvain’s method
(Blondel et al. 2008), to compute a group structure in G.
Heuristic 2: Average payoff (AP) The second heuristic
aims to optimize the average payoffs of members of a coali-
tion. Socially cohesive networks usually have small diame-
ters (≤ 2). Thus we consider neighborhood N(v) := {v} ∪
{u | uv ∈ E} of players v ∈ V . In Alg. 2, let ν(S) be the
average payoff

∑
u∈S ρ(u, S)/|S| in any set S ⊆ V .
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Algorithm 2 AP: Given a network G = (V,E)

1: Initialize set V ′ := V and a group structureW := ∅

2: while |V ′| > 0 do
3: compute νw := ν(N(w) ∩ V ′) for every w ∈ V ′
4: S := N(v) ∩ V ′ such that ∀u ∈ V ′ : νu ≤ νv
5: W :=W ∪ {S}, V ′ := V ′ \ S
6: end while
7: returnW

Figure 2: The results of running LM and AP on graphs with
n = 5, . . . , 18. (a) Accuracy (b) The percentage of graphs
are found core stable by the heuristics (c) The percentage of
nodes with an increased payoff in the found group structure
than in the grand coalition.

Experiments. We evaluate the heuristics on graphs of size
n = 5, . . . , 18. For each size, let s be the total number of
graphs, b be the number of graphs for which the heuristic
finds a blocking set, and c be the number of socially co-
hesive graphs. The heuristic thus correctly solves COH for
b + c graphs. Hence the heuristic has accuracy (b + c)/s.
For n = 5, 6, 7, we enumerate all connected graphs; LM
has accuracy 96.8%, 97.7% and 83.1%, resp., while AP has
85.9%, 68.5% and 69.2%, resp. For each n = 8, . . . , 18,
we generate 105 Erdös-Renyı́ random graphs of size n. As
shown in Fig. 2(a), both heuristics achieve high accuracy. As
n increases, socially cohesive graphs become increasingly
rare. The results show that the heuristics successfully find
blocking sets in almost all cases, with AP performs slightly
better (100% accuracy for n ≥ 12). Note that the fluctu-
ation is within a very small range and is due to the small
graph sizes. We then consider the coalitions constructed by
the heuristics. Fig. 2(b) shows that while LM fails to out-
put core stable group structures, AP achieves core stability
in 60% of the sampled cases when n ≥ 7. Nevertheless,
Fig. 2(c) shows that, compared to the payoffs in the grand
coalition, more nodes get a higher payoff in the coalitions
identified by LM.
Real world networks. We further evaluate the heuristics on
8 real-world networks: karate club ZA (Zachary 1977), dol-
phins DO (Lusseau et al. 2003), college football FT (Girvan
and Newman 2002), Facebook FB, Enron email network EN
(Leskovec et al. 2009), and three physics collaboration net-
works AS, CM and HE (Leskovec et al. 2007). We only use
the largest components in each network; see details in Ta-
ble. 1. Expectedly, none of these networks are socially co-
hesive. The box-and-whisker diagrams in Fig. 3 show the
distribution of payoffs of players in the grand coalition as
well as in the coalitions output by each heuristic (outliers

Table 1: N , E, C denote the number of nodes, edges, and
communities, respectively.

Figure 3: The distribution of payoffs of players in the grand
coalition and in the coalitions computed by the heuristics in
the real-world networks.

omitted). In all cases, the heuristics improve players’ pay-
offs considerably compared to the grand coalition, while AP
in particular achieves higher payoffs. Furthermore, Fig. 4
shows all nodes get higher payoffs through LM. In sum-
mary, both of the heuristics are useful in computing coali-
tions; while LM may benefit a larger portion of players, AP
tends to obtain higher payoffs.

Figure 4: The percentage of nodes with a higher payoff
(compared to the grand coalition) in coalitions generated by
the heuristics for real-world networks.

6 Conclusion and Future Work

We aim to investigate natural game-theoretical and compu-
tational questions as future works: Does a core stable group
structure exists for every network? What about other stabil-
ity concepts? What would be strategies of players to im-
prove popularity? The proposed games are instances of a
general game-theoretical framework for networked agents,
whose payoffs are given by various centrality indices. It will
be interesting to extend the work by considering other cen-
tralities and different forms of social networks (e.g. directed,
weighted, signed networks). Furthermore, one could also ex-
plore the evolution of social groups in a dynamic setting.
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