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Abstract

We present a new game-theoretic framework in which
Bayesian players with bounded rationality engage in a
Markov game and each has private but incomplete infor-
mation regarding other players’ types. Instead of utilizing
Harsanyi’s abstract types and a common prior, we construct
intentional player types whose structure is explicit and in-
duces a finite-level belief hierarchy. We characterize an equi-
librium in this game and establish the conditions for existence
of the equilibrium. The computation of finding such equilib-
ria is formalized as a constraint satisfaction problem and its
effectiveness is demonstrated on two cooperative domains.

Introduction

A plethora of empirical findings in strategic games (Stahl
and Wilson 1995; Hedden and Zhang 2002; Wright and
Leyton-Brown 2010; Goodie, Doshi, and Young 2012)
strongly suggest that humans reason about others’ beliefs
to finite and often low depths. In part, this explains why a
significant proportion of participants do not play Nash equi-
librium profiles of games (Camerer 2003) because reasoning
about Nash play requires thinking about the other player’s
beliefs and actions, and her reasoning about other’s, and so
on ad infinitum. Such reasoning is generally beyond the cog-
nitive capacity of humans. This has motivated models of
finitely-nested reasoning such as the cognitive hierarchy and
others (Ho and Su 2013).

Are there characterizations of equilibrium between play-
ers engaging in finite levels of inter-personal reasoning?
Aumann (1999) introduced the information partition as a ba-
sic element for representing a player’s knowledge. Recently,
Kets (2014) elegantly generalized the standard Harsanyi
framework for single-stage games of incomplete informa-
tion to allow for players’ partitions that lead to finite-level
beliefs. Any found equilibrium in this framework is also a
Bayes-Nash equilibrium (BNE) in a Harsanyi framework.
However, as we may expect, not every BNE for the game is
also an equilibrium between players with finite-level beliefs
because some BNE necessitate infinite-level beliefs.

We generalize the single-stage framework of Kets to allow
Bayesian players to play an incomplete-information Markov
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game (Littman 1994; Maskin and Tirole 2001). These so-
phisticated games are finding appeal as a theoretical frame-
work for situating pragmatic interactions such as impromptu
or ad hoc teamwork (Albrecht and Ramamoorthy 2013).
Each player in our framework may have one of many types
– explicitly defined unlike the abstract ones in the Harsanyi
framework – and which induces a belief hierarchy of fi-
nite depth. Contextual to such finite-level types in this new
framework of Bayesian Markov games (BMG) with explicit
types, we formally define a Markov-perfect finite-level equi-
librium, establish conditions for its existence, and present a
method for obtaining this equilibrium. We formulate find-
ing equilibrium in a BMG as a constraint satisfaction prob-
lem. For this, we generalize the constraint satisfaction al-
gorithm introduced by Soni et al. (2007) for finding BNE
in Bayesian graphical games. Key challenges for the gener-
alization are that the space of types is continuous and the
beliefs in each type must be updated based on the observed
actions of others. This makes the types dynamic. Because
strategies may be mixed and standard constraint satisfaction
algorithms do not operate on continuous domains, we dis-
cretize the continuous space of mixed strategies analogously
to Soni et al. (2007). Finally, motivated by behavioral equiv-
alence (Zeng and Doshi 2012), we use equivalence between
types for speed up.

In addition to presenting a new framework and discussing
its properties, we demonstrate it on two cooperative tasks.
Equilibrium has traditionally served as an important base-
line behavior for agents engaged in cooperation, providing
a locally-optimal solution (Nair et al. 2003; Roth, Simmons,
and Veloso 2006). BMGs with explicit types are particularly
well suited toward analyzing interactions between agents
that are boundedly rational and are uncertain about each
other’s type.

Background

Inspired by the real-world transport logistics domain, we
motivate our framework using the level-based foraging prob-
lem (Albrecht and Ramamoorthy 2013). Consider a 2-player
single-stage foraging problem illustrated in Fig. 1(a). Robot
i and human j must load food found in adjacent cells. Play-
ers can load if the sum of their powers is greater than or
equal to the power of the food. Thus, i or j individually can-
not load the food in the bottom-left corner, but they can co-
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ordinate and jointly load it. Human j by himself can load
the food to the right of him. There is a possibility that the
human is robophobic and derives less benefit from the food
when loading it in cooperation with the robot.

Harsanyi’s framework (1967) is usually applied to such
games of incomplete information (human above could be
robophobic or not thereby exhibiting differing payoffs) by
introducing payoff-based types and a common prior that
gives the distribution over joint types, Θ = Θi × Θj , where
Θi(j) is the non-empty set of types of player i(j). However,
this interpretation that a player type is synonymous with
payoffs only is now considered naive and restrictive (Qin
and Yang 2013) because knowing a player’s payoff function
also implies perfectly knowing its beliefs over other’s types
from the common prior. The prevailing theoretical interpre-
tation (Mertens and Zamir 1985; Brandenburger and Dekel
1993) decouples the player’s belief from its payoffs by in-
troducing fixed states of the game as consisting of states of
nature X and the joint types Θ (where X would be the set
of payoff functions), and a common prior p over X × Θ.
This allows an explicit definition of a Harsanyi type space
for player i as, ΘH

i = 〈Θi,Si,Σi, βi〉, where Θi is as de-
fined previously; Si is the collection of all sigma algebras
on Θi; Σi : Θi → Sj maps each type in Θi to a sigma alge-
bra in Sj ; and βi gives the belief associated with each type
of i, βi(θi) ∈ �(X ×Θj ,FX ×Σi(θi)), FX is a sigma al-
gebra on X . Notice that βi(θi) is analogous to p(·|θi) where
p is the common prior on X × Θ. We illustrate a Bayesian
game (BG), and the induced belief hierarchy next:

Definition 1 (Bayesian game) A BG between N players is
a collection, G = 〈X, (Ai, Ri,Θ

H
i )i∈N 〉, where X is the

non-empty set of payoff-relevant states of nature with two
or more states; Ai is the set of player i’s actions; Ri : X ×∏

i∈N Ai → R is i’s payoff; and ΘH
i is Harsanyi type space.

Example 1 (Beliefs in Harsanyi type spaces) Consider
the foraging problem described previously and illustrated in
Fig. 1(a). Let each player possess 4 actions that load food
from adjacent cells in the cardinal directions: Ld-W, Ld-N,
Ld-E, Ld-S. Let X = {x, x′( �= x)} and the corresponding
payoff functions are as shown in Fig. 1(b). Player i has 4
types, Θi = {θ1i , θ2i , θ3i , θ4i }, and analogously for j. Σi(θ

a
i ),

a = 1 . . . |Θi| is the sigma algebra generated by the set
{θ1j , θ2j , θ3j , θ4j}. Finally, example belief measures, βi(·) and
βj(·), are shown in Fig. 1(c).

Distributions β induce higher-level beliefs as follows:
Player i with type θ1i believes with probability 1 that the state
is x, which is its zero-level belief, bi,0. It also believes that j
believes that the state is x because βi(θ

1
i ) places probability

1 on θ1j and βj(θ
1
j ) places probability 1 on state x. This is i’s

first-level belief, bi,1. Further, i’s second-level belief bi,2 in-
duced from βi(θ

1
i ) believes that the state is x, that j believes

that the state is x, and that j believes that i believes that
the state is x. Thus, bi,2 is a distribution over the state and
the belief hierarchy {bj,0(θj), bj,1(θj) : θj = θ1j , . . . , θ

4
j}.

This continues for higher levels of belief and gives the be-
lief hierarchy, {bi,0(θ1i ), bi,1(θ1i ), . . .} generated by βi(θ

1
i ).

Other types for player i also induce analogous infinite belief
hierarchies, and a similar construction induces for j.

Example 1 also suggests a path to formally defining the in-
duced infinite belief hierarchies from types. This definition
is well known (Mertens and Zamir 1985; Brandenburger and
Dekel 1993) and is not reproduced here due to lack of space.

Recently, Kets (2014) introduced a way to formalize the
insight that i’s level l belief assigns a probability to all events
that are expressed by j’s belief hierarchies up to level l − 1.
Further, beliefs with levels greater than l assign probabili-
ties to events that are expressible by j’s belief hierarchies
of level l − 1 only; this is a well-known definition of finite-
level beliefs. The construction involves an information par-
tition (Aumann 1999) of other player’s types, representing
the cognitively-limited player’s ambiguous knowledge.

Example 2 (Beliefs in depth-1 type spaces) Let Σi(θ
1
i ) be

the sigma algebra generated by the partition, {{θ1j , θ3j},
{θ2j , θ4j}}. Recall that belief βi(θ

1
i ) is a probability measure

over FX ×Σi(θ
1
i ). We may interpret this construction as i’s

type θ1i distinguishes between the events that j’s type is θ1j
or θ3j and that the type is θ2j or θ4j only. We illustrate example
βi(θ

a
i ), a = 1, . . . , 4 and βj(θ

b
j), b = 1, . . . , 4 in Fig. 2.

Notice that βi(θ
1
i ) induces a level 0 belief bi,0 that be-

lieves that the state of nature is x with probability 1. It also
induces a level 1 belief bi,1 that believes j believes with
probability 1 that the state is x (it places probability 1 on
{θ1j , θ3j}; both βj(θ

1
j ) and βj(θ

3
j ) place probability 1 on x).

However, βi(θ
1
i ) does not induce a level 2 belief because

βj(θ
1
j ) places probability 1 on {θ1i , θ2i } who each, in turn,

place a probability 1 on x, whereas βj(θ
3
j ), analogously,

places a probability 1 on x′. Therefore, agent j’s corre-
sponding level 1 beliefs βj(θ

1
j ) and βj(θ

3
j ) differ in what

they believe about agent i’s belief about the state of na-
ture. Consequently, βi(θ

1
i ) induces a belief that is unable to

distinguish between differing events expressible by j’s level
1 belief hierarchies. The reader may verify that the above
holds true for all βi(θ

a
i ) and βj(θ

b
j). Thus, the type spaces

in Fig. 2 induces a finite-level belief hierarchy of the same
depth of 1 for both agents.

Beliefs need not always concentrate all probability mass on a
single event. For example, we may replace βi(θ

1
i ) in Fig. 2

with a distribution that places probability 0.5 on {θ1j , θ3j}
and 0.5 on {θ2j , θ4j} both under column x. Yet, both agents’
continue to exhibit belief hierarchies of level 1. A formal
definition of an induced finite-level belief hierarchy simply
modifies the definition of an infinite-level hierarchy to con-
sider sigma algebras on the partitions of Θi and Θj .

Let us denote depth-k type spaces of player i using Θk
i ,

where each type for i induces a belief hierarchy of depth
k. Let the strategy of a player i be defined as, πi : Θi →
Δ(Ai). Computation of the ex-interim expected utility of
player i in the profile, (πi, πj) given i’s type proceeds iden-
tically for both Harsanyi and depth-k type spaces:

Ui(πi, πj ; θi) =

∫

FX×Σi(θi)

∑
Ai,Aj

Ri(ai, aj , x) πi(θi)(ai)

× πj(θj)(aj) dβi(θi) (1)
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(a) Players i and j seek to
load food. Sum of powers of
players ≥ power level of the
food to load it.

x Ld-W Ld-N Ld-E Ld-S

Ld-W 0,0 0,0 0,1 0,0
Ld-N 0,0 0,0 0,1 0,0
Ld-E 0,0 0,0 0,1 0,0
Ld-S 1.5,1.5 0,0 0,1 0,0

x′ �= x Ld-W Ld-N Ld-E Ld-S

Ld-W 0,0 0,0 0,1 0,0
Ld-N 0,0 0,0 0,1 0,0
Ld-E 0,0 0,0 0,1 0,0
Ld-S 1.5,1 0,0 0,1 0,0

(b) Payoff tables for states x
and robophobic x′.

βi(θ
1
i ) x x′

θ1j 1 0
θ2j 0 0
θ3j 0 0
θ4j 0 0

βi(θ
2
i ) x x′

θ1j 0 0
θ2j 0 0
θ3j 0 1
θ4j 0 0

βi(θ
3
i ) x x′

θ1j 0 0
θ2j 1 0
θ3j 0 0
θ4j 0 0

βi(θ
4
i ) x x′

θ1j 0 0
θ2j 0 0
θ3j 0 0
θ4j 1 0

βj(θ
1
j ) x x′

θ1i 1 0
θ2i 0 0
θ3i 0 0
θ4i 0 0

βj(θ
2
j ) x x′

θ1i 0 0
θ2i 0 0
θ3i 0 1
θ4i 0 0

βj(θ
3
j ) x x′

θ1i 0 0
θ2i 1 0
θ3i 0 0
θ4i 0 0

βj(θ
4
j ) x x′

θ1i 0 0
θ2i 0 0
θ3i 0 0
θ4i 1 0

(c) Conditional beliefs of player i over the payoff states and types
of j (top) and analogously for j (below).

Figure 1: (a) Single-step foraging on a 2 × 3 grid; (b) Payoffs corresponding to states of nature in X . Rows correspond to
actions of player i and columns to actions of j; and (c) Conditional beliefs in the explicit Harsanyi type spaces of players i and
j.

βi(θ
1
i ) x x′

{θ1j ,θ3j } 1 0
{θ2j ,θ4j } 0 0

βi(θ
2
i ) x x′

{θ1j ,θ3j } 0 0
{θ2j ,θ4j } 1 0

βi(θ
3
i ) x x′

{θ1j ,θ3j } 0 0
{θ2j ,θ4j } 0 1

βi(θ
4
i ) x x′

{θ1j ,θ3j } 0 1
{θ2j ,θ4j } 0 0

βj(θ
1
j ) x x′

{θ1i ,θ2i } 1 0
{θ3i ,θ4i } 0 0

βj(θ
2
j ) x x′

{θ1i ,θ2i } 0 1
{θ3i ,θ4i } 0 0

βj(θ
3
j ) x x′

{θ1i ,θ2i } 0 0
{θ3i ,θ4i } 1 0

βj(θ
4
j ) x x′

{θ1i ,θ2i } 0 0
{θ3i ,θ4i } 0 1

Figure 2: Player i’s and j’s conditional beliefs on payoff
states and partitions of the other agent’s type set.

However, the expected utility may not be well defined in the
context of depth-k type spaces. Consider Example 2 where
Σi(θ

1
i ) is a partition of {{θ1j , θ3j}, {θ2j , θ4j}}. Ui is not well

defined for θ1i if j’s strategy in its argument has distributions
for θ1j and θ3j that differ, or has differing distributions for θ2j
and θ4j . More formally, such a strategy is not comprehensible
for type θ1i (Kets 2014).

Definition 2 (Comprehensibility) A strategy πj is compre-
hensible for type θ1i if it is measurable with respect to Σi(θ

1
i )

(and the usual sigma algebra on set Aj).

Obviously, lack of comprehensibility does not arise in
Harsanyi type spaces because each player’s belief is over
a partition of the other player’s types whose elements are of
size 1. Finally, we define an equilibrium profile of strategies:

Definition 3 (Equilibrium) A profile of strategies,
(πi)i∈N , is in equilibrium for a BG G if for every
type, θi ∈ Θi, i ∈ N ,
1. Strategy πj , j ∈ N, j �= i, is comprehensible for θi;
2. Strategy πi gives the maximal ex-interim expected utility,

Ui(πi, . . . , πz; θi) ≥ Ui(π
′
i, . . . , πz; θi) where π′

i �= πi

and Ui is as defined in Eq. 1.

Condition 1 ensures that others’ strategies are comprehen-
sible for each of i’s type so that the expected utility is well
defined. Condition 2 is the standard best response require-
ment. If the type spaces in G are the standard Harsanyi ones,
then Definition 3 is that of the standard Bayes-Nash equilib-
rium. Otherwise, if G contains depth-k type spaces, then the
profile is in finite-level equilibrium (FLE).

BMG with Finite-Level Types

Previously, we reviewed a framework that allows character-
izing equilibrium given belief hierarchies of finite depths. A
key contribution in this paper is to generalize this framework
endowed with finite-level type spaces to an incomplete-
information Markov game played by Bayesian players. In
this setting, types are now dynamic and a challenge is to
identify a way of updating the types. Thereafter, we intro-
duce an equilibrium that is pertinent for these games.

We define a Bayesian Markov game (BMG) with explicit
types:
Definition 4 (BMG) A Bayesian Markov game with finite-
level type spaces (BMG) is a collection:

G∗ = 〈S,X, (Ai, Ri,Θ
k
i )i∈N , T, OC〉

• S is the set of physical states of the game;
• X and Ai are as defined in the previous section for a BG;
• Ri : S × X ×∏

i∈N Ai → R is i’s reward function; it
generalizes the reward function in a BG to also include
the physical state;

• Θk
i is the depth-k type space of some finite depth k;

• T : S ×∏
i∈N A→ Δ(S) is a Markovian and stochastic

physical state transition function of the game; and
• OC is the optimality criterion which could be to optimize

over a finite number of steps or over an infinite number of
steps with discount factor, γ ∈ (0, 1).
A BMG between two agents i and j of some type θi and

θj respectively, proceeds in the following way: both agents
initially start at state st that is known to both and perform
actions ati and atj according to their strategies, respectively.
This causes a transition of the state in the next time step to
some state st+1 according to the stochastic transition func-
tion of the game, T . Both agents now receive observations,
ot+1
i = 〈st+1, atj〉 and ot+1

j = 〈st+1, ati〉 respectively, that
perfectly inform them about current state and other’s previ-
ous action. Based on these observations, their next actions,
at+1
i and at+1

j , are selected based on their strategies.

Dynamic Type Update

As we mentioned previously, players i and j engaging in a
BMG observe the initial state, o0i � s0, followed by receiv-
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ing observations of the state and other’s previous action in
subsequent steps, ot+1

i � 〈st+1, atj〉. An observation of j’s
action provides information that i may use to update its be-
lief βi(θi) in its type. Recall that βi(θi) is a distribution over
(X × Θj ,FX × Σi(θi)). Consequently, the type gets up-
dated. We are interested in obtaining updated distributions,
βt+1
i (θi) for each θi ∈ Θi, given the history of observations

o0:t+1
i � 〈o0i , o1i , . . . , ot+1

i 〉. This is a simple example of us-
ing a current step observation to smooth past belief.

βt+1
i (θi)(x, θj |o0:t+1

i ) ∝ Pr(atj |θj , st) βt
i (θi)(x, θj) (2)

In Eq. 2, Pr(atj |θj , st) is obtained from j’s strategy in the
profile under consideration and indexed by θj and state st

as outlined in the next subsection. Term βt
i (θi)(x, θj) is the

prior. Because of the Markovian assumption, observation
history until state st is a sufficient statistic for the update.

Solution

Types defined using belief hierarchies limited to finite lev-
els may not yield equilibria that coincide precisely with
Bayesian-Nash equilibrium (Kets 2014), which requires that
the level be infinite. We define the solution of a BMG with
explicit finite-level types to be a profile of mixed strategies
in FLE that is Markov perfect (Maskin and Tirole 2001); it
generalizes the FLE formalized in Def. 3. Prior to defining
the equilibrium, define a strategy of player i as a sequence of

horizon-indexed strategies, πh
i

�
= (πh

i , π
h−1
i , . . . , π1

i ). Here,
πh
i : S ×Θi → Δ(Ai) gives the strategy that best responds

with h steps left in the Markov game. Notice that each strat-
egy in the sequence is a mapping from the current physical
state and player’s type; this satisfies the Markov property.
Further recall that a player’s type θi is associated with a be-
lief measure βi(θi). We define the equilibrium and specify
conditions for its existence next.

Definition 5 (Markov-perfect finite level equilibrium) A
profile of strategies, πh

k = (πh
i,k)i∈N is in Markov-perfect

finite-level equilibrium (MPFLE) of level k if the following
holds:
1. Each player has a depth-k type space;
2. Strategy πh

j,k, j ∈ N , j �= i and at every horizon is
comprehensible for every type of player i;

3. Each player’s strategy for every type is a best response
to all other players’ strategies in the profile and the equi-
librium is subgame perfect.

Notice that if, instead of condition 1 above, players pos-
sess the standard Harsanyi type space, then Def. 5 gives the
Markov-perfect Bayes-Nash equilibrium. Definition 2 char-
acterizes a comprehensible strategy.

Strategy πh
i,k is a best response if its value is the largest

among all of i’s strategies given the profile of other play-
ers’ strategies. To quantify the best response, we define an
ex-interim value function for the finite horizon game that as-
signs a value to each level strategy of a player, say i, given
the observed state, i’s own type and profile of other players’
strategies. For a two player BMG G∗, each player endowed
with a depth-k type space, this function is:

Qi(s, π
h
i,k, π

h
j,k; θi) = U∗

i (s, π
h
i,k, π

h
j,k; θi)+ (3)

γ
∑

oi
Pr(o′i|s, πh

i,k, π
h
j,k; θi) Qi(s

′, πh−1
i,k , πh−1

j,k ; θ′i)

where o′i denotes 〈s′, aj〉, θ′i is the updated type of i due
to aj (Eq. 2), and Qi(s, π

h
i,k, π

h
j,k; θi) reduces to U∗

i when
h = 1. Here,

U∗
i (s, π

h
i,k,π

h
j,k; θi) =

∫

FX×Σi(θi)

∑
Ai,Aj

Ri(s, x, ai, aj)

× πh
i,k(s, θi)(ai) π

h
j,k(s, θj)(aj) dβi(θi)

Utility function U∗
i extends Ui in Eq. 1 to the single stage of

a BMG. Next, we focus on the term Pr(o′i|s, πh
i,k, π

h
j,k; θi):

Pr(o′i|s, πh
i,k,π

h
j,k; θi) =

∫

Σi(θi)

∑
Ai

T (s, ai, aj , s
′)

× πh
i,k(s, θi)(ai) π

h
j,k(s, θj)(aj) dβ̂i(θi)

where β̂i(θi) is the marginal of measure βi(θi) on Σi(θi)
only. This equation is derived in the supplement. Subse-
quently, πh

i,k that optimizes Qi is a best response to given
πh
j,k. When the horizon is infinite, each player possesses

a single strategy that is not indexed by horizon. Note that
Eqs. 1 and 2 can be easily generalized to |N | agents.

We define an ε-MPFLE which relaxes the strict require-
ment of the exact equilibrium allowing a player in approx-
imate equilibrium to deviate if her loss due to deviating to
some other strategy is not more than ε. Finally, a MPFLE
may not always exist for a BMG of level k because the given
depth-k type space of a player may not admit any compre-
hensible and best response strategy as required by conditions
2 and 3 of Def. 5. We do not view the nonexistence of equi-
librium for all games as particularly limiting, but simply as
a consequence of the fact that some equilibria are too com-
plicated to reason with finite cognitive capabilities.

Finding MPFLE using constraint satisfaction

Vickrey and Koller (2002) present a way to compute Nash
equilibrium in single-shot graphical games with complete
information using constraint satisfaction. Later, Soni et
al. (2007) extend their work and model the problem of
finding a Bayes-Nash equilibrium in single-shot graphical
games with incomplete information and repeated graphi-
cal games also as a constraint satisfaction problem (CSP).
We further adapt their methods toward finding MPFLE in
BMGs.

First, we transform the BMG into an extended Bayesian
game by defining strategy for player i ∈ N as a vec-
tor of horizon-indexed strategies as elucidated previously.
Next, we formalize the CSP represented as a 3-tuple:
PE = 〈V,D,C〉. Here, V is a set of variables, V =
{v1, . . . , v|N |}, where each variable corresponds to a player
in the BMG; D is the set of domains for the variables,
D = {D1, . . . , D|N |}. The domain Di for a variable vi
(i ∈ N ) is the space of comprehensible strategies for player
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i. Comprehensibility limits the size of the domain, which in
turn translates to significant computational savings in time
while also ensuring that the expected utility is well-defined.
C is a set of |N | |N |-ary constraints. Each constraint Ci∈N

has the scope V which is the set of all variables, and the re-
lation Ri ⊆ ×i∈NDi. A tuple ri ∈ Ri is considered legal
if the corresponding strategy of player i is a best response
to the strategy profile of others specified in ri. The relation
Ri only constitutes legal tuples. Next, we generate the dual
CSP from the original CSP formalized above. The variables
of the dual CSP are the constraints of the original CSP. Thus,
the dual variables are C = {C1, . . . , C|N |}. The domain of
each dual variable is the tuple of the corresponding relation
in the original CSP. Thus, the dual variable Ci∈N has |Ri|
values. Finally, we add an |N |-ary equality constraint on the
dual variables. This constraint essentially performs an inter-
section across the domains of each of the dual variables. This
guarantees that all players play a mutual best response strat-
egy and hence, commit to the same Nash equilibrium which
is in turn an MPFLE for the BMG.

In general, solving a CSP involves pruning the domain
of each variable. If at any stage, any variable’s domain be-
comes empty on application of constraints, it indicates that
the CSP is unsatisfiable. On modeling the game as a CSP,
we may apply any standard CSP solver to compute equilib-
ria. We used the generic procedure described in an efficient
arc consistency algorithm called MAC3 (Liu 1998) to solve
the CSP. The complexity of the best-response constraint-
checking step is exponential in the total number of agents
and the planning horizon H . If all agents interact with each
other, this step runs in time O(|N |( 1τ )|A||Θ||N |H) where τ
is the granularity of agents’ strategy space. Furthermore, we
take advantage of sub-game perfection in MPFLE by going
bottom-up from a 1-step equilibrium strategy to an H-step
strategy in the consistency checking phase for savings.

Approximation for Mixed Strategies

Recall that a possible value of each variable is a profile of
strategies. As the level strategies may be mixed allowing
distributions over actions, the domain of each variable is
continuous. Algorithms such as MAC3 are unable to oper-
ate on continuous domain spaces. Soni et al. (2007) point
out this problem and suggest discretizing the continuous
space of mixed strategies using a τ -grid on the simplex.
In the context of a BMG, given the τ -grid and player i’s
strategy πh

i,k, the probability of taking an action ai ∈ Ai,
πh
i,k(·, ·)(ai) ∈ {0, τ, 2τ, . . . , 1}. Compared to uncountably

many possibilities for each strategy before, we now consider
1/τ2 entries on the τ -grid. Subsequently, discretizing the
continuous space of mixed strategies on the τ -grid becomes
a part of initializing the domain of each variable.

However, a profile of strategies in equilibrium may not lie
on the τ -grid if the discretization is too coarse. Thus, the dis-
cretization may introduce error and motivates relaxing the
exact equilibrium to ε-MPFLE. Interestingly, we can bound
the loss suffered by any player in moving to the adjacent
joint strategy on the τ -grid, which in turn allows us to show
that a relaxed MPFLE is preserved by the discretization. We

present this bound and related proofs in the supplement.
Unfortunately, the bound is usually loose and therefore, a

small ε could lead to unreasonably fine τ -grids and we may
end up having an intractably large mixed-strategy space. In-
versely, if we fix the granularity τ of the grid to be small, we
may end up approximating ε to an extent that the solution
becomes meaningless. In both cases, the risk of not finding
an equilibrium is still probable because of finite-level rea-
soning. In the empirical results we present next, we attempt
to find a reasonable trade off while ensuring the existence of
at least one MPFLE on two standard domains.

Empirical Evaluation
We implemented the MAC3 algorithm for obtaining MPFLE
as discussed earlier. We experiment with two benchmark
problem domains: n-agent multiple access broadcast chan-
nel (nMABC) (Hansen, Bernstein, and Zilberstein 2004)
(|N | = 2 to 5; H = 1 to 5; |S| = 4; |A| = 4; |Xi∈N | up to 4;∏

i∈N |Θi| up to 1024) and sequential level-based foraging,
which involves players performing move actions in cardinal
directions and just one load action (m ×m Foraging) (Al-
brecht and Ramamoorthy 2013) (m=3; |N | = 2; H = 1 to 3;
|S| = 81; |A| = 25; |Xi∈N | = 2;

∏
i∈N |Θi| = 16).

In our experiments on both domains, for each agent, we
manually created partitions of the other agents’ types with a
maximum size of 2 with as many payoff states as there are
partitions and ensured that the construction induced a level-
1 belief hierarchy for all participating agents. For example,
in the 2MABC problem, say each agent {i, j} has a total of
4 types. Then, the type-set for each agent is divided into 2
partitions containing 2 types each: {{θ1i , θ2i }, {θ3i , θ4i }} and
{{θ1j , θ3j}, {θ2j , θ4j}}; and let there be a total of 2 states of
nature: x and x’. We assume that the belief βi continues to
assign a point probability mass of either 1 or 0 on any partic-
ular partition and state of nature. These beliefs were manu-
ally assigned such that the type spaces induced a finite-level
belief hierarchy of depth 1 for both agents. Figure 2 shows
one such configuration for the 2MABC problem.
Validation First, we focus on generating MPFLE in games
of N Bayesian players. Multiple equilibria with pure and
mixed comprehensible strategies were found for depth-1
type spaces. For example, at H = 2, we found 3 pure-
strategy exact MPFLE. We also found 12 and 17 ε-MPFLE
for ε = 0.17 and 0.33 respectively. We begin by noting that all
computed ε-MPFLE coincide with ε-BNE for the 2MABC
problem. We obtained BNE by considering a common prior
and a unit size of the partitions of the other agent’s type set.
As expected, there were additional BNEs as well. Specifi-
cally, we found 6 pure-strategy exact BNE, and 21 and 36
ε-BNE for ε = 0.17 and 0.33 respectively. This empirically
verifies the correctness of our approach.
Run time for finding equilibrium Next, we explore the run
time performance of BMG and investigate how varying the
different parameters, N , H , X , Θ, τ , and ε, impacts the per-
formance and scalability in the two domains. Our computing
configuration included an Intel Xeon 2.67GHz processor, 12
GB RAM and Linux.

In Fig. 3 (top), we report the average time to compute the
first 10 equilibria for a 3-horizon 2MABC and 3MABC with
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Figure 3: Impact of parameters on performance. Time taken
to compute: (top) MPFLE in 2MABC and 3MABC for vary-
ing τ and ε at H = 3, (left) a pure-strategy MPFLE in
5MABC for varying ε and H showing scalability in agents,
and (right) MPFLE in 2-agent 3×3 Foraging for varying τ
and H with ε = 0.1 showing scalability in domain size (in
|A| and |S|).

|X| = 2 and |Θ| = 16 and 64 types, respectively (4 types
for each player). The bound on ε given τ shown in Proposi-
tion 1 (see supplement) is loose. Therefore, we consider var-
ious values of ε that are well within this bound. An example
pure-strategy profile for two players in exact equilibrium in
2MABC exhibited ex-interim values [1.9,1.52] for players i
and j, respectively.
Scalability We scale in the number of agents and illustrate
in Fig. 3 (left), times for 5MABC (5 agents) for increas-
ing horizons with the subgame-perfect equilibrium taking
just under 4 hours to compute for H = 5 and ε = 0.1.
Notice that this time increases considerably if we compute
profiles in exact equilibria. To scale in the number of states,
we experimented on the larger 3 × 3 Foraging and illus-
trate empirical results in Fig. 3 (right). The time taken to
compute the first ε-MPFLE for varying horizons and two
coarse discretizations is shown. Run time decreases by about
two orders of magnitude as the discretization gets coarser
for H = 2. A pure-strategy profile for two players in ex-
act equilibrium in 3 × 3 Foraging exhibited ex-interim val-
ues [1.98, 0.98] for players i and j, respectively. In gen-
eral, as the approximation increases because the discretiza-
tion gets coarser, the time taken to obtain strategy profiles in
ε-equilibria decreased by multiple orders of magnitude.
Type equivalence A complication in solving the CSP is that
the type space is continuous because it is defined in terms
of beliefs over payoff states and others’ type-set partitions.
This makes strategy a continuous function due to which the
variables in the CSP are infinite dimensional; an additional
challenge not present in Soni et al. (2007), which uses dis-
crete types. Rathnasabapathy et al. (2006) show how we may
systematically and exactly compress large type spaces us-
ing exact behavioral equivalence. Its manifestation here as

H 3 4 5

Without
TE

|Θk=1| 16 36 64 16 36 64 16 36 64
Time (s) 0.07 0.8 1335.6 1.01 42.6 1481.1 1.6 31.2 >1 day

With
TE

|Θk=1| 4 9 16 4 12 16 4 16 25
Time (s) 0.11 0.54 27.2 0.96 14.3 311.2 1.3 26.7 3161.7

Table 1: Computational savings due to TE in computing a pure-
strategy MPFLE in 2MABC for level-1 types.

type equivalence (TE) preserves the quality of the solutions
obtained, which we verified experimentally as well. The re-
duced size of player type spaces in turn reduces the number
of strategy profiles that need to be searched for finding an
equilibrium. This helps lower the time complexity by sev-
eral orders of magnitude as we demonstrate. Table 1 illus-
trates the reduction in the type space due to TE in 2MABC
for varying horizons. It also shows the time savings in gener-
ating one pure-strategy profile in equilibrium. Note the over-
head in computing the equivalence classes which is promi-
nent for smaller horizons. However, savings due to TE com-
pensate for this overhead at longer horizons and larger type
spaces.

In summary, our CSP finds multiple pure and mixed-
strategy profiles in MPFLE that are exact or approximate.
Feasible run times are demonstrated for two domains, and
we reported on scaling along various dimensions. The equi-
libria that we have found serve as optimal points of refer-
ences for current and future methods related to coordination.
The equilibrium computation could benefit from a more ef-
ficient CSP algorithm; one that potentially takes advantage
of the structure of interpersonal interactions among players
in BMGs.

Concluding Remarks

BMGs generalize Markov games to include imperfect infor-
mation about players’ types. BMGs take significant steps
beyond Kets’ single-shot games and Markov games by in-
troducing sequential reasoning to the former and bounded-
depth reasoning to the latter, both of which are non-trivial.
They construct a type space that is founded on Aumann’s
concept of information partitions as a way of formalizing
(imperfect) knowledge. BMG is the first formalization of
incomplete-information Markov games played by Bayesian
players, which integrates types that induce bounded reason-
ing into an operational framework.

BMGs are related to stochastic Bayesian games intro-
duced by Albrecht and Ramamoorthy (2013) for formaliz-
ing ad hoc coordination but they exhibit key differences:
1) Types in BMG are explicitly defined while those de-
fined in Albrecht et al. are abstract. Importantly, the latter
are coupled with a prior distribution over types that is com-
mon knowledge. 2) Furthermore, we allow for a continu-
ous type space (with intentional types) while Albrecht et al.
relies on arbitrarily picking a discrete set of hypothesized
user-defined (sub-intentional) types for agents. BMGs share
similarities with interactive POMDPs (Gmytrasiewicz and
Doshi 2005) that also allow individual agents to intention-
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ally (or sub-intentionally) model others using a finite be-
lief hierarchy that is constructed differently. However, the
focus in I-POMDPs is to compute the best response to sub-
jective beliefs and not to compute equilibria. Indeed, con-
verging to equilibria in I-POMDPs is difficult (Doshi and
Gmytrasiewicz 2006).

There is growing interest in game-theoretic frameworks
and their solutions that model pragmatic types of players.
This paper provides a natural starting point for a shared con-
versation about realistic and computationally feasible mod-
els. We ask the following questions as we further investigate
BMGs. Does increasing the depth of reasoning get MPFLE
“closer” to BNE, and can we formalize the closeness? Are
there profiles in MPFLE which do not occur in the set of
BNE even if the Harsanyi type space reflects the finite-level
beliefs? In response, we observe that higher levels of be-
liefs would require increasingly fine partitions of the types.
Therefore, MPFLE is hypothesized to coincide with BNE
with increasing levels. Kets (2014) establishes the presence
of BNE that are not present in any finite-level equilibria.
However, it is always possible to construct a Harsanyi ex-
tension of the finite-level type space such that any FLE is
also a BNE.
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