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Abstract

We demonstrate an integrated system for building and learn-
ing models and structures in both a real and virtual environ-
ment. The system combines natural language understanding,
planning, and methods for composition of basic concepts into
more complicated concepts. The user and the system interact
via natural language to jointly plan and execute tasks involv-
ing building structures, with clarifications and demonstrations
to teach the system along the way.
We use the same architecture for building and simulating
models of biology, demonstrating the general-purpose nature
of the system where domain-specific knowledge is concen-
trated in sub-modules with the basic interaction remaining
domain-independent. These capabilities are supported by our
work on semantic parsing, which generates knowledge struc-
tures to be grounded in a physical representation, and com-
posed with existing knowledge to create a dynamic plan for
completing goals. Prior work on learning from natural lan-
guage demonstrations enables learning of models from very
few demonstrations, and features are extracted from defini-
tions in natural language. We believe this architecture for in-
teraction opens up a wide possibility of human-computer in-
teraction and knowledge transfer through natural language.

While great advances are being made in the ability of AI sys-
tems to process large amounts of data and learn complex de-
cision processes for analysis, interaction with such systems
is mostly limited to users with years of experience building
such systems. AI-Human collaboration with domain experts,
opening a wide variety of opportunities for groundbreaking
research, is limited by the lack of a natural interface to con-
vey concepts and work alongside such systems rather than
simply using them as analytics tools.

While this system architecture is also used in a separate
domain, Biocuration (where the user interacts with the sys-
tem to build biological models), we demonstrate our sys-
tem in the Blocks World domain to show ease of interaction
without prior knowledge, operating in both a physical im-
plementation and a virtual 2D implementation. The user can
interact with the system to teach the system new structures,
query its knowledge, and build a structure with constraints in
a mixed-initiative dialogue. Maintaining dialogue and prob-
lem solving state allows the user to switch between these
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interactions effortlessly towards completing a shared goal,
while also allowing the system to recover from errors or ob-
stacles towards completing goals. Our emphasis on robust
dialogue management and modular integration of domain-
dependent and domain-independent components is one of
the first steps towards better collaboration with AI systems.

Related Work

Our work has similarities to SHRDLU (Winograd 1971), es-
pecially in the domain and use of natural language as an
interface. However, we go beyond reference resolution and
handle dialogues as a progression towards a goal, not as a
series of question-answer pairs. Our system also learns from
interaction and can guide the user to carry out various tasks.
The Playmate system (Skocaj et al. 2011) and SALL-E (Per-
era and Allen 2013) also incorporate learning through dia-
logue and demonstration, but do not place as much empha-
sis on the turn taking behavior needed as the robotic systems
developed by Chao and Thomaz (2011).

Interface and Hardware

Our system consists of two possible operating modes, a vir-
tual mode and a physical mode. In the first, the user interacts
with the system in a web interface with a 2D representation
of blocks on a table. This virtual environment is imbued with
basic physics, but there is no rotation. Each block is a single
color, with multiple blocks available in each color.

In the physical mode, the system consists of a TV moni-
tor on a table, two Kinect 2.0 cameras for RGB+depth and
audio recording, a central server, a smaller computer for
Kinect processing, a Microsoft Surface as an interface for
the ”proxy” (a person to act in the computer’s stead to move
blocks), and a router for communication between the two
computers and the Surface. The Kinect cameras are mounted
on either side of the table and calibrated to generate a sin-
gle point field for the table environment. Blocks are 5-inch
cubes with a logo on each face and a different color on each
side. The logo is used to generate a unique identifier as well
as provide a means for the user to reference certain blocks.
The blocks can be placed and stacked on the table in any ori-
entation. The system currently supports more than 12 blocks
on the table at once, although often occlusion limits the num-
ber of blocks that can be practically recognized.
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Feedback to the user in the physical apparatus is provided
through multiple modalities. First, the apparatus displays an
avatar to the user, which is capable of pointing, gesturing,
making facial expressions, and speaking to the user. The sys-
tem can also ”move” blocks by displaying desired block po-
sitions on the Surface for the proxy. The system can speak
using MaryTTS, an open-source text-to-speech library that
supports annotation for inflection and other modifications to
prosody (Schröder and Trouvain 2003).

System Architecture

Natural language parsing, dialogue management, goal man-
agement, learning, and planning are each developed as in-
dependent modules to facilitate independent work and allow
for the various needs of domain specificity at different lev-
els of the system. Message passing via KQML (Finin et al.
1994) provides a standard means of communication between
modules. This modular structure allows our system to han-
dle both the Blocks World and Biocuration domain with lit-
tle change to the system architecture and many components
are identical across the two domains.

The natural language parsing is handled by the TRIPS
parser (Allen, Swift, and de Beaumont 2008), which gen-
erates a semantic representation structured around events
and their various arguments. This parser is integrated with
a general ontology that is augmented with domain-specific
knowledge – types of structures and components in the
Blocks World domain, and biological knowledge from vari-
ous databases in the Biocuration domain. The resulting log-
ical form is then used to determine an appropriate problem-
solving act, progressing the dialogue and task state.

Dialogue and Collaborative State Management

Rather than using a global set of goal states, we use the no-
tion of a collaborative state to represent the interplay be-
tween the user and the system as they each express their
own goals, actions, and knowledge. Changes in collabora-
tive problem state occur via collaborative problem solving
acts, such as propose, accept, reject, etc., which refer to
state-change acts applied to goals, such as ”build a tower”,
or domain-specific actions, such as ”add relation to the bio-
logical model”. For example, the user might propose a goal
for which there are not enough blocks of the correct type, for
example. The system can then propose changes to the goal,
which may be accepted or rejected by the user. Maintaining
these states as a graph allows the system to return to the rel-
evant plan or action when subproblems in the collaboration
process have been resolved.

After parsing an utterance, we use a set of domain-
independent rules for determining shifts in collaborative
state via collaborative problem solving acts, such as propos-
ing goals or informing the other participant of goal fail-
ures. This new state is passed to domain-specific modules
to evaluate the problem in relation to the environment or
model. The system’s response to a change in problem solv-
ing state is then passed to a natural language generation
module which provides a response to the user about the suc-
cess or failure of its last action and next steps to be taken.

Model Learning and Planning

The system can develop constraint models from natural lan-
guage descriptions provided that the system can ground the
constraints in generated features of structures. For example,
if we take a definition of a tower to be ”a structure taller
than its diameter”, we can generate the features of height
and diameter for any given arrangement of blocks, create a
constraint between these features, and query the system as
to whether a structure satisfies these constraints.

When building a known structure, the system uses the
SHOP2 planner to generate a graph of plan states repre-
senting the possible, potentially underspecified states of the
world towards the goal states as well as the actions (i.e.,
placing or moving blocks) that form transitions between
states. The states contain the relations between blocks, but
not specific numerical coordinates, allowing the same plans
to be used in the 2D or 3D case and allowing multiple real-
world block arrangements to satisfy each state.

Rather than re-plan when the user deviates from the pre-
scribed action towards the next state, we have the flexibility
to evaluate the world against its plan and localize the world
within the context of the plan. This allows the system to rec-
ognize that the world may be further along in the plan than
expected, that a few simple actions can be taken to return
into the plan graph, or that progress toward the goal(s) has
regressed over time, all without having the system erase its
planning context.
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