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Abstract

Security agencies have found security games to be useful
models to understand how to better protect their assets. The
key practical elements in this work are: (i) the attacker can
simultaneously attack multiple targets, and (ii) different tar-
gets exhibit different types of dependencies based on the as-
sets being protected (e.g., protection of critical infrastructure,
network security, etc.). However, little is known about the
computational complexity of these problems, especially when
there exist dependencies among the targets. Moreover, previ-
ous security game models do not in general scale well. In this
paper, we investigate a general security game where the util-
ity function is defined on a collection of subsets of all targets,
and provide a novel theoretical framework to show how to
compactly represent such a game, efficiently compute the op-
timal (minimax) strategies, and characterize the complexity
of this problem. We apply our theoretical framework to the
network security game. We characterize settings under which
we find a polynomial time algorithm for computing optimal
strategies. In other settings we prove the problem is NP-hard
and provide an approximation algorithm.

Introduction
The nature of resource allocation in practical security games
often results in exponentially many pure strategies for the
defender, such that the defender’s optimal mixed strategy is
hard to solve. In the past few years, several works have tried
to resolve this issue from both theoretical and practical per-
spectives (Kiekintveld et al. 2009; Korzhyk, Conitzer, and
Parr 2010; Jain et al. 2011; Letchford and Conitzer 2013;
Xu et al. 2014; Xu 2016). A common restriction in these
works is to either assume that the attacker only attacks one
target, or that different targets are independent. The latter
implies that the payoff of a group of targets is the sum of
the payoffs of each one (Korzhyk, Conitzer, and Parr 2011).
In practice, there exists various dependencies among the tar-
gets such that attacking one target will influence the oth-
ers. Traditional models that ignore the inherent synergistic
effects among the targets could lead to catastrophic con-
sequences (Buldyrev et al. 2010). Motivated by this phe-
nomenon, some recent works have investigated the security
game with dependent targets (Shakarian, Lei, and Lindelauf
2014; Vorobeychik and Letchford 2015).
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However, these works are limited to specific dependen-
cies and provide neither a systematic understanding of com-
plexity properties, nor an efficient algorithm. For example,
Shakarian et al. (2014) assumes that the attacker and de-
fender can choose a subset of nodes in a power grid and their
utilities are dependent on the set of disconnected loads. They
show that the defender best response problem (DBR) can be
solved in polynomial time if the attacker attacks at most one
target, while NP-hard in other cases. However, their com-
plexity results cannot be easily reduced to the complexity of
determining the defender’s mixed strategies.

In this paper, we introduce a new security game, which we
call the Non-additivity Security Game (NASG). It is a non-
zero-sum game including two players - the defender and at-
tacker, and n targets, denoted by [n] = {1, 2, . . . , n}. We
model various dependencies among the targets by defining
the strategy of each player as a subset of [n] and adopt a
general set function as the utilities. Specifically, the attacker
obtains benefits for successfully attacked targets and pays a
cost for its strategy. Also, the defender will lose benefits for
those targets and also pays a cost. A critical feature of the
NASG is that the benefit and cost for several targets is not
the summation of each target’s utility, instead, it is depen-
dent on the specific combination of targets..

At a high level, the main challenge of NASG is that both
the size of the strategy space and the number of utility func-
tions are Θ(2n). We are interested whether the following
well understood questions in the case of additive utility func-
tions can be addressed under the non-additivity assumption.

• How to compactly represent the NASG and how to effi-
ciently compute the mixed strategies of NASG?

• What is the complexity of computing the mixed strategies
of NASG?

To answer these questions, we make the following contri-
butions: (1) We provide the conditions for compactly rep-
resenting the NASG and prove that there exists poly(n)
number of variables in the compact model if the number
of non-additive utility functions is poly(n). The main tech-
nique is isomorphism and projection of a polytope. (2) We
design an algorithmic framework to efficiently compute the
mixed strategies for NASGs by reducing the original prob-
lem to an oracle problem. The main technique is to design
a polynomial-time vertex mapping algorithm from the low-
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dimensional polytope to a simplex; (3) We prove that the
above oracle problem and the computation of mixed strate-
gies of NASG can be reduced to each other in polynomial-
time under a reasonable restriction. Furthermore, we show
that such an oracle problem is a problem of maximizing a
pseudo-boolean function; (4) Finally, we apply our theoret-
ical framework to the network security game. We provide
polynomial-time algorithms for some kinds of networks and
security measures, while for the general case, we show the
NP-hardness and propose an approximation algorithm.

All the proofs in this paper are left to the supplemental
material due to space constraints.

Problem Description and Preliminary
We begin by defining the NASG as a two-player normal-
form non-zero-sum game.

Players and targets: The NASG contains two players (a
defender and an attacker), and n targets, indexed by set
[n] � {1, 2, . . . , n}.

Strategies and utility functions: A pure strategy for each
player is a subset of [n]. In the general case, we consider the
complete pure strategy space of attacker and defender, de-
fined as the power set 2[n] � {V |V ⊆ [n]}, denoted by
A and D, respectively. So there are N � 2n pure strate-
gies for both players. Let set function Ca(·) : A → R and
Cd(·) : D → R be the attacker’s and defender’s cost func-
tion, respectively, and the set function B(·) : A → R be the
benefit function.
Remark 1. Traditional models do not consider a cost func-
tion, instead, they assume that there exists a resource con-
straint such that certain strategies, i.e., subsets of [n], are
restricted. In our paper, we explicitly consider the cost func-
tion but do not have such resource constraints1. In cyber-
security applications, security resources are available for a
cost and can be used to replace resource constraints, as il-
lustrated in (Vorobeychik and Letchford 2015).

Tie-breaking Rule: When the attacker and defender
choose strategy A ∈ A and D ∈ D, targets in the set
A\D are successfully attacked by the attacker. Moreover,
both players pay the cost for their strategy, and the attacker’s
and defender’s payoff is given by [B(A\D) − Ca(A)] and
[−B(A\D)− Cd(D)], respectively.

Normal-form representation: Suppose that the order
of the attacker’s pure strategy is given by index function
σ(·) : A → {1, 2, · · · , N}, then define the index function
μ(·) for the defender’s pure strategy: μ(U) = σ(U c) for any
U ∈ D. This definition of the index function is to guarantee
the symmetry of benefit matrix, which simplifies most theo-
retical results. Note that this assumption can be generalized,
but makes the notation cumbersome. Then we can define the
utility matrices including the cost matrices of attacker and
defender: CA,CD ∈ R

N×N ,

CA
σ(A),μ(D) = Ca(A),CD

σ(A),μ(D) = Cd(D), ∀A,D ∈ 2[n],

and the benefit matrix M ∈ R
N×N ,

Mσ(A),μ(D) = B(A\D), ∀A,D ∈ 2[n].

1Later, in this paper, we will consider the limited resource.

Let Ma and Md be the attacker’s and defender’s payoff ma-
trices. It’s clear that Ma = M−CA and Md = −M−CD.
The mixed strategy p,q ∈ ΔN is a distribution over the set
of pure strategies A,D, where pσ(A),qμ(D) is the proba-
bility that the attacker chooses strategy A and the defender
chooses strategy D. ΔN represents a N -dimensional sim-
plex. Then the expected payoffs for the attacker and de-
fender is given by following bilinear form, when they play
the mixed strategy p ∈ ΔN and q ∈ ΔN , by

Ua(p,q) = pTMaq and Ud(p,q) = pTMdq.

Solution Concepts: In this paper, we assume that both
players move simultaneously and the standard solution con-
cept is the Nash Equilibrium (NE). Our goal is to compute
the defender’s minimax mixed strategies and we call it the
min max problem.

The following three definitions are used heavily in our
theoretical development.
Definition 1. The common utility function is defined as the
following transform of the benefit function B(·), cost func-
tion Ca(·) and Cd(·) for all U ∈ 2[n],

Bc(U) =
∑
V⊆U

(−1)|U\V |B(V ),

Cc
a(U) =

∑
V⊆U

(−1)|U\V |Ca(V ),

Cc
d(U) =

∑
V :U⊆V

(−1)|V \U |Cd(V ).

Intuitively, if we regard the benefit function as a mea-
sure defined on a given algebra of set [n], then using the
inclusion-exclusion principle to expand each term in the
summand, the common utility is equivalent to measuring the
utility of the intersection of the targets, which seems like
measuring the synergy effect of targets.
Definition 2. The support set of NASG is

S = {U ∈ A|Bc(U) or Cc
a(U) or Cc

d(U
c) �= 0}, (1)

and support index set σ(S) = {σ(U)|U ∈ S}.

Definition 3. The projection operator πS : RN → R
|S| is

πS((x1,x2, . . . ,xN )) = (. . . ,xi, . . .)i∈σ(S), (2)

and projection of polytope: ΠS(ΔN ) � {πS(x)|x ∈ ΔN}.

Strategically Zero-sum Form

Although the NASG contains non-zero-sum payoff, we
prove the following proposition, which shows that it belongs
to the strategically zero-sum game (Moulin and Vial 1978).
Proposition 1. The set of Nash equilibriums of NASG is
equivalent to the set of Nash equilibriums of zero-sum game
with payoff matrix M−CA +CD.

Clearly, the Stackelberg equilibrium set is equivalent to
the NE set of the NASG. This proposition allows us to solve
the NASG via the equivalent zero-sum game, which can be
tackled by a linear programming approach. In the sequel, we
use M◦ = M−CA +CD to denote the payoff matrix.
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NASG

Compact NASG

Defender Oracle Problem

Theorem 4
Algorithm 1

Lemma 2

Theorem 1 D-NASG

Compact D-NASG

Defender Oracle Problem

Lemma 5

Lemma 4

Theorem 6

Maximizing a pseudo-boolean function
Theorem 7

Restrict     and A
Theorem 2

Figure 1: The summary of the main results. The double ar-
row denotes the polynomial time reduction. The single arrow
denotes the compact representation

Remark 2. The traditional zero-sum security game (Xu
2016) assumes that the defender gets a reward ri if target
i is covered, or incurs a cost ci if uncovered. We can set spe-
cific values for our utility functions to recover their setting.

The main results of this paper are summarized in Fig. 1.

The Compact Representation of NASG

Based on the equivalent zero-sum game M◦ and von Neu-
mann’s minimax theorem, computing the NE of NASG can
be formulated as the following min max problem,

min
q∈ΔN

max
p∈ΔN

pTM◦q. (3)

This optimization model has 2n+1 variables, which implies
that NASG is in general hard to solve. The goal of this sec-
tion is to find a condition on the NASG that can be com-
pactly represented with only poly(n) variables. To convey
our idea more easily, we begin with following intuitive ex-
ample.

Motivating Example

We first use gauss elimination of the matrix M◦ to transform
it into the row canonical form, which is to left and right mul-
tiply M◦ by elementary matrices E and F,

min
q∈ΔN

max
p∈ΔN

pTM◦q = min
q∈ΔN

max
p∈ΔN

pTE−1EM◦FF−1q

= min
q∈ΔN

max
p∈ΔN

pTE−1

[
M◦

r 0
0 0

]
F−1q.

where r is the rank of payoff matrix M◦, and M◦
r is the

non-zero block of its row canonical form. If we define the
affine projection f(p) =

(
pTE−1

)T
, g(q) = F−1q, and

let Δa
N = {f(p)|p ∈ ΔN}, Δd

N = {g(q)|q ∈ ΔN}, we
can obtain the following optimization problem,

min
q′∈Δd

N

max
p′∈Δa

N

p′T
[
M◦

r 0
0 0

]
q′. (4)

Since the polyhedra Δa
N and ΔN are isomorphic, their

vertices exhibit one-one correspondence. Similar argument
for the polyhedra Δd

N and ΔN . Thus the optimization prob-
lem (3) and (4) are equivalent. Further, considering the fact

that only the first r elements in vector p′ and q′ have the
non-zero coefficients in (4), we can further simplify (4) as

min
q′∈Πr(Δd

N)
max

p′∈Πr(Δa
N)

p′TM◦
rq

′, (5)

where the operator Πr(·) is to project the N−dimensional
polytope into its first r−coordinates.

Remark 3. The observation is that the number of variables
in the model (5) depends on the rank of the payoff matrix.
For example, if the rank of M◦ is poly(n), we can compactly
represent NASG with only poly(n) variables.

The Formal Description of Compact NASG

Although the above conceptual derivation provides a pos-
sible path to compactly represent the NASG, there exists a
significant technical challenge: the elementary matrices E,
F and their inverse matrices have exponential size, hence,
the key question is whether we can find both elementary
matrices efficiently? To tackle this problem, we first show
that the payoff matrix M◦ can be decomposed as the product
of three matrices. The following technical lemma is critical
in our decomposition.

Lemma 1. For all U ∈ 2[n], the utility function satisfies

B(U) =
∑
V⊆U

Bc(V ),

Ca(U) =
∑
V⊆U

Cc
a(V ),

Cd(U) =
∑

V :U⊆V

Cc
d(V ).

Note that similar results hold for the cost functions and
their common utility. Then we can decompose the payoff
matrix M◦ in terms of common utilities. An illustrative ex-
ample can be seen in the supplemental material.

Theorem 1. The payoff matrix M◦ = M−CA +CD can
be decomposed as

M◦ = Q(D− L+V)QT , (6)

where D is the diagonal matrix with Dσ(A),σ(A) = Bc(A).
V and L are two sparse matrices with non-zero elements:
Vμ([n]),σ(A) = Cc

d(A),Lμ(D),σ({∅}) = Cc
a(D

c). The Q is
binary matrix with Qσ(A),μ(D) = {Dc ⊆ A}.

Based on this result, we can let elementary matrices E =
Q−1, F = (QT )−1, affine transformation f(p) = QTp
and g(q) = QTq to yield two isomorphic polytopes: Δa

N

and Δd
N with ΔN . The whole procedure is listed in Fig. 2,

and the following theorem answers part of our first question.

Theorem 2. If |S| = poly(n), the rank of the pay-
off matrix M◦ is poly(n), moreover, the NASG can be
compactly represented by poly(n) number of variables
and (p∗,q∗) is a NE of NASG if and only if (πS(f(p

∗)),
πS(g(q

∗))) is the optimal solution of (8).

Since we do not utilize the row canonical form of M◦,
instead, we extract the non-zero columns and rows of D −
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The Framework of Compact Representation
Isomorphic polytope: solving the NASG is equivalent to
solving the following optimization problem,

min
q′∈Δd

N

max
p′∈Δa

N

p′T (D− L+V)q′ (7)

Projection of polytope: projects the polytope Δa
N and

Δd
N into coordinates with indices in σ(S), and further

simplify (7) as the following compact represented model,

Compact NASG min
q′∈ΠS(Δd

N)
max

p′∈ΠS(Δa
N)

p′TMSq′ (8)

where matrix MS is a sub-matrix of D − L +V, which
is obtained by extracting those rows and columns whose
index belonging to σ(S).

Figure 2: The isomorphism and projection of a polytope

L + V to form the low-dimensional matrix MS , the Theo-
rem 2 provides only a sufficient condition for our compact
representation. Indeed, we can make it both sufficient and
necessary by further conducting elementary elimination to
transform the matrix D − L + V into an approximate di-
agonal matrix D. However, this process will significantly
complicate our affine transformation f and g, and make it
impossible to map the optimal solution of compact model
(8) to the original mixed strategy.

Implication of compact NASG: From the perspective
of attacker’s utility function, our compact representation (8)
simplifies Ua(p,q) as (similar result holds for Ud(p,q)),∑

U∈S

p′
σ(U)[q

′
σ(U)B

c(U)− Cc
a(U)]. (9)

Based on the definition of affine transformations f, g and
matrix Q, each variable p′

σ(U) =
∑

V :U⊆V pσ(V ) is the
marginal probability that the attacker attacks all the targets in
set U , while q′

σ(U) =
∑

V⊆Uc qμ(V ) is the marginal prob-
ability that the defender does not defend any target in set
U . Therefore, we can regard Bc(U), Cc

a(U) (not B(U) and
Ca(U)!) as the benefit and cost function for a “virtual tar-
get U”, and the formula (9) calculates the expected utility in
such a new game.

Theorem 8 provides a sufficient condition of which kind
of non-additive security game can be compactly represented.
We then discuss several important applications of this result.
One application is based on the following corollary.
Corollary 1. If all the utility functions are additive, i.e.,
B(U) =

∑
i∈U B({i}) (similarly for cost function), the

common utility satisifies Bc(U) = 0, |U | > 1. Further, the
cardinality of support set |S| = n.
Remark 4. The previous works (Kiekintveld et al. 2009;
Korzhyk, Conitzer, and Parr 2011; Korzhyk et al. 2011) as-
suming that the utility functions are additive have provided
a compact represented game, in which the defender’s mixed
strategy is represented by a n−dimensional marginal prob-
ability vector. Corollary 1 recovers and justifies this result.

Another application is, in the network security domain, if
we adopt some classic parameters as the security measure
such as node’s betweenness centrality (the number of short-
est paths from all vertices to all others that pass through that
node), the cardinality of support set |S| =poly(n).

In the sequel, the terminology NASG refers to those
NASGs that only have poly(n) variables in their compact
model. Based on our compact representation, a natural ques-
tion that arises is, can we efficiently solve such a compact
model and implement the optimal solution by the defender’s
mixed strategy? We will answer this question in the next sec-
tion.

Oracle-based Algorithmic Framework

The main result of this section is given in the following the-
orem.

Theorem 3. There is a poly(n) time algorithm to solve the
min max problem if there is a poly(n) time algorithm to com-
pute the defender oracle problem, which is defined as, for
any vector w ∈ R

|S|, compute

x∗ = arg max
x∈ΠS(Δd

N )
wTx. (10)

It is not surprising that the compact NASG can be re-
duced to the defender oracle problem (DOP), and the re-
duction follows from an application of equivalence between
separation and optimization (Grötschel, Lovász, and Schri-
jver 1981). What is interesting, however, is the reduction
from the min max problem to the compact NASG. Namely,
how to map the optimal solution of compact NASG to a de-
fender’s mixed strategy in poly(n) time. We show that this
can be done by exploiting the geometric structure of poly-
tope Δd

N .

Reducing Compact NASG to Oracle Problem

For simplicity, we use Ha and Hd to denote the polytope
ΠS(Δ

a
N ) and ΠS(Δ

d
N ), and Ia and Id to denote their ver-

tices, respectively. The compactly represented NASG (8)
can be formulated as the linear programing (LP) problem.

Compact-LP min u (11)

s.t. vTMSq′ ≤ u ∀v ∈ Ia,
q′ ∈ Hd.

(12)

The compact LP has poly(n) number of variables and
possibly exponentially many constraints. One can therefore
apply the ellipsoid method to solve such an LP, given a
poly(n) time separation oracle. Further, the separation or-
acle can be reduced to the following two parts: given any
(q′, u), (1) membership problem: decide whether q′ ∈ Hd.
If not, generate a hyperplane separating (q′, u) and Hd;
(2) inequality constraint problem: decide whether all the in-
equality constraints hold. If not, find one violated constraint.
We have the following result for these problems.

Lemma 2. The membership problem and inequality con-
straint problem of compact LP (11) can be reduced to the
defender oracle problem (10) in poly(n) time.
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Algorithm 1 Vertex Mapping from Vertex to Pure Strategy
Input: Vertex vU ∈ Id

Output: Defender’s pure strategy U of original NASG
T = ∅;
for each i ∈ [n] do

if vU
σ({i}) �= 0 then T = T ∪ {i};

end for
U = T c;

Reducing NASG to Compact NASG

A classical result in combinatorial optimization is that if
the separation problem of polytope P ∈ R

n can be solved
in poly(n) time, we can decompose any point x ∈ P
into the convex combination of at most (n + 1) vertices of
P (Grötschel, Lovász, and Schrijver 1981). Note that this is
precisely the DOP required for the above reduction. Apply-
ing this result to the optimal solution x∗ of compact LP (11),
we can get a convex decomposition x∗ =

∑|S|+1
i=1 λiv

i,
where vi ∈ Id. If we can map the vertices vi back to the
vertices (pure strategy) of original NASG, denoted by h(vi),
the mixed strategies of the defender can be expressed as

q∗ =

|S|+1∑
i=1

λih(v
i). (13)

Thus, the key lies in how to compute h(vi) in poly(n) time.
To tackle this problem, first, considering an arbitrary pure

strategy U ∈ 2[n], the corresponding vertex is a unit vector
eU ∈ R

N with only one non-zero element eUμ(U) = 1. Based
on the affine transformation g(q) = QTq, the correspond-
ing vertex of isomorphic polytope Δd

N is

g(eU ) = QT eU = QT
μ(U), (14)

where Qμ(U) is the μ(U)th row of matrix Q. Then the cor-
responding point vU of the projected polytope Hd is

vU = πS(Q
T
μ(U)), (15)

which is a sub-vector of QT
μ(U). The problem is that the ver-

tex in the high-dimensional polytope may not project to a
vertex of its low-dimensional image. However, the follow-
ing lemma will provide a positive result.

Lemma 3. ∀S ⊆ 2[n] s.t. [n] ⊆ S, the vertices of the poly-
tope Hd are the rows of a sub-matrix of Q, which is formed
by extracting the column whose index belongs to σ(S).

No matter which coordinate we project the polytope Δd
N

into, the number of vertices is still N , and they form a sub-
matrix of Q. Therefore, we can exploit the property of ma-
trix Q to construct a vertex mapping algorithm and the cor-
rectness of Algorithm 1 is justified by following theorem.

Theorem 4. Vertex mapping algorithm runs in O(n) time
and maps each vertex of Hd to a unique pure strategy.

Solving NASG is a Combinatorial Problem

In this section, we will answer our second question, i.e.,
what is the complexity of the NASG, in a restrictive class:
the attacker attacks at most c targets, the defender can pro-
tect at most k targets, where c is a constant and k is arbi-
trary; the defender’s cost functions Cd(·) are additive. Then,
the attacker’s and defender’s pure strategy spaces are given
by A = {A ∈ 2[n]||A| ≤ c},D = {D ∈ 2[n]||D| ≤ k}.

Definition 4. A D-NASG is given by the tuple (A,D,B, Ca,
Cd), where the set of benefit function B = {B(A)|A ∈
A}, set of attacker’s and defender’s cost function Ca =
{Ca(A)|A ∈ A}, Cd = {Cd(i)|i ∈ [n]}.

The first assumption is motivated by the fact that both
players have limited resources (Kiekintveld et al. 2009) and
they cannot cover any targets. In the realistic scenario, the
attacker cannot simultaneously attack a large amount of tar-
gets such that c is a constant. The second assumption is rea-
sonable because in the security game, the synergistic effect
always occurs after the attack and defense, and will not in-
fluence the defense cost. For example, in the cybersecurity
game, the defender is to deploy the anti-virus software in
each communication node, in which case the cost (licensing
cost) of deploying multiple nodes is equal to the summation
of each one. Let Na = |A| and Nd = |D|, our main result is
the following theorem.

Theorem 5. There is a poly(n) time algorithm to compute
the defender’s mixed strategy in D-NASG, if and only if
there is a poly(n) time algorithm to compute the defender
oracle problem: for any w ∈ R

Na ,

x∗ = arg max
x∈H′

d

wTx, (16)

where the definition of H ′
d is given in (18).

Reduction between D-NASG and Oracle Problem

The reduction from D-NASG to DOP still follows our iso-
morphism and projection framework, and the main tech-
nical step is a partial decomposition of the payoff matrix.
However, the reverse direction follows from a different path.
First, let the payoff matrix of D-NASG be denoted by Mb ∈
R

|A|×|D|, which is a sub-matrix of M◦.

Theorem 6. The payoff matrix Mb ∈ R
Na×Nd can be de-

composed as
Mb = IMAJT , (17)

where the matrix I ∈ R
Na×Na and J ∈ R

Nd×Na are binary
matrices, and the matrix MA ∈ R

Na×Na contains one non-
zero diagonal, non-zero row and non-zero column.

The detailed definition of each elements in matrix I,J and
MA can be seen in the supplemental material. Similarly, we
have the affine transformation: f ′(p) = ITp, g′(q) = JTq;
transformed polytope: Δa

Na
, Δd

Nd
; projected polytope:

H ′
a = ΠS(Δ

a
Na

), H ′
d = ΠS(Δ

d
Nd

). (18)

Note that in this case, the polytope Δd
Nd

is not isomorphic
with ΔNd

, but the correctness of our compact representation
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follows a similar proof of Theorem 2. Further, the compactly
represented linear programming is expressed as

Compact-D-LP min u (19)

s.t. vTMAq′ ≤ u ∀v ∈ I ′a,
q′ ∈ H ′

d,
(20)

where I ′a is the set of vertices of polytope H ′
a.

Lemma 4. The separation problem for H ′
d and the compact

optimization problem (19) reduce to each other in poly(n)
time.

Considering the equivalence between separation (H ′
d) and

optimization (DOP), we arrive at the reduction between the
DOP (16) and the compact model (19). The main tech-
nique in the reduction between D-NASG and the compact
optimization (19) is: (i) for any arbitrary instance MA of
compact optimization problem, we can construct the set of
utility functions: B, Ca in O(2cn) = O(n) time based on
Lemma 1; (ii) vertex mapping algorithm from pure strategy
to H ′

d.

Lemma 5. The min max problem of D-NASG and compact
optimization (19) reduces to each other in poly(n) time.

Lemma 4 and Lemma 5 together yield our desired result.

What is the Defender Oracle Problem

Through a series of reductions, we find that the NASG is
essentially a defender oracle problem defined on a low-
dimensional polytope H ′

d, but the complicated form of poly-
tope H ′

d still prevents us from uncovering how the non-
additive utility function change the internal combinatorial
structure of the security game. Fortunately, based on the in-
vestigation of the geometric structure of the H ′

d, we will
prove that the DOP is indeed a problem of maximizing a
pseudo-boolean function.

Theorem 7. The defender oracle problem is equivalent to,
for any vector w ∈ R

|S|, maximize a pseudo-boolean func-
tion under a cardinality constraint,

max
n∑

i=1
xi≥n−k,x∈{0,1}n

⎡
⎣∑
V ∈S

wσ(V )

⎛
⎝ ∏

{i}∈V

xi

⎞
⎠
⎤
⎦ . (21)

The complexity of (21) is dependent on the support set
S. For example, in the simplest case, S = [n], we can ef-
ficiently solve such a problem by summing all the positive
elements of vector w, which corresponds to the traditional
additive security game. Instead, if S = {U ∈ 2[n]||U | ≤ 2},
then the oracle problem is a binary quadratic programming
problem, which is known to be NP-hard. If k = n, the above
problem will degenerate to an unconstrained optimization.
This result builds a connection between the NASG and op-
timizating a pseudo-boolean function, which enables us to
design an efficient DOP solver or understand the complexity
of NASG via analyzing the structure of the support set S and
using the results of combinatorial algorithm design.

Application to the Network Security Domain

In this section, we will apply our theoretical framework to
an important domain, in which the security game occurs
in a network. The following definition is motivated by the
works (Gueye, Marbukh, and Walrand 2012; Shakarian, Lei,
and Lindelauf 2014).
Definition 5. A network security game is given by the tuple
(G, T,Fa, c), where G = (V,E) with node set V , edge set
E, T is the network value function, Fa is the failure opera-
tor, c is the maximum number of nodes attacker can choose
and defender can protect any targets (k = n).

The network value function T : G → R is a security mea-
sure assessing the utility of a network, and failure operator
Fa : 2G → 2G is to generate a new network via a spe-
cific failure mode after removing some nodes. For example,
Shakarian et al. (2014) adopt the number of connected load
nodes as T , and edge cascading failure model as Fa. The
main result of our work is summarized as in TABLE 1.

Table 1: Solvability Status
CASES SOLVABILITY APPENDIX
Additive benefit function poly(n) Trivial
The separable support set S with poly(n) Theorem 6,
maxi |Ui| = Θ(log(n)) Corollary 1
Constant c, negative common utilities poly(n) Theorem 7,
except for singleton set Corollary 2
Constant c ≥ 2 NP-hard and efficient approximation Last Section

The first polynomial solvable class is trivial, because the
size of support set is O(n) when all the utility functions are
additive. Regarding the second polynomial solvable class,
we have the following result
Corollary 2. (Second solvable class) If the support set S
satisfies separability such that

S =
m⋃
i=1

Si such that Ai ∩Aj = ∅, ∀Ai ∈ Si, Aj ∈ Sj ,

and set [n] is divided into m pairwise disjoint subsets by

Ui =
⋃

U∈Si

U, ∀1 ≤ i ≤ m,

and maxi |Ui| = Θ(log(n)), then we can solve the defender
oracle problem in poly(n) time.

The basic idea of the second solvable class is to show that
when S is separable with size of largest component equal
to Θ(log(n)), the DOP is separable and can be solved in
poly(n) time via an enumerating algorithm.
Corollary 3. (Third solvable class) If c is constant, all the
common utilities Bc(U) are negative except the singleton
set, for which Cc

d(U) are negative, and we can solve the de-
fender oracle problem in poly(n) time.

In the third solvable class, we will show that DOP un-
der such a condition is a submodular minimization problem,
which can be solved in poly(n) time. These special cases are
interesting because they correspond to the following appli-
cations.
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Algorithm 2 Separable Approximation
Calculate benefit B(U) = T (G) − T (Fa(G\U)), ∀U ∈
A;
for each U ∈ A do

Calculate Bc(U) =
∑

W⊆U (−1)|U\W |B(W );
if |Bc(U)| ≤ εc then B̃c(U) = 0;

end for
Create support set S and let (S1, . . . , Sm) ← disjoint (S);

• The second class can be applied in a sparse network. For
example, if the size of largest connected component of
G is Θ(log(n)), S will satisfy the condition of second
solvable class (Corollary 1 in supplemental material).

• The third class can be applied to a dense network where
the most nodes are adjacent. For example, if c = 2, at-
tacking any two nodes will lead to the superposition of
the failure effect, resulting in negative common utilities.

• Another application of the third class: in cybersecurity,
the sensor network often exhibits a tree topology. The
game is such that the attacker attempts to invade some
nodes to destroy the connectedness of the network and
the IT manager is required to deploy anti-virus software
in some nodes. We show that this game satisfies the con-
dition of the third class. (Corollary 4 in supplemental ma-
terial)

For the general network (not sparse, not dense or not a
tree), the problem is clearly NP-hard, but we still need to
answer two questions: (1) can we still compactly represent
the game if c is large, i.e., |S| = poly(n)? (2) can we ef-
ficiently solve such a game? To tackle these problems, we
propose a novel separable approximation framework (Algo-
rithm 2), which can guarantee the approximation error of the
original problem, instead of the DOP. One crucial observa-
tion is that the common utility in the realistic network is well
concentrated around zero.

In Fig. 3, we examine the distributions of the benefit func-
tion and its common utility function in the following two
kinds of network: Erdös-Renyi network G(n, p) and scale-
free network G(n, α), where n is the number of nodes, p is
the probability that any two nodes are connected, α is the
parameter of degree distribution of the scale-free network.
Suppose that the network G consists of m connected compo-
nents: V1, V2, . . . , Vm and we adopt the following two kinds
of network value functions,

T1(G) = max
1≤i≤m

|Vi|, T2(G) =

m∑
i=1

|Vi|2.

The different form of network value functions have different
assessment of the network. The detailed comparison can be
found in (Gueye, Marbukh, and Walrand 2012). As can be
seen in Fig. 3, in both Erdös-Renyi and scale-free networks,
although the distribution of the benefit function is random,
the distribution of the common utility function is well con-
centrated around zero and 90% of them are less than 0.05.
In particular, when the number of nodes increases, this phe-

nomenon is amplified such that almost 99% of the common
utility functions are less than 0.05.
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Figure 3: The distributions of common utility function and
benefit function. All their value are absolute value and nor-
malized in [0, 1].

Based on the above observation, we can let most of the
common utility functions equal to 0 according to a given
threshold εc. Formally, let B̃c(·) denote the new common
utility function generated by Algorithm 2, then the corre-
sponding approximate benefit function satisfies

|B̃(U)−B(U)| =
∣∣∣∣∣∣
∑
W⊆U

B̃c(W )−
∑
W⊆U

Bc(W )

∣∣∣∣∣∣
≤

∑
W⊆U

∣∣∣B̃c(W )−Bc(W )
∣∣∣ ≤ 2|U |εc.

Since |U | ≤ c, the maximum error between the original
benefit functions and new generated benefit functions is less
than 2cεc. A classic result of game theory is that, if the max-
imum difference between the elements of two payoff ma-
trices is bounded by ε, the difference of the optimal game
values yielded by these two payoff matrices are bounded by
2ε (Lipton, Markakis, and Mehta 2003). Therefore, the ap-
proximation error of our game value is bounded by 2c+1εc.
Remark that the disjoint operator in Algorithm 2 separates
the support set S into m parts that satisfies the conditions of
separability of support set S.

As shown at the top of Fig. 4, for the Erdös Renyi, scale-
free and Italian communication network, the size of sup-
port set will be reduced 90% by an extremely small ap-
proximation error 0.05. Moreover, this process also leads to
a separable structure of S, and the resulting complexity of
solving the NASG is poly(n)O(2maxi |Ui|). For example, in
the bottom of Fig. 4, the complexity term maxi |Ui| can be
greatly reduced to the order of Θ(log(n)) with an approx-
imation error of 1%, regardless of the size and density of
the network, and how many targets the attacker can choose.
The more comprehensive numerical results can be found in
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Figure 4: Top: the size of support set |S| versus approxima-
tion error ε; Bottom: the complexity term maxi |Ui| versus
approximation error ε. Remark that the ε represents the ap-
proximation error of the game value. Note that SF denotes
the scale-free network.

the supplementary material. In summary, our approximation
framework can reduce the complexity term maxi |Ui| to or-
der Θ(log(n)) by only 10% approximation error in most
networks including Erdös-Renyi, scale-free network and a
39−nodes Italian communication network. Therefore, us-
ing our theoretical framework, we can approximately and
compactly represent a realistic network security game
and solve it in poly(n) time with high accuracy.

Conclusion

In this paper, we examined the security game under non-
additive utility functions and a structured strategy space, i.e.,
uniform matroid. We showed that the size of the compact
representation is dependent on the number of non-additive
strategies, and NASG is essentially the problem of maxi-
mizing a pseudo-boolean function. Compared with previous
results, this work greatly extends the polynomial solvable
class, provides an understanding of the complexity proper-
ties, and partly answers the question proposed by Xu (2016)
in zero-sum, uniform matroid scenario. For future direc-
tions, we plan to investigate (i) the relationship between the
Oracle problem and the NASG when the defender has a non-
structured strategy space; (ii) how to efficiently compute the
defender’s mixed strategy when attacker and defender have
different benefit functions.
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