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Abstract

Monte Carlo Localization (MCL) is a sampling-based
algorithm for mobile robot localization. In this paper we
describe an MCL assignment and its required hardware
and software. The Neato vacuum robot and a Raspberry
Pi serve as the core of the robot model. The Robot Oper-
ating System (ROS) is used as the robot programming
environment. Students are expected to learn the local-
ization problem, implement the MCL algorithm, and
better understand the kidnapped robot problem and the
limitations of MCL by observing the performance of the
algorithm in real-time application.

Introduction

This abstract offers a high-level description of an open-
access robotics assignment concerning Monte Carlo Local-
ization (MCL). We begin with a description of the assign-
ment challenges. In later sections we described the hardware
and software employed, the relevant algorithms, and the in-
teresting design tradeoffs posed by the assignment.

One will note that this work largely derives from that of
Paul Ruvolo, who has been generous in his assistance. How-
ever, we see possibilities for open-ended design to address
differences between Ruvolo’s assignment, classic MCL, and
newer approaches that address the Kidnapped Robot Prob-
lem.

The Challenges

The mobile robot localization problem is to determine the
pose (direction and position) of the robot given the map of
the environment, sensor data, a sensor error model, move-
ment data, and a movement error model. It is a very basic
problem of robotics since most of robot tasks require knowl-
edge of the position of the robot. There are three types of lo-
calization problems in increasing order of difficulty (Thrun,
Burgard, and Fox 2005).

Local Position Tracking The initial pose of the robot is
assumed to be known in this type of problem. Since the un-
certainties are confined to region near the actual pose, this is
considered to be a local problem.
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Global Localization In contrast to local position tracking,
global localization assumes no knowledge of initial pose.
However, it subsumes the local problem since it uses knowl-
edge gained during the process to keep tracking the position.
The goal of the MCL algorithm introduced in this assign-
ment is to perform global localization.

Kidnapped Robot Problem The kidnapped robot prob-
lem arises from the movement of a successfully localized
robot to a different unknown position in the environment
to see if it can globally localize. Thus it is more difficult
than global localization problem since the robot has a strong
but wrong belief in where it is. The original MCL algorithm
does not have the ability to recover from kidnapping. Such
failure is also often referred to as catastrophic failure.

Audience

This assignment is suited for an upper-level undergraduate
or graduate student in an Artificial Intelligence or Mobile
Robotics course.

Prerequisites
o facility with programming Python 2.7
e some experience with Unix/Linux operating system

e some exposure to linear algebra and probability theory

Resources
e Textbook:
Probabilistic Robotics by Thrun et al.

o A Gentle Introduction to ROS by Jason M. O’Kane: https:
/lcse.sc.edu/%TEjokane/agitr/

Hardware and Software
The Hardware
The robot consist of several parts (Ruvolo 2015):

e Neato XV vacuum robot - This model has the essen-
tial parts we need: an actuator for moving and laser range
finders for sensing.

e A Raspberry Pi 2 Model B with an Adafruit B&W
16x2 LCD and keypad kit - This is for communication
between computer and the robot. More specifically, it will
host an ad-hoc wireless connection that computer can join



using wi-fi. Thus, a wireless adapter will be necessary on
both the Raspberry Pi and the computer.

e A Unix/Linux machine - All intensive computation must
be done on a Unix/Linux computer. Sensor information is
sent from the robot to the computer. The computer uses
the information as input to MCL. Also movement com-
mand is sent from the computer to the robot at the same
time.

e Two TP-Link N600 Wireless Dual-Band USB
Adapters (one for the computer and one for the
Raspberry Pi)

The Software

ROS The Robot Operating System (ROS) is a collection
of packages and software building tools specialized for robot
programming. It has become the standard robotics develop-
ment environment in academia as well as some corporate
settings. In this assignment we use it as a communication
platform for the robot and computer. We also utilize some of
its libraries.

Monte Carlo Localization

Algorithm MCL(X;—1, ug, 2, m):
Xt = Xt = @
form = 1to M do
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Figure 1: Pseudocode for MCL (Thrun, Burgard, and Fox
2005)

The Algorithm

Monte Carlo Localization is an algorithm that begins with a
set of random hypotheses about where the robot might be all
over the map and in any heading. As the robot moves and
senses, a Darwinian survival-of-the-fittest process tends to
multiply the most likely hypotheses and tends to kill off the
least likely, gradually evolving a cloud of hypotheses where
the center, i.e. average, is the most likely robot position and
heading. Each of these hypotheses is called a particle, as this
technique derives from a general technique called Particle
Filtering. The algorithm iteratively computes and updates
the probabilities of its hypotheses. Each iteration of com-
putation has two phases (Dellaert et al. 1999):
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Prediction Phase In this phase we need a motion model
to predict the pose of the robot by only taking motion into
account. The process is Markovian since the current pose is
only dependent on one pose before. Initially we uniformly
sample our particles in the map, having no prior knowledge
of the pose.

Update Phase In the second phase we need a measure-
ment model in order to incorporate sensor information.
Each particle will be taking an updated weight such that
the current belief of the robot pose is usually the weighted
average of pose positions and of pose headings.

After the update phase, the algorithm resamples a new
collection of particles according to the current particle
weights and starts the next iteration of computation.

Learning Objectives

e [earning how to build and debug robotics applications
with ROS

e Learning the problem of localization and the kidnapped
robot problem

e Learning to work with and debug hardware

e Learning an example of a particle filtering algorithm
through the implementation of Monte Carlo Localization

e Learn the limitations of MCL and trade-offs in implemen-
tation

Possible Usage of the Assignment

This is a short assignment to learn MCL and to address the
kidnapped robot problem. It is adaptable to serve different
teaching purposes. Our primary focus is on development to-
wards robust success with the kidnapped robot problem in
the context of an introductory Al course.

With the problem and algorithm explained and the robot
and the base code supplied in early semester, several core
functions, such as updating and re-weighting particles, will
be required for implementation. Augmented MCL will be
explained in class but not required for implementation. Stu-
dent then use the rest of the semester to come up with their
own ideas to deal with the kidnapped robot problem. At the
end of the semester, a demonstration and discussion will be
held for students to exchange ideas.

Challenges in Developing the Assignment

o Trade-off between accuracy and efficiency: Since this
application requires low latency between receiving data
and sending back instruction, the computation needs to
be fast. In that regard, we need to sacrifice some accu-
racy and only maintain relatively few particle samples to
reduce computing time between each iteration. Thus the
application works better in a relatively small test arena.

e The Limitation of the Algorithm: The MCL algorithm
suffers from and can hardly recover from a incorrectly
converged localization. Initially, Ruvolo’s assignment re-
quires a given pose as approximate guidance of where the
robot actually is in the map. Gaussian sampling around



this pose then supplies the initial set of particle. However,
this prior knowledge simplifies the problem to a local po-
sition tracking problem. Given that we wish to teach the
general MCL algorithm and make progress towards the
kidnapped robot problem, a uniform sampling of the ini-
tial particle cloud is required for our adapted assignment.
Motivated students can investigate more sophisticated al-
gorithms that can deal with this problem, such as aug-
mented MCL (aMCL), which introduces random parti-
cles to MCL as a catastrophic localization failure becomes
more likely.

Available Resources
Full details concerning our adaptation of Ruvolo’s assign-

ment for the kidnapped robot problem are available via our
website http://tinyurl.com/gburgmcl.
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