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Abstract

Motivated by the fact that in several cases a matching in a
graph is stable if and only if it is produced by a greedy algo-
rithm, we study the problem of computing a maximum weight
greedy matching on weighted graphs, termed GREEDY-
MATCHING. In wide contrast to the maximum weight match-
ing problem, for which many efficient algorithms are known,
we prove that GREEDYMATCHING is strongly NP-hard and
APX-complete, and thus it does not admit a PTAS unless
P=NP, even on graphs with maximum degree at most 3 and
with at most three different integer edge weights. Further-
more we prove that GREEDYMATCHING is strongly NP-hard
if the input graph is in addition bipartite. Moreover we con-
sider three natural parameters of the problem, for which we
establish a sharp threshold behavior between NP-hardness
and computational tractability. On the positive side, we
present a randomized approximation algorithm (RGMA) for
GREEDYMATCHING on a special class of weighted graphs,
called bush graphs. We highlight an unexpected connection
between RGMA and the approximation of maximum cardinal-
ity matching in unweighted graphs via randomized greedy al-
gorithms. We show that, if the approximation ratio of RGMA
is ρ, then for every ε > 0 the randomized MRG algorithm
of (Aronson et al. 1995) gives a (ρ − ε)-approximation for
the maximum cardinality matching. We conjecture that a tight
bound for ρ is 2

3
; we prove our conjecture true for four sub-

classes of bush graphs. Proving a tight bound for the approx-
imation ratio of MRG on unweighted graphs (and thus also
proving a tight value for ρ) is a long-standing open prob-
lem (Poloczek and Szegedy 2012). This unexpected relation
of our RGMA algorithm with the MRG algorithm may provide
new insights for solving this problem.

Introduction

Stable matching problems lie in the intersection of AI,
economics and social choice theory and have been stud-
ied extensively over the years. Originally, two-sided match-
ings were studied (Gusfield and Irving 1989), (Roth and
Oliveira Sotomayor 1990). In a two-sided matching problem
there is an underlying graph where the vertices correspond
to players that want to be matched with a vertex from their
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neighborhood. Traditionally in two-sided matchings, every
player is associated with an ordering over its neighbors that
correspond to its preferences. The goal is to decide whether
a stable matching exists and, if it does, to find one.

Recently, a line of research has emerged that studies the
quality of stable matchings (Anshelevich and Das 2010).
In this setting, each match is associated with a utility and
the goal is to find a stable matching where the social wel-
fare in this matching, i.e. the sum of the utilities, is as large
as possible. Extreme Programming (Dawande et al. 2008)
is a prominent example. In this case, the players are pro-
grammers and the utility of a match corresponds to the pro-
ductivity of the pair of programmers. The goal is to maxi-
mize the productivity while keeping the individual program-
mers happy. Another application where a stable matching
with high quality is desired, is kidney exchange. Tradition-
ally only compatibility constraints were imposed for kid-
ney exchange problems (Roth, Sönmez, and Ünver 2004),
(Roth, Snmez, and Utku nver 2005), but recently other fac-
tors which give a score to each possible match were consid-
ered too (DL et al. 2005), (Held et al. 1994). For this reason,
recent AI literature on kidney exchange tried to optimize the
overall social welfare of the matching instead of the num-
ber of compatible matches (Abraham, Blum, and Sandholm
2007), (Awasthi and Sandholm 2009).

The simplest and probably the most well-studied prob-
lem regarding the quality of the stable matching is known as
correlated stable matching (Hoefer 2011). This model can
be represented by an edge-weighted graph, where the play-
ers who are matched together obtain the same utility spec-
ified by the weight of the edge between them. Apart from
the extreme programming and the kidney exchange prob-
lems, the correlated stable matching problem finds applica-
tions in social networks (Hoefer 2011), job markets (Arcaute
and Vassilvitskii 2009), distributed networks (Goemans et
al. 2006), (Mathieu 2008), and market sharing (Goemans et
al. 2006). Furthermore, a potential function exists for this
model which in turn guarantees the existence of at least one
stable matching even in non-bipartite graphs with ties (Abra-
ham et al. 2008), (Mathieu 2008). Thus, an immediate ques-
tion is to understand the quality of a stable matching com-
pared to the “best” one and to compute a stable matching
of high quality. Anshelevich, Das, and Naamad (Anshele-
vich, Das, and Naamad 2013) and Anshelevich, Bhardwaj,
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and Hoefer (Anshelevich, Bhardwaj, and Hoefer 2013) stud-
ied the price of anarchy and stability of this model. Further-
more, in (Anshelevich, Das, and Naamad 2013) it was ob-
served that a matching is stable in the Nash sense if it is
produced by a greedy matching algorithm. As it turns out,
a correlated matching is stable if and only if it can be pro-
duced by a greedy algorithm. A greedy algorithm creates a
matching by iteratively adding edges to matching that have
the maximum available weight. Hence, a natural algorithmic
question is whether a maximum weight greedy matching can
be efficiently computed or approximated. Although greedy
algorithms for matching problems have been studied exten-
sively in the past (Poloczek and Szegedy 2012), (Aronson
et al. 1995), (Hausmann and Korte 1978), (Dyer and Frieze
1991), (Miller and Pritikin 1997), (Dyer, Frieze, and Pit-
tel 1993), to the best of our knowledge not much is known
about the problem of computing a maximum weight greedy
matching.

Related work

The scenarios of matching problems where the vertices of
the graph correspond to players can vary from matching em-
ployees and employers (Jovanovic 1979), to matching kid-
ney donors and recipients (Roth, Sönmez, and Ünver 2004),
(Abraham, Blum, and Sandholm 2007). The authors in (An-
shelevich, Das, and Naamad 2013) provided algorithms that
compute almost stable matchings. Our work is closely re-
lated to (Anshelevich, Das, and Naamad 2013), although
their techniques cannot be applied to our problem since we
focus only on matchings that are greedy (i.e. stable). Re-
cently, greedy matching algorithms were used in ordinal set-
tings to approximate the cardinal utility of maximum weight
matching (Anshelevich and Sekar 2016).

Greedy matchings have been studied extensively over
the years. The classical result by (Hausmann and Ko-
rte 1978) states that an arbitrary greedy matching is a
1
2 -approximation of the maximum cardinality matching,
i.e. every greedy matching on unweighted graphs picks at
least half of maximum number of edges that any match-
ing can pick. For edge-weighted graphs, Avis (Avis 1983)
showed that every algorithm that greedily picks edges
with the maximum currently available weight is a 1

2 -
approximation of the maximum weight matching. Hence,
every weighted greedy matching is also a 1

2 -approximation
for the maximum weight greedy matching problem. Sev-
eral authors studied randomized greedy algorithms for the
maximum cardinality matching problem. The currently best
randomized algorithm, known as MRG (Aronson et al.
1995), picks the next edge to add to the matching by
first selecting a random unmatched vertex V of the graph
and then a random unmatched neighbor of v. Aronson,
Dyer, Frieze and Suen (Aronson et al. 1995) showed that
MRG breaks the 1

2 -barrier and that it achieves a 1
2 +

1/400, 000-approximation guarantee on every graph. Re-
cently, Poloczek and Szegedy (Poloczek and Szegedy 2012)
provided a different analysis for MRG and showed that it
achieves an approximation guarantee of at least 1

2 + 1
256 .

However, as experiments suggest, the approximation guar-
antee of MRG can be as large as 2

3 (Poloczek and Szegedy

2012).

Our contribution

In this paper we study the computational complexity of com-
puting and approximating a maximum weight greedy match-
ing in a given edge-weighted graph, i.e. a greedy match-
ing with the greatest weight among all greedy matchings.
This problem is termed GREEDYMATCHING. In wide con-
trast to the maximum weight matching, for which many ef-
ficient algorithms are known (see (Duan and Pettie 2014)
and the references therein), we prove that GREEDYMATCH-
ING is strongly NP-hard by a reduction from a special case
of MAX2SAT. Our reduction also implies hardness of ap-
proximation; we prove that GREEDYMATCHING is APX-
complete, and thus it does not admit a PTAS unless P=NP.
These hardness results hold even for input graphs with max-
imum degree at most 3 and with at most three different in-
teger edge weights, namely with weights in the set {1, 3, 4}.
Furthermore, by using a technique of Papadimitriou and
Yannakakis (Papadimitriou and Yannakakis 1991), we ex-
tend the NP-hardness proof to the interesting case where the
input graph is in addition bipartite. Next, we study the deci-
sion variations GREEDYVERTEX and GREEDYEDGE of the
problem, where we now ask whether there exists a greedy
matching in which a specific vertex u or a specific edge
(u, v) is matched. These are both natural questions, as the
designer of the stable matching might want to ensure that
a specific player or a specific pair of players is matched
in the solution. We prove that both GREEDYVERTEX and
GREEDYEDGE are also strongly NP-hard.

As GREEDYMATCHING turns out to be computationally
hard, it makes sense to investigate how the complexity is
affected by appropriately restricting the input. In this line
of research we consider three natural parameters of the
problem, for which we establish a sharp threshold behav-
ior. As the first parameter we consider the number of the
weight values of the graph. Note that when there is only
one weight value on the edges, GREEDYMATCHING can
be reduced to the maximum cardinality problem and thus
it can be solved efficiently. We prove that GREEDYMATCH-
ING is NP-complete even on graphs that are bipartite or pla-
nar, have maximum vertex degree 4, and there are only two
weight values on their edges.

As the second parameter we consider the minimum ratio
λ0 of any two consecutive weights. Assume that the graph
has � different edge weights w1 > w2 > . . . > w�; we
define for every i ∈ [� − 1] the ratio λi = wi

wi+1
and

the minimum ratio λ0 = mini∈[�−1] λi. We prove that, if
λ0 ≥ 2 then GREEDYMATCHING can be solved in polyno-
mial time, while for any constant λ0 < 2 GREEDYMATCH-
ING is strongly NP-hard and APX-complete, even on graphs
with maximum degree at most 3 and with at most three dif-
ferent edge weights.

The last parameter we consider is the maximum edge car-
dinality μ of the connected components of G(wi), among
all different weights wi, where G(wi) is the subgraph of G
spanned by the edges of weight wi. Although at first sight
this parameter may seem unnatural, it resembles the number
of times that the greedy algorithm has to break ties. At the
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stage where we have to choose among all available edges
of weight wi, it suffices to consider each connected com-
ponent of the available edges of G(wi) separately from the
other components. In particular, although the weight of the
final greedy matching may highly depend on the order of
the chosen edges within a connected component, it is inde-
pendent of the ordering that the various different connected
components are processed. Thus μ is a reasonable parame-
ter for GREEDYMATCHING. In the case μ = 1 there exists
a unique greedy matching for G which can be clearly com-
puted in polynomial time. We prove that GREEDYMATCH-
ING is strongly NP-hard and APX-complete for μ ≥ 2, even
on graphs with maximum degree at most 3 and with at most
five different edge weights.

On the positive side, we consider a special class of
weighted graphs, called bush graphs, where all edges of the
same weight in G form a star (bush). We present a ran-
domized approximation algorithm (RGMA) for GREEDY-
MATCHING on bush graphs and we highlight an unexpected
connection between RGMA and the randomized MRG algo-
rithm for greedily approximating the maximum cardinality
matching on unweighted graphs. In particular we show that,
if the approximation ratio of RGMA for GREEDYMATCH-
ING on bush graphs is ρ, then for every ε > 0 MRG (Aronson
et al. 1995) is a (ρ−ε)-approximation algorithm for the max-
imum cardinality matching. We conjecture that a tight bound
for ρ is 2

3 ; among our results we prove our conjecture true
for four subclasses of bush graphs. Proving a tight bound
for the approximation ratio of MRG on unweighted graphs
(and thus also proving a tight value for ρ) is a long-standing
open problem (Poloczek and Szegedy 2012), (Aronson et al.
1995), (Dyer and Frieze 1991). This unexpected relation of
our RGMA algorithm with the MRG algorithm may provide
new insights for solving this problem.

Preliminaries

Every graph considered in this paper is undirected. For any
graph G = (V,E) we use G + u to denote the graph G′ =
(V ′, E′) where V ′ = V ∪ {u} and E′ consists of the set E
and all the edges the vertex u belongs to. Similarly G − V ′
denotes the induced graph of G defined by V \ V ′, where
V ′ ⊆ V . We study graphs G = (V,E) with positive edge
weights, i.e. each edge e = (u, v) ∈ E has a weight w(e) =
w(u, v) > 0. The degree of a vertex u is the number of its
adjacent vertices in G. We use G(wi) to denote the subgraph
of G spanned by the edges of weight wi. A matching M ⊆
E is a set of edges such that no pair of them are adjacent.
The weight of a matching M is the sum of the weights of
the edges in M, formally w(M) =

∑
e∈M w(e). A greedy

matching is a maximal matching constructed by the Greedy
Matching Procedure.
Notice that in Step 4 the edge that is added to the matching
M is not specified explicitly. The rule that specifies which
edge is chosen in Step 4 can be deterministic or randomized,
resulting in a specific greedy matching algorithm. We denote
by OPT(G) the optimum of GREEDYMATCHING with input
G, i.e. a maximum weight greedy matching of G.

Input: Graph G = (V,E), with w1 > w2 > . . . > w�

edge weight values
Output: Greedy matchingM

1. M← ∅
2. for i = 1 . . . � do

3. while there is an e ∈ E such that w(e) = wi do

4. Pick an e∗ ∈ E with w(e∗) = wi and add it toM;
5. Remove all edges adjacent to e∗ from E;

Algorithm 1: Greedy Matching Procedure

GREEDYMATCHING

INSTANCE: Graph G = (V,E) with positive edge
weights.
TASK: Compute a maximum weight greedy match-
ingM for G.

Furthermore, we study another two related problems,
where we ask whether there is a greedy matching that
matches a specific vertex or a specific edge.

GREEDYVERTEX

INSTANCE: Graph G = (V,E) with positive edge
weights and a vertex v ∈ V .
QUESTION: Is there a greedy matchingM such that
(v, u) ∈M, for some u ∈ V ?

GREEDYEDGE

INSTANCE: Graph G = (V,E) with positive edge
weights and an edge (u, v) ∈ E.
QUESTION: Is there a greedy matchingM such that
(v, u) ∈M?

Hardness of GREEDYMATCHING

In this section we study the complexity of computing a max-
imum weight greedy matching. We prove that GREEDY-
MATCHING is strongly NP-hard and APX-complete, even
on graphs with maximum degree at most 3 and with at most
three different integer weight values. By slightly modify-
ing our reduction, we first prove that GREEDYMATCHING
remains strongly NP-hard also when the graph is in addi-
tion bipartite, and we then prove that also the two decision
problem variations GREEDYVERTEX and GREEDYEDGE
are also strongly NP-hard. Our hardness reductions are from
the MAX2SAT(3) problem (Ausiello et al. 1999; Raman,
Ravikumar, and Rao 1998), which is the special case of
MAX-SAT where in the input CNF formula φ every clause
has at most 2 literals and every variable appears in at most 3
clauses; we call such a formula φ a 2SAT(3) formula.

Note that the decision version of GREEDYMATCHING,
where we ask whether there exists a greedy matching with
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weight at least B, belongs to the class NP. Indeed we are able
to verify in polynomial time whether a given matching M
is maximal, greedy and has weight at least B. The maximal-
ity and the weight of the matchingM can be computed and
checked in linear time. To check whether M is greedy, we
first check whether the largest edge weight in M equals the
largest edge weight in G. In this case we remove from G all
vertices incident to the highest weight edges of M and we
apply recursively the same process in the resulting induced
subgraph. ThenM is greedy if and only if we end up with a
graph with no edges.

Overview of the reduction.

Given a 2SAT(3) formula φ with m clauses and n variables
x1, . . . , xn we construct an undirected graph G with 10n +
m vertices and 9n + 2m edges. Then we prove that there
exists a truth assignment that satisfies at least k clauses of φ
if and only if there exists a greedy matching M in G with
weight at least 14n+ k. Without loss of generality we make
the following assumptions on φ. Firstly, if a variable occurs
only with positive (resp. only with negative) literals, then
we trivially set it true (resp. false) and remove the associated
clauses. Furthermore, without loss of generality, if a variable
xi appears three times in φ, we assume that it appears once
as a positive literal xi and two times as a negative literal
xi; otherwise we rename the negation with a new variable.
Similarly, if xi appears two times in φ, then it appears once
as a positive literal xi and once as a negative literal xi.

For each variable xi we create a subgraph Gxi and for
each clause Cj we create one vertex vj . The vertices created
from the clauses will be called v-vertices. Each subgraph
Gxi is a path with 10 vertices, where three of them are dis-
tinguished; the vertices αxi

, βxi
and γxi

. Each distinguished
vertex can be connected with at most one v-vertex that rep-
resents a clause. Furthermore, every v-vertex is connected
with at most two vertices from the subgraphs Gxi

; one dis-
tinguished vertex from each of the subgraphs Gxi

that corre-
spond to the variables of the clause. The edge weights in the
subgraphs Gxi are not smaller than the weights of the edges
connecting the v-vertices with the distinguished vertices of
the subgraphs Gxi .

The construction

The gadget Gxi
that we create for variable xi is illustrated in

Figure 1; the distinguished vertices of Gxi
are αxi

, βxi
and

γxi
. The vertex αxi

corresponds to the positive literal of the
variable and vertices βxi

and γxi
correspond to the negative

literal xi.

βxi

pxi

1

qxi

3

rxi

4

αxi
4

γxi
4

yxi

4

zxi

4

sxi

3

txi

1

Figure 1: The gadget Gxi
.

The vertex vj associated to clause Cj , where j ∈ [m], is
made adjacent to the vertices that correspond to the literals

associated with that clause. For example, if Cj = (x1 ∨ x2)
we will connect the vertex vj with one of the vertices
αx1 , βx1 , γx1 and with one of the vertices αx2 , βx2 , γx2 . In
order to make these connections in a consistent way, we first
fix an arbitrary ordering over the clauses. If the variable xi

occurs as a positive literal in the clause Cj , then we add the
edge (vj , αxi

) of weight 3. Next, if Cj is the first clause that
the variable xi occurs with a negative literal (in the fixed
ordering of the clauses), then we add the edge (vj , βxi

) of
weight 1. Finally, if the clause Cj is the second clause that
the variable xi occurs as a negative literal, then we add the
edge (vj , γxi) of weight 3. That is, if a variable xi appears
only two times in φ, then only the two distinguished vertices
αxi and βxi of Gxi are adjacent to a v-vertex. This completes
the construction of the graph G. Note that, by the construc-
tion of G, in any maximum greedy matching of G, there are
exactly four alternative ways to match the edges of each of
the subgraphs Gxi

, as illustrated in Fig. 2-5.

APX-completeness

In order to prove that GREEDYMATCHING is APX-
complete, first we prove in the next lemma that given an
assignment that satisfies k clauses we can construct a greedy
matching with weight 14n+ k. The intuition for this lemma
is as follows. Starting with a given satisfying truth assign-
ment τ for the input formula φ, we first construct the match-
ing M− in every Gxi (cf. Figure 2), and thus the β-vertices
are initially free to be matched to v-vertices. Then, if a vari-
able xi is true in τ , we change the matching of Gxi

from
M− toM+ (cf. Figure 4), such that only the α-vertex (and
not the β and γ-vertices) of Gxi

is free to be matched to a
v-vertex. On the other hand, if the variable xi is false in τ ,
then we either keep the matchingM− in Gxi

, or we replace
M− withM−− in Gxi

(cf. Figure 3). Note that inM− only
βxi

is free to be matched, while in M−− both βxi
and γxi

are free to be matched with a v-vertex; in both cases the α-
vertex of Gxi is “blocked” from being matched to a v-vertex.
Then, using the fact that τ satisfies k clauses of φ, we can
construct a matching of G where k v-vertices are matched
and the total weight of this matching is at least 14n+ k.

βxi

p
1

q

3

r
4

αxi4
γxi

4

y
4

z

4

s
3

t

1

Figure 2: The matching M− with weight 14 for the sub-
graph Gxi

. For simplicity of notation we do not include the
subscript xi in the non-distinguished vertices.

Lemma 1. If there is an assignment that satisfies at least k
clauses then, there is a greedy matching with weight at least
14n+ k.

Next we prove in Lemma 3 that, if there is a greedy match-
ing with weight 14n + k, then there is an assignment that
satisfies at least k clauses. In order to prove Lemma 3, first
we prove in Lemma 2 a crucial property of the constructed
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βxi

p
1

q

3

r
4

αxi4
γxi

4

y
4

z
4

s
3

t
1

Figure 3: The matching M−− with weight 12 for the sub-
graph Gxi .

βxi

p
1

q

3

r
4

αxi
4

γxi
4

y
4

z

4

s
3

t

1

Figure 4: The matching M+ with weight 12 for the sub-
graph Gxi

.

graph G, namely that in any greedy matching at most one of
the vertices αxi

and γxi
can be matched with a v-vertex.

Lemma 2. LetM be an arbitrary greedy matching of G and
let i ∈ {1, 2, . . . , n}. Then, in the subgraph Gxi

, at most one
of the vertices αxi

and γxi
can be matched with a v-vertex.

Proof. The proof is done by contradiction. Assume other-
wise that both αxi

and γxi
are matched with some v-vertices

in M. Note that both these edges that connect the ver-
tices αxi and γxi with the corresponding v-vertices have
weight 3. Furthermore, none of the edges (αxi , r), (γxi , y),
and (αxi , γxi) belong to M. Thus, since the weight of the
edge (αxi , γxi) /∈ M is 4, it follows M is not greedy,
which is a contradiction. That is, if both edges (αxi

, r) and
(γxi

, y) of the subgraph Gxi
are not matched withinM, then

(αxi
, γxi

) ∈ M, as it is illustrated in the “bad” matching
Mb of Fig. 5.

βxi

p
1

q

3

r
4

αxi
4

γxi

4

y
4

z
4

s
3

t
1

Figure 5: The “bad” matchingMb for the subgraph Gxi with
weight 14.

We are now ready to prove Lemma 3.
Lemma 3. If there is a greedy matching with weight at least
14n + k in G, then there exists an assignment that satisfies
at least k clauses of the formula φ.

In the following theorem we conclude with the main result
of this section.
Theorem 1. GREEDYMATCHING is strongly NP-hard
and APX-complete. In particular, unless P=NP, GREEDY-
MATCHING admits no PTAS, even on graphs with maximum
degree at most 3 and with at most three different integer
weight values.

GREEDYMATCHING in Bipartite graphs

The graph G that we constructed from φ is not necessar-
ily bipartite, as it may contain an odd-length cycle. More
specifically, it is possible that the following cycle of length
9 exists:

v → βxi → p→ q → r → αxi → v′ → γxj → αxj → v.

However, as we prove in this section, GREEDYMATCHING
remains strongly NP-hard also when the graph is in addition
bipartite.

Theorem 2. GREEDYMATCHING is strongly NP-hard, even
on bipartite graphs with maximum degree at most 3 and with
at most three different integer weight values.

Hardness of GREEDYVERTEX and GREEDYEDGE

We now prove that the decision problems GREEDYVERTEX
and GREEDYEDGE are also strongly NP-hard.

Theorem 3. The decision problems GREEDYVERTEX and
GREEDYEDGE are strongly NP-hard, even on graphs with
at most five different edge weights.

Further parameters of GREEDYMATCHING

In this section we investigate the influence of three natural
parameters to the computational complexity of GREEDY-
MATCHING. As the first parameter we consider the num-
ber of different weight values on the edges. As the second
parameter we study the minimum ratio λ0 between two con-
secutive weight values, and as the last parameter we consider
the maximum cardinality μ of the connected components of
G(wi), over all possible weight values wi. We prove that
GREEDYMATCHING has a sharp threshold behavior with
respect to each of these parameters.

Number of different weight values

Observe that if there is only one weight value on the edges
of the graph, then GREEDYMATCHING can be reduced to
the maximum cardinality matching problem. We prove that
GREEDYMATCHING is NP-complete even when the under-
lying graph has only two weight values on its edges, is bipar-
tite or planar and the maximum vertex degree is four. Thus,
we completely characterize the complexity of GREEDY-
MATCHING with respect to the number of different weight
values.

Theorem 4. GREEDYMATCHING is NP-hard even in bi-
partite or planar graphs with at most two different weight
values and maximum vertex degree four.

Note that Theorem 4 does not supersede Theorems 1
and 2. Theorem 1 establishes APX-completeness for the
problem. Furthermore, in Theorem 2 the graph has maxi-
mum vertex degree at most three, while in Theorem 4 the
graph has maximum degree at most four.

Minimum ratio of consecutive weights

Here we consider the parameter λ0 = mini λi, where λi =
wi

wi+1
> 1 is the ratio between the ith pair of consecutive
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edge weights. First we prove that, if λ0 ≥ 2, then there ex-
ists at least one maximum weight matching of G that is an
optimum solution for GREEDYMATCHING on G, obtaining
the next theorem.

Theorem 5. GREEDYMATCHING can be computed in poly-
nomial time if λ0 ≥ 2.

Recall that in the proof of Theorem 1 the weight values
1, 3, and 4 were used, thus the GREEDYMATCHING is hard
for λ0 ≤ 4/3. In the next theorem we amplify this result by
showing that GREEDYMATCHING is NP-hard for any con-
stant λ0 < 2. That is, complexity of GREEDYMATCHING
has a threshold behavior at the parameter value λ0 = 2.

Theorem 6. GREEDYMATCHING is strongly NP-hard and
APX-complete for any constant λ0 < 2, even on graphs with
maximum degree at most 3 and with at most three different
integer weight values.

Maximum edge cardinality of a connected
component in G(wi)

Another parameter that we can consider is the maximum
edge cardinality μ of the connected components of G(wi),
among all different weights wi. Since μ = 1 implies that
there is a unique greedy matching for G which can be clearly
computed in polynomial time, we consider the case μ ≥ 2.
In the original construction in every gadget Gxi

there is a
path with five edges where each edge has weight 4. Thus
μ = 5 in the graph G. However, by slightly modifying the
previous construction we get the following theorem.

Theorem 7. GREEDYMATCHING is strongly NP-hard and
APX-complete for μ ≥ 2, even on graphs with maximum de-
gree at most 3 and with at most five different integer weight
values.

A randomized approximation algorithm

In this section we provide a randomized approximation
algorithm (RGMA) for GREEDYMATCHING with approxi-
mation ratio 2

3 on four special classes of graphs. Further-
more we highlight an unexpected relation between RGMA
and the randomized MRG algorithm for greedily approx-
imating the maximum cardinality matching, the exact ap-
proximation ratio of which is a long-standing open prob-
lem (Poloczek and Szegedy 2012; Aronson et al. 1995;
Dyer and Frieze 1991). Before we present our randomized
algorithm RGMA, we first introduce the following class of
weighted graphs, called bush graphs.

Definition 1 (Bush graph). An edge-weighted graph G =
(V,E) with � edge weight values w1 > w2 > . . . > w� is a
bush graph if, for every i ∈ {1, 2, . . . , �}, the edges of G(wi)
form a star, which we call the i-th bush of G.

Bush graphs and maximum cardinality matching

In this section we present the connection of the problem
GREEDYMATCHING on (weighted) bush graphs to the prob-
lem of approximating the maximum cardinality matching
in unweighted graphs via randomized greedy algorithms,
cf. Theorem 8. Notice that we cannot directly apply the

Input: Bush Graph G with edge weight values
w1 > . . . > w�.

Output: A greedy matchingMRG.
MRG ← ∅
for i = 1 . . . � do

if Gi �= ∅
Select uniformly at random an edge ei ∈ Gi and
add ei toMRG

Remove from G the endpoints of ei and all edges of
Gi

end

Algorithm 2: RGMA algorithm

RGMA algorithm on unweighted graphs, since the algorithm
has to consider the different bushes in a specific total order
which is imposed by the order of the weights. Thus, in order
to approximate a maximum cardinality matching in a given
unweighted graph G using the RGMA algorithm, we first ap-
propriately convert G to a (weighted) bush graph G∗ using
the next Bush Decomposition algorithm, and then we apply
RGMA on G∗.

Input: Unweighted graph G = (V,E) and ε = 1
|V |3 .

Output: A (weighted) bush graph G∗.
Set k ← 0;
while E �= ∅ do

Choose a random vertex u ∈ V ;
For every v′ ∈ S := {v′ ∈ V : (u, v′) ∈ E} set
w(u, v′) = 1− k · ε;

Remove the edges of S from E;
k ← k + 1;

end

Algorithm 3: Bush decomposition

Any unweighted graph G = (V,E) can be considered as
a weighted graph with edge weights w(u, v) = 1 for every
edge (u, v) ∈ E, and thus in this case OPT(G) coincides
with the maximum cardinality matching in G. In the next
lemma we relate w(OPT(G∗)) with w(OPT(G)).

Lemma 4. w(OPT(G)) ≥ w(OPT(G∗)) ≥ w(OPT(G)) −
1
n .

With Lemma 4 in hand the next theorem follows:

Theorem 8. Let ρ be the approximation guarantee of
RGMA algorithm on every bush graph. Then, for every ε <
1, RGMA computes a (ρ−ε)-approximation of the maximum
cardinality matching for unweighted graphs.

We conjecture that a tight bound for ρ is 2
3 and we prove

our conjecture in Theorem 9 for four subclasses of bush
graphs (cf. the Definitions 2 and 3).

Definition 2. Let G = (V,E) be an arbitrary edge-
weighted tree which is a bush graph. Let x1, . . . , xk be the
bush centers of G with decreasing weight and let xi be a
child of xi−1, for every 2 ≤ i ≤ k. If every bush of G has at
least two leafs and at most one of these leafs is the center of
another bush, then G is called a skewed bush tree.
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Definition 3. Let G = (V,E) be an unweighted tree and
let r be a distinguished root of G. Let G∗ be the (edge-
weighted) bush graph that is produced by the Bush Decom-
position, where we always choose the next bush center u in a
breadth-first search fashion starting at the root r. If all leafs
of G∗ (and of G) have the same distance from r and if every
bush has at least two edges, then G∗ is called a balanced
bush tree.

Theorem 9. RGMA achieves a 2
3 approximation in the fol-

lowing four subclasses of bush graphs: bush graphs with two
weight values, bush graphs with at most two edges per bush,
skewed bush trees, and balanced bush trees.

Conclusions

Several interesting open questions stem from our paper.
Probably the most important one is to derive tight ap-
proximation guarantees ρ for the maximum weight greedy
matching problem, even for bush graphs. We conjecture
that ρ = 2

3 ; an affirmative answer to our conjecture would
imply that the algorithm MRG for maximum cardinality
matching in unweighted graphs has an approximation ra-
tio of almost 2

3 , thus solving a longstanding open prob-
lem (Poloczek and Szegedy 2012; Aronson et al. 1995;
Dyer and Frieze 1991).
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