

Abstract

Visual sensing can be difficult to incorporate into under-
graduate robotics and AI assignments. Images, after all, do
not provide a direct estimate of the geometric conditions
within the field of view. Yet vision is increasingly compel-
ling as a part of undergraduate AI and robotics, given the
centrality of pixels in our students' interactions with tech-
nology and each other. This paper shares a small-footprint
framework designed to make visual sensing as easy to in-
corporate into AI projects and assignments, e.g., as a source
of evidence for localization algorithms, as range sensors.
The framework leverages (hand-built) circular panoramas
and the image-matching capabilities provided by OpenCV's
python library. An example localization project highlights
its pedagogical accessibility and ease of deployment atop
low-cost hardware and alongside other sensors.

 The Challenge
A fundamental challenge in developing undergraduate
AI/Robotics assignments is deciding what to include. So
many engineering, computing, and algorithmic priorities
are shared by AI/Robotics that the limited timeframe and
high expectations for insight-per-experience payoff often
precludes the integration of image processing with tradi-
tional AI/Robotics tasks such as localization and mapping.

Yet vision-based localization and navigation systems have
a history that reaches to the earliest days of AI/Robotics
(Nilsson 1969; Moravec 1983). Contemporary vision-
based robots, leverage both the mature understanding of
visual geometry, e.g., (Diel, et al 2005), and the power of
data-driven visual lookup, e.g., (Johns et al. 2016). Moreo-
ver, vision and robotics together now support many other
investigations, e.g., husbanding endangered marine species
(Wilby, et al. 2016), tracking lions in their natural habitat
(Ackerman 2013), even surveilling other robots (Moeys et

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

al 2016). To help undergraduates tap into these trends, we
created and tested a software framework -- for building and
localizing within circular panoramas using vision. The
software is designed for both accessibility and "tinkerabil-
ity" (Resnick and Rosenbaum 2013), including (a) near-
zero cost of materials, (b) the adaptability of the vision-
based algorithms, including their spatial and angular reso-
lution, and (c) the ease with which new users can deploy
and modify the system.

Thus, this project contributes a small-footprint software
scaffold that makes it easy for instructors creating projects,
or students seeking to extend their sensor suite's reach, to
use vision to support localization in AI/Robotics projects:

• the system uses only Python and OpenCV (Bradski
2013) to support a cooperatively-built graph of panora-
mas, with student-chosen angular and translational reso-
lution, as the map from image data to location
• several image-matching algorithms and resolutions
were considered; we have chosen a default combination
that produces a reasonable tradeoff in accuracy and
time-performance
• a student deployment of the framework shows its flex-
ibility in contributing to other low-cost, easily-deployed
sensors and hardware, in service to an indoor navigation
task, the kitchen run.

Developed in the summer of 2016, this framework has not
yet been tested in a classroom setting. Even as the system
itself matures and evolves, however, its goal – making
computer vision an accessible facet of undergraduate
AI/Robotics – will continue to motivate and challenge the
AI education community.

An Image Wherever You Look!

Making Vision Just Another Sensor for AI/Robotics Projects

Andy Zhang, John Lee, Ciante Jones, Zachary Dodds
Harvey Mudd College 301 Platt Blvd. Claremont, CA 91711 USA

axzhang, johlee, cjjones, dodds@g.hmc.edu

Proceedings of the Seventh Symposium on Educational Advances in Artificial Intelligence (EAAI-17)

4806

The Framework

Components and Design
At its heart, the framework is an implementation of circular
panoramas, entirely in Python, and using a standard
OpenCV installation. The panoramas themselves are creat-
ed by students with the software and are a good starting
point in getting comfortable with OpenCV. Choosing a
number of images per location, the students take that many
pictures using their robot, before driving (or moving by
hand) to another location. Automatically creating a graph
of panorama locations was not a goal of the current system
(though the idea could certainly motivate an ambitious
student team!) What is more, the panoramas are not
stitched together: they are simply an angle-indexed list of
images attached to a known location. Figure 1 shows pano-
ramas (as image sequences) images from two example lo-
cations in our laboratory space, along with an overhead
view of that space and an example image-matching result.

These simple and flexible representations offer several
advantages: This representation has several advantages,
especially in terms of accessibility, e.g.,
• The graph can be task-specific, e.g., Figure 1 shows a

tape x at each location along a wide hallway and a nar-
rower path leading to a neighboring kitchen

• The angular resolution of the images is both easy to vary
and easy to interpret

• Each pose has a unique source image to which it corre-
sponds, making it easy to reason about the localization
system's behavior.

• Any of OpenCV's image-matching algorithms can be
used to determine the likelihood that a novel image
matches one of the panorama's images. Crucially, a
likelihood is determined (based on the number of
matching features) – this value can then be incorpo-
rated into whatever algorithmic framework the as-
signment, project, or exercise seeks to support.

Figure 1. (Top) Two slices of the unstitched image-panoramas at the heart of the framework. The images are used as the map from pixel
phenomena to location and angle. (Bottom left) A human's-eye view of the locations (x's) at which we took panoramas. (Bottom right) An

example match made via the SURF feature matching and image-warping leveraged from OpenCV.

Image matching
This last point offers the algorithmic core of the approach.
With the graph of panoramas made, image-matching is
localization. Since images will not match perfectly, match
scores are computed against the subset of the images a user
wishes to consider – perhaps all of them (for a small envi-

ronment) or perhaps only those neighboring the most re-
cent localization results, e.g., when filtering.

To determine an appropriate default approach for image-
matching, we investigated several provided by OpenCV:

1. COLOR, color-histogram matching

4807

2. SIFT, Scale-Invariant Feature Transform (Lowe 2004)
3. SURF, Speeded-up Robust Features (Bay et al. 2008)
4. BOW, using bag-of-words feature-indexing (Nister
and Stuwenius 2006).

The first three, color-histogram-matching, and SIFT- and
SURF-feature matching are longstanding approaches to
comparing images. Figure 1 (bottom right) shows an ex-
ample match of a panorama's image (at left) with a novel
image (right) via SURF feature correspondence. Here, and
in the framework, we defined the best match to be the one
with the highest number of inlier individual features
matches after the geometric adjustment known as homog-
raphy checking, which seeks to find an aligning transform
of one image relative to the other. Bag-of-words approach-
es operate differently, indexing into a full, pre-processed
database (map) of features to find the best-matching loca-
tion. In our deployment, we found that the bag-of-words
approach, at the relatively low resolution of 120x90,
worked both quickly and accurately, and we used that algo-
rithm as the default. Such vision-based details can be con-
sidered – or not – depending on the goals of the
AI/Robotics experience.

Imperfect is perfect, pedagogically speaking
Figure 2 shows the accuracy (in both angle and translation,
i.e., the graph-node best matched) along with the run time
for a full matching in our 200-image database.

Figure 2. Comparison of angular and positional (translational)
accuracy (in % of images successfully matched) and runtimes for

the four image-matching algorithms considered.

The default image-matching, then, strikes a pedagogically
attractive balance: it's not so cheap that it can be used
without consequence, but it's not so expensive that it domi-
nates students' attention. Similarly, it's accurate enough to
help a localization algorithm, but not so accurate that it
obviates them. What is more, the fact that neighboring
panoramas contain similar images offers precisely the
same kinds of ambiguity that AI/Robotics algorithms so
successfully resolve, e.g., via Particle Filtering and MCL
(Simmons and Koenig 1995), Markov Localization (Nour-
bakhsh et al. 1995; Thrun et al., 2001) or other Bayesian
filtering. This framework, in essence, provides the scaf-
folding needed to include a webcamera or other visual sen-
sor as part of a student project's overall suite.

The Experience
To test the framework's support for robot localization, a
team of three rising sophomores implemented and ran sev-
eral pure-localization tests, in Python, atop the framework.
Though not a true classroom test, as they were also the
framework's authors, the students were entirely new to
robotics, robot localization, and AI before their experi-
ments.

Localization only with a Lego robot
First Monte-Carlo Localization's Bayesian-update step was
implemented: with each novel image a new population of
pose estimates was computed and with each motion, that
population shifted probabilistically. The robot used was a
hand-built Lego chassis, controlled by a tethered connec-
tion to a desktop computer. The Legos held an onboard
USB webcamera (for the framework testing). A second
USB webcamera, placed overhead, provided ground-truth
observations.

Rather than allowing a continuously varying set of poses,
however, our approach was to maintain the probability that
the robot was near each of the (node, angle) locations in
the map. Although the map thus limited the translational
precision of this localization system, it did not limit the
angular precision: within each panorama image, we esti-
mated the angle of rotation based on image-feature posi-
tions, obtaining precision to within 1-2 degrees.

Extension: Handling Blur

Several novel robot traversals were made through the lab
area, and significant motion blur affected some, but not all,
of the robot's novel images (the original map images them-
selves were taken at pauses within each panorama's rota-
tion, so they did not suffer from motion blur). Figure 3

4808

shows exemplar images from several unpaused runs of the
robot.

To remedy this problem – without pausing the robot for
every image – we used the Laplacian operator across each
novel image: high variance in this divergence of the gradi-
ent indicate the presence of both edges and non-edge
(smooth) regions, i.e., a sharp picture. Thus, we weighted
the sensor update of each image according to the variance
of the Laplace operator for each image. Again this is one
example of sensor-specific weighting that is central to the
spirit of many AI/Robotics undergraduate experiences.
Such blur-handling is not at all a prerequisite for use of the
framework! Rather, it illustrates how the framework makes
it possible to use cameras within the same algorithms and
estimation frameworks that other sensors perhaps more
naturally support.

Figure 3. Example images from novel (unmapped) robot runs
showing the extent of motion blur possible – but not inevitable –

under unpaused motion. By weighting images based on a measure
of this blur, such images were unweighted during localization.

Figure 4 shares snapshots of some of the results and of
some of the computational interfaces OpenCV makes it
easy to create. Not part of the framework per se, students
using the library (and their instructors) may determine that
other tools for visualizing the localization data better suit
their purposes. In each case, the current set of pose esti-
mates appear in the upper left (with mode in cyan and ac-
tual angle in green and location in red). The view from the
overhead camera providing ground-truth is at the upper
right. At the bottom, the best-matched map image is at left,
next to the novel image from the robot's camera at right.

In these examples, the lower accuracy of the localization in
the first image is due to ignoring motion blur; the far better
performance below comes from unweighting the contribu-
tions of blurred images.

Localization and Navigation on an iRobot Create
We also tested the framework on a more ambitious indoor
localization-and-navigation task -- one we have used in
past undergraduate challenges. An iRobot Create sought to
navigate to the floor's kitchen, pick up some bagels, and
return to its starting point. (Because our focus was the vis-
ual support of localization, a waiting accomplice in the
kitchen simply placed the bagels on the robot.)

Where this task did more deeply integrate the visual locali-
zation was in the added use of the accelerometer data from
an iPad riding, along with a camera, on the iRobot Create.
A Raspberry Pi provided the low-level control and served
as a network conduit for the onboard camera. The image-
processing continued to happen on the students' desktop,
where they found it more convenient to develop and debug
their kitchen-trip application.

Figure 4. (Top) Snapshots from two different localization runs,
each with three distinct map nodes and 24 distinct angles. By

measuring and unweighting blurred images, the bottom run was
more successful. (For additional detail, see text.)

It also Figure 5 provides snapshots summarizing one run,
and Figure 6 summarizes the successes and failures across
33 runs of the robot. Here, we compared three image-
matching algorithms, with bag-of-words succeeding most

4809

often. We also measured the offset between the robot's
final location and its initial location, when it succeeded.
The results, called out by Figure 5, highlight the im-
portance of integrating additional sensors.

Figure 5. Four snapshots including images and pose-estimations
from a bagel-fetching task. The Create integrated the frame-

work's vision-based localization along with the accelerometer
readings from the iPad on board. A Raspberry Pi rode onboard

and provided robot control and the networking to and from a
desktop machine, where the image-matching took place.

Here, the panorama-based visual-localization system is
very accurate in estimating pose angle, but accumulated
translational errors are difficult to correct: neighboring
nodes in the map have images too similar in appearance to
distinguish between them. Using the accelerometer of an
iPad, again developed entirely in Python (using the Py-
thonista application), was as important as the visual locali-
zation in making the 25 successful Bagel runs possible!

Overall, the visual-panorama approach to incorporating
vision into AI/Robotics projects has a number of strengths:
(a) it leverages vision with familiar tools, widely-used li-
braries, and without recourse to artificial landmarks, (b) it
supports the probabilistic reasoning and state-estimation
filtering of which the AI/Robotics community if rightfully
proud, and (c) it offers a gentle and natural starting point,
but one unlimited in the sophistication with which students
can pursue insights they gain through their work.

We are excited about toolsets that provide accessible, pow-
erful pathways to composing and understanding our era's
core technologies. This paper's framework provides one
such foothold for algorithmically uniting vision with un-
dergraduate AI/Robotics. Its codebase and the videos from
this work appear at (Zhang 2016). We welcome the re-
finements that students will doubtless bring to this resource
– and to those fields at large – in the future.

Figure 6. The results (in.) of the final offset of 33 runs of the ro-
bot kitchen-trip task. Twenty-five runs overall were successful,
with no missed runs by the bag-of-words image-matching ap-

proach at a resolution of 800x600 pixels.

4810

Acknowledgments
The authors gratefully acknowledge the support of the Na-
tional Science Foundation (CISE REU #1359170) and
Harvey Mudd College.

References
Nilsson, N., "A Mobile Automaton: An Application of Artificial
Intelligence Techniques," Proceedings International Joint Confer-
ence on Artificial Intelligence, Washington, D.C., May 1969.
Available as an SRI AI Center Informal Paper, January 1969.
Moravec, H. The Stanford Cart and The CMU Rover, Proceed-
ings of the IEEE, July 1983, pp. 872-884.
Diel, D., DeBitetto, P., Teller, S. Epipolar Constraints for Vision-
Aided Inertial Navigation Seventh IEEE Workshops on Applica-
tion of Computer Vision, 2005. WACV/MOTIONS '05 Vol. 1.
E Johns, S Leutenegger, AJ Davison. Pairwise Decomposition of
Image Sequences for Active Multi-View Recognition, arXiv pre-
print arXiv:1605.08359 May, 2016.
A. Wilby et al, ”Design of a Low-Cost and Extensible Acoustical-
ly-Triggered Camera System for Marine Population Monitor-
ing,”OCEANS ’16 MTS/IEEE, Monterey, CA, Sept. 19-22, 2016.
Ackerman, E. National Geographic Robots Get Intimate With
Lions, IEEE Spectrum, 8/12/2013.
Moeys, D. P., Corradi, F., Kerr, E., Vance, P., Das, G., Neil, D.,
Kerr, D., and Delbruck, T. Steering a Predator Robot using a
Mixed Frame/Event-Driven Convolutional Neural Network
arXiv:1606.09433 [cs.RO] arxiv.org/abs/1606.09433 June, 2016.
Resnick, M., & Rosenbaum, E. (2013). Designing for Tinkerabil-
ity. In Honey, M., & Kanter, D. (eds.), Design, Make, Play:
Growing the Next Generation of STEM Innovators, pp. 163-181.
Routledge. (Tinkerability is a central design principle for many
AI/Robotics projects and experiences, just as for Scratch.)
Bradski, G., Learning OpenCV, O'Reilly Media, 2013.
Nister, D. Stewenius, H. Scalable recognition with a vocabulary
tree. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR'06), pp. 2161-2168.
Lowe D. G., "Distinctive image features from scale-invariant
keypoints," International Journal of Computer Vision, 60, 2
(2004), pp. 91-110.
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L. "SURF: Speeded
Up Robust Features", Computer Vision and Image Understanding
(CVIU), Vol. 110, No. 3, pp. 346--359, 2008.
Simmons, R. and Koenig, S. Probabilistic robot navigation in
partially observable environments. In Proc. of the International
Joint Conference on Artificial Intelligence, 1995.
Nourbakhsh, I., Powers, R., and Birchfield, S. DERVISH: An
office-navigating robot. AI Magazine, 16(2), Summer 1995.
Thrun, S., Fox, D., Burgard, W., and Dellaert, F. Robust Monte
Carlo localization for mobile robots, Artificial Intelligence Vol-
ume 128, Issues 1–2, May 2001, Pages 99-141.
Zhang, A. X. zhangxingshuo.github.io/monte-carlo, acc. 12/1/16

4811

