
Dude, Where’s My Robot?
A Localization Challenge for Undergraduate Robotics

Paul Ruvolo
Paul.Ruvolo@olin.edu

Olin College of Engineering

Abstract

I present a robotics localization challenge based on the in-
expensive Neato XV robotic vacuum cleaner platform. The
challenge teaches skills such as computational modeling,
probabilistic inference, efficiency vs. accuracy tradeoffs, de-
bugging, parameter tuning, and benchmarking of algorithmic
performance. Rather than allowing students to pursue any
localization algorithm of their choosing, here, I propose a
challenge structured around the particle filter family of al-
gorithms. This additional scaffolding allows students at all
levels to successfully implement one approach to the chal-
lenge, while providing enough flexibility and richness to en-
able students to pursue their own creative ideas. Additionally,
I provide infrastructure for automatic evaluation of systems
through the collection of ground truth robot location data via
ceiling-mounted location tags that are automatically scanned
using an upward facing camera attached to the robot. The
robot and supporting hardware can be purchased for under
$400 dollars, and the challenge can even be run without any
robots at all using a set of recorded sensor traces.

The Challenge

Robot localization is one of the most fundamental tasks in
robotics, and accurately determining the location of a robot
is a necessary first step for other robotics tasks such as map-
ping and path planning. While this topic is often part of
undergraduate robotics curricula, here, I bring two impor-
tant contributions. First, I provide a scaffolded assignment
whereby students are guided through the process of imple-
menting a robot localization algorithm on a real robot using
the popular Robot Operating System (ROS) (Quigley et al.
2009). Second, I provide an infrastructure whereby students’
algorithms can be tested quantitatively. This infrastructure
enables one to structure the assignment as a challenge in
which students attempt to infer, as accurately as possible,
the robot’s position from sensor data and motor commands.

The challenge emphasizes a rich set of AI skills, including
probabilistic reasoning, approximate inference, sensor mod-
eling, and parameter tuning. Further, the challenge places
a strong emphasis on iterative design, testing, and debug-
ging. Rather than allowing students to pursue any approach
to the challenge they desire, I structure the robot localization

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

challenge around a particular family of algorithms based on
the particle filter (Ristic, Arulampalam, and Gordon 2004).
This high degree of scaffolding is important due to the chal-
lenge’s position in the early part of the semester, and the
structure allows for a rich set of cohesive in-class activities
built around explaining and successfully implementing the
particle filter.

Student Audience

The challenge is designed for undergraduates who have
achieved proficiency, though not necessarily fluency, with
basic programming. In its current formulation, the challenge
requires knowledge of Python, although the challenge could
be restructured around C++ without too much effort. At Olin
College, all enrolled students are required to have taken at
least one full semester course in computer science (ours is
roughly equivalent to CS1.5). This assignment sits in the
beginning of a full-semester introduction to robotics class.
Some basic knowledge of probability (e.g., distributions and
conditional probability) is helpful, but not assumed.

Problem Formulation

Students are challenged to determine the current pose of a
ground vehicle (location and orientation) given its approx-
imate starting pose, a static map of the environment (rep-
resented as an occupancy grid), and a time series of sen-
sor measurements and motor commands. Following (Thrun,
Burgard, and Fox 2005), I frame robot localization as a
Bayesian inference problem. First, I define the following no-
tation.

xt � robot pose, i.e. location and orientation, at time t

ut � motor command, i.e. intended (or measured)
linear and angular velocity, at time t

zt � sensory data at time t
Additionally, I use the shorthand u1:t, for example, to indi-
cate the sequence of variables u1, . . . , ut. The variables u1:t

and z1:t are assumed to be observable (i.e. they can be di-
rectly measured). Formally, the challenge for the students
can be stated as inferring the variables x1:t (the time series
of robot poses) given these observed variables. That is, we
seek to compute the following probability distribution.

p(xt|u1:t, z1:t) (1)

Proceedings of the Seventh Symposium on Educational Advances in Artificial Intelligence (EAAI-17)

4798

A recursive algorithm for computing this probability distri-
bution at time t given the same probability distribution at
time t − 1 is given by the well known Bayes filter. The re-
cursion is started by specifying an initial distribution over
the robot’s pose at time 0. A detailed derivation of the Bayes
filter can be found in (Thrun, Burgard, and Fox 2005). Pre-
senting the derivation of the Bayes filter in class allows for
the introduction of a number of important concepts in prob-
ability theory, including conditional probability, Bayes rule,
marginalization, and the product rule. The final recursion is
given as

p(xt|u1:t, z1:t) ∝
p(zt|xt)

∑

xt−1

p(xt−1|u1:t−1, z1:t−1)p(xt|xt−1, ut) . (2)

The formulation above assumes that the pose, xt, is defined
over a discrete space, however, the continuous state filter can
be obtained by replacing the summation with an integral.

While Equation 2 may be daunting for students without
a background in probabilistic reasoning, its logic can be ex-
plained conceptually. The equation states that the degree to
which one should believe the robot is in a particular state at
time t is proportional to the product of the degree to which
the current sensor data is consistent with the robot being in
that state and the likelihood that the robot arrived in that state
given the executed motor command. This formula highlights
that in order to solve the robot localization challenge, stu-
dents must specify two components: (1) a motion model for
the robot that specifies the likelihood of the robot achieving
a particular pose given its starting pose and a motor com-
mand, p(xt|xt−1, ut), and (2) a sensor model that specifies
the likelihood of a particular sensor reading given a robot
pose, p(zt|xt).

At this point in the presentation of the algorithm the stu-
dents are typically very excited that such a seemingly diffi-
cult problem has yielded relatively easily to the application
of a few straightforward rules of probability. Unfortunately,
the recursion is intractable to compute for problems with
large numbers of possible poses. To get students to under-
stand this, I ask them to determine the computational com-
plexity of the recursion in Equation 2. The complexity of
the update is O(n2) where n is the number of possible poses
of the robot. In order to provide sufficient resolution over
an environment, even for the simple case of a ground vehi-
cle moving in a planar environment, one would need to use
a very large n (e.g., to represent various possible combina-
tions of x-position, y-position, and orientation).

The computational complexity of Equation 2 motivates
the presentation of the particle filter algorithm. The key in-
sight that motivates this algorithm is that the distribution
p(xt|z1:t, u1:t) is approximately zero for all but a tiny frac-
tion of all possible poses. That is, there is only a small set
of poses that have a non-negligible amount of probability
mass associated with them at any point in time. Instead of
tracking the entire probability distribution as suggested by
Equation 2 we can instead track a small number of potential
poses, or particles, over time. The particle filter algorithm
gives us a process to encourage this tracked set of poses to

be ones with high probability. The most common implemen-
tation of the particle filter (and the one I suggest to students)
is as follows.

1. Sample the initial set of m particles x̂
(1)
0 , . . . , x̂

(m)
0 from

a given initial pose distribution.
2. Sample a preliminary set of particles at time t,

x̃
(1)
t , . . . , x̃

(m)
t , from the motion model p(x̃(i)

t |x̂(i)
t−1, ut)

3. Assign each particle a weight given the sensor model

wi =
p(zt|x̃(i)

t)
∑m

j=1 p(zt|x̃(j)
t)

4. Sample the final set of particles at time t, x̂(1)
t , . . . , x̂

(m)
t ,

from the preliminary set of particles with probability of
selecting the ith initial particle, x̃(i)

t , given by wi.
5. Given a new motor command, ut+1, and sensor reading,

zt+1, go to step 2.

From a computational efficiency point of view we have
made a major improvement. The new algorithm has an up-
date time of O(m) (recall that m is the number of particles).
There are numerous alternatives to this specific particle filter
variant, however, for this assignment I provide starter code
that makes it easy to implement a version of the algorithm
described above. If students desire, they can implement a
more advanced version.

Given a student uses the particle filter as articulated
above, the bulk of the challenge becomes specifying the mo-
tion and sensor models. Determining each of these compo-
nents presents a number of difficult modeling decisions that
tradeoff computational cost, accuracy, and ease of imple-
mentation.

Motion Model In the version of the challenge that I run
at Olin College, I assume a differential drive robot moving
around in a planar environment (see the “Robotics Platform”
section). Further, the motor command at time t is given to
students as a measured linear and angular velocity over some
window of time (the velocities are estimated using wheel
encoders). Updating the position of each particle given ut

is straightforward, however, an important part of the motion
model is the noise encoded by the probability distribution
p(xt|xt−1, ut). The degree of noise in the motion model
serves to capture both the degree of uncertainty in our es-
timate of the robot’s position and also to help the particle
filter recover from situations in which none of the particles
are close to the true pose. In practice, to achieve maximum
accuracy the parameters of the motion model must be tuned
empirically.

Sensor Model The Neato robotic vacuum cleaner pro-
vides a scanning planar LIDAR (the scan plane is parallel
to the ground plane). Specifically, the robot provides an es-
timate of the distance to the closest obstacle across a range
of bearings updated at 5 Hz. Therefore, the students’ sensor
models should specify p(zt|xt) where zt is the laser scan
observed at time t, xt is the robot pose, and the map of the
environment (assumed to be known ahead of time) is implic-
itly conditioned in the probability distribution (in practice
students create the map using one of the popular 2D SLAM

4799

ROS packages. I have had the best luck with the gmapping
and hector slam ROS packages).

The basic idea of the sensor model is to evaluate the
likelihood of a scan reading given the hypothesized posi-
tion of the robot and the map. One can think of a scan at
a particular bearing as a detected obstacle. The intuition
for a reasonable sensor model is that the probability of a
measurement should be high when the detected obstacle
is close to an obstacle in the map and low when it is far
away from any known obstacle. For robustness, allowances
should be made for sensor noise / error as well as encounter-
ing previously unknown (i.e. unmapped) obstacles. In prac-
tice, each bearing from the laser scan is assigned a proba-
bility independently, and the overall likelihood of the com-
plete laser scan is computed by aggregating the individual
probabilities (there are a number of possible options for do-
ing this aggregation). I provide students with a number of
suggested approaches to filling in the details of their sen-
sor model that follow this general intuition, including the
likelihood field approach and the ray tracing approach (see
https://sites.google.com/site/dudewheresmyrobot/ for more
information. Also, consult (Thrun, Burgard, and Fox 2005)).

Required Hardware and Software

There are two options available for running this challenge.
The first is to create a setup similar to the one I use at Olin
College (the details of which are provided in the remain-
der of this section). The second is to eschew the robots en-
tirely and instead base the challenge on a series of recorded
test cases. This second option is possible since the chal-
lenge is one of perception and not control. Therefore, the
same run can be used repeatedly to evaluate many different
approaches to the challenge. I have collected a number of
these test cases as ROS bag files which can be downloaded
at https://sites.google.com/site/dudewheresmyrobot/.

Robotics Platform and Supporting Hardware

While the particle filter is a very flexible algorithm that can
be adapted to many different robots, the provided version of
this assignment assumes a robotics platform with the follow-
ing capabilities.
• A two-wheeled differential drive robot.
• A planar scanning LIDAR (the greater the field-of-view,

the better).
• Odometry of some type (e.g., using wheel encoders).
• (optional) An upward facing video camera (only needed

for collection of ground truth validation data).
At Olin College we use the Neato XV vacuum cleaner as our
robotics platform. There are many different Neato XV mod-
els available, and all of the ones that I tested have worked
equally well (I have tried the XV-11, XV-12 and XV-21).
The Neato is ideally-suited for this assignment as it is a two-
wheeled differential drive robot, has a 360 degree rotating
LIDAR, and is inexpensive (a Neato XV can be purchased
for under $300). The LIDAR provides the distance to the
closest obstacle with an angular resolution of 1 degree, a
sampling rate of 5 Hz, and a usable range of approximately

Figure 1: A Neato XV-21 with attached Raspberry Pi
2. Here, the camera is mounted forward-facing, however,
for collection of ground truth data the camera should be
mounted upward-facing.

0.5m to 5m. Additionally, the Neato has encoders to measure
the rotation of each wheel, which can be integrated over time
to provide the necessary odometry.

The Neato is controlled via a USB serial interface, and
thus needs an attached computer in order to issue motor
commands and fetch sensor data. For this purpose I use a
Raspberry Pi 2 (in the past I have successfully used a Rasp-
berry Pi B+), although a laptop will also work. For the Olin
setup, the Raspberry Pi acts to shuttle sensor data and motor
commands between the Neato and a base station computer
that does the heavy-duty computation. All of our students
have a standard-issue laptop that they use as their base sta-
tion computer, however, most any PC will do (provided it
can run ROS and has some networking capability).

In order to allow quantitative assessment of a robot local-
ization system one must have some way of obtaining ground
truth location data (i.e. the robot’s actual position). In my
class students obtain ground truth location data using an up-
ward facing video camera. For this purpose I use the Rasp-
berry Pi camera module and ceiling mounted AR tags (Kato,
Billinghurst, and Poupyrev 2000) (see Figure 2). Specifi-
cally, I use two foot by two foot AR tags and mount them
to the ceiling at known locations. The number of AR tags
one needs to cover a space depends on the ceiling height and
the camera’s field of view. Using the Raspberry Pi camera
module, at Olin College a single tag can cover a 6 foot by 6
foot area.

Software

Students use the popular Robot Operating System (ROS)
(Quigley et al. 2009) to run the code on the base station
computer. This software provides an abstraction layer over
the basic sensors and actuators of the Neato, robust visual-
ization and debugging capabilities, and built-in support for
mapping (recall that a map is needed as a precondition to
the challenge). Additionally, the students use ROS to pro-

4800

Figure 2: A ceiling mounted AR tag. These tags can provide
accurate positioning information using the ar pose ROS
package. If the position of the tag is known within the room,
one can obtain ground truth location data for a robot based
on an image of the tag captured from a camera mounted on
the robot.

cess the images from the upward facing camera to provide
ground truth pose information using a combination of the
ar pose library for detecting the AR tags (see Figure 2) and
a ROS node that I wrote to transform the tag detections
into the actual location of the robot in the room. All soft-
ware that runs on the base-station computer can be found at
https://sites.google.com/site/dudewheresmyrobot/.

Students program their entry to the challenge as a ROS
node. ROS supports a number of programming languages,
however, full support is limited to Python and C++. In my
course I use Python as the default language, and I require
that all student submissions to the challenge are written in
Python. C++ could also be used, and it would have some ad-
vantages over Python in terms of computational efficiency.

In addition to the software that runs on the base sta-
tion computer, some software must be installed on the
Raspberry Pi 2 that is connected directly to the Neato.
The easiest way to install this software is to download a
prebuilt Raspberry Pi 2 SD card image from the supple-
mentary website. Once the image has been downloaded
and cloned onto a micro SD card, the only tweak nec-
essary is to change the wireless network configuration in
/etc/wpa supplicant/wpa supplicant.conf. The software that
runs on the Raspberry Pi is part of the robot platform given
to the students. The students are not expected to, nor allowed
to, modify this code.

AI Programming Skills and Challenges

The challenge emphasizes a number of key AI skills. The
first major area of emphasis is computational modeling and
abstraction. The specification of the sensor model and the
motion model require students to make modeling decisions
that are justified using considerations such as accuracy, ef-
ficiency, and ease of implementation. For students that have
not done this sort of thing before, the process of specifying

a model that they know is wrong (or at least not fully ac-
curate) can seem uncomfortable at first, but learning how to
make effective modeling decisions is a key outcome of this
assignment. Tied into these modeling decisions are a num-
ber of AI topics related to probabilistic reasoning, includ-
ing Bayes rule, conditional independence, Gaussian distri-
butions, marginalization, and the product rule of probability.

A second major area of AI emphasized by this challenge
is parameter tuning and model refinement. For students ac-
customed to running code that can be determined to either
be correct or incorrect using straightforward unit tests, eval-
uating a complex robotic perception algorithm is daunting. I
suggest an iterative approach to the challenge. Students are
encouraged to start with a simple model, debug the model
to make sure it is implemented correctly, tune any model
parameters, and then refine the model based on their ex-
periments. The parameter tuning step can be approached ei-
ther by evaluating the performance of the algorithm by eye,
or through automatic evaluation using ground truth position
data (e.g., obtained using the AR tag-based positioned sys-
tem). Another useful technique for model testing and refine-
ment is to record a series of test cases consisting of runs of
the robot through an environment. These test cases can be
used to refine the student’s algorithm. Designing a good set
of test cases is another key component of the challenge.

In order for students to be as effective as possible in de-
bugging their system, they are encouraged to move beyond
the standard print statement debugging common in computer
science courses. The print statement approach becomes in-
feasible given the sheer amount of data that must be tracked
over time. Instead (or in addition to), students are encour-
aged to use visualization (e.g., of particle locations, particle
weights, etc.) as a key component of their debugging pro-
cess. ROS’s rviz package is perfect for this.

Experiences Running the Challenge
As a disclaimer, I have not yet run this assignment as a chal-
lenge (i.e. a quantitatively scored competition), however,
that is on tap for the Spring 2017 semester. Further, I devel-
oped the ground truth positioning system midway through
the last iteration of the course, and thus while it is well-
tested, it was not available when the students did the robot
localization assignment (recall that the localization assign-
ment is at the beginning of the semester). Given these two
caveats, I will provide my experiences running this as a con-
ventional assignment during two iterations of the course. Ex-
tending this assignment to a challenge format would be rel-
atively straightforward, requiring the specification of a per-
formance metric (e.g., root mean squared error) and a set
of representative test cases that would remain hidden to the
students until the end of the challenge.

This challenge is one ?hat emphasizes skill-building,
mastery, and scaffolding rather than unfettered creativity.
For many students this is their first experience implementing
a computer program that interfaces meaningfully with the
“physical world” and all of the messiness inherent therein.
Most students embrace this aspect of the challenge whole-
heartedly, however, some students take a while to learn to
successfully deal with the high degree of complexity that

4801

comes with robots, unpredictable environments, and imper-
fect sensors. For students (and especially those that are hav-
ing difficulty wrapping their heads around robotics) the par-
ticle filter algorithm provides a useful scaffolding and struc-
ture to approach the challenge. In my experience, students
that are struggling can implement the scaffolded approach
to the particle filter and students that are more comfortable
are able to try more approaches as well as innovate their own
approaches to the challenge. Student submissions vary in all
sorts of dimensions. Typical twists that I have seen are sim-
plified sensor models that allow for the usage of high num-
bers of particles, modifications of the standard particle filter
to allow for re-initialization when none of the particles are
consistent with the observed scan data, and motion models
that incorporate noise that considers the physics of differen-
tial drive robots.

Student response to the assignment has been quite posi-
tive. Students appreciated the pedagogical role that the as-
signment plays in the course, specifically, providing a scaf-
folded walkthrough of the process of learning about, imple-
menting, and testing an algorithm. The students follow this
process repeatedly throughout the course in a progressively
more self-directed fashion.

Conclusion

Our robot localization challenge provides a flexible frame-
work through which many useful AI and general software
engineering skills can be taught. The challenge emphasizes
learning about algorithms through careful scaffolding, how-
ever, the challenge could certainly be made more open-
ended. Given more time or a different student audience, stu-
dents could research various approaches to localization, im-
plement these algorithms, and evaluate them (rather than fo-
cusing on the particle filter).

Additional details, including a fun interactive class ac-
tivity to explain the particle filter on a conceptual level, a
detailed derivation of the Bayes filter along with an exam-
ple adapted from (Thrun, Burgard, and Fox 2005), starter
code, detailed diagrams, a step-by-step guide to implement-
ing a base version of the challenge, and code for creat-
ing an occupancy grid map of a room can be found at
https://sites.google.com/site/dudewheresmyrobot/.

References

Kato, I. P. H.; Billinghurst, M.; and Poupyrev, I. 2000. Ar-
toolkit user manual, version 2.33. Human Interface Technol-
ogy Lab, University of Washington 2.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. Ros: an open-
source robot operating system. In ICRA workshop on open
source software, volume 3, 5. Kobe, Japan.
Ristic, B.; Arulampalam, S.; and Gordon, N. 2004. Beyond
the Kalman filter: Particle filters for tracking applications,
volume 685. Artech house Boston.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
robotics. MIT press.

4802

