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Abstract
Electroencephalography (EEG) is one of the most important
noninvasive neuroimaging tools that provides excellent tem-
poral accuracy. As the EEG electrode sensors measure elec-
trical potentials on the scalp instead of direct measuring ac-
tivities of brain voxels deep inside the head, many approaches
are proposed to infer the activated brain regions due to its sig-
nificance in neuroscience research and clinical application.
However, since mostly part of the brain activity is composed
of the spontaneous neural activities or non-task related ac-
tivations, task related activation patterns will be corrupted
in strong background signal/noises. In our research, we pro-
posed a sparse learning framework for solving EEG inverse
problem which aims to explicitly extract the discriminative
sources for different cognitive tasks by fusing the label in-
formation into the inverse model. The proposed framework is
capable of estimation the discriminative brain sources under
given different brain states where traditional inverse methods
failed. We introduced two models, one is formulated as super-
vised sparse dictionary learning and the other one is the graph
regularized discriminative source estimation model to pro-
mote the consistency within same class. Preliminary exper-
imental results also validated that the proposed sparse learn-
ing framework is effective to discover the discriminative task-
related brain activation sources, which shows the potential to
advance the high resolution EEG source analysis for real-time
non-invasive brain imaging research.

Background and Motivation
To infer brain cortex activations from the scalp recorded
EEG signals belongs to the class of inverse problem. Precise
localization of neuronal activity inside the brain can offer an
insightful understanding of how brain is functioning given
certain cognitive and motion tasks. According to previous
research (Raichle 2006), more than 80% of the brain energy
is devoted to the non-task related energy. To extract discrim-
inative sources given different brain status is extremely dif-
ficult and not well explored. In this research, we aim to cal-
culate extract discriminative sources to facilitate the under-
standing of brain mechanism under different cognitive tasks
or different neurological disorders by incorporating a simple
linear classifier which can be interpreted as discriminative
filters for different brain patterns.
To the best of our knowledge, there is no literature address-
ing simultaneously estimation of brain sources and distin-
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guishing different sources under different brain status. We
propose a new supervised formulation of the inverse prob-
lem and with efficient algorithms to solve it. The new formu-
lation is composed of two ingredients, source reconstruction
and supervised source classification. The contributions of
this paper is threefold, including: (a) First proposed a super-
vised inverse model with discriminative capability by lever-
aging the label information; (b) First describe the EEG in-
verse problem as an overcomplete dictionary learning prob-
lem and show the opportunities of using algorithms from
compressive sensing and computer vision community; (c)
Propose efficient algorithms to solve the optimization model
good accuracy.

Problem formulation
The electromagnetic field measured by EEG can be de-
scribed as the following optimization model:

argmin
S
‖X − LS‖2F + λΘ(S) (1)

where X ∈ R
Nc×Nt is the EEG data measured at a set of

Nc electrodes for Nt time points, L ∈ R
Nc×Nd is the lead

field matrix which maps the source signal to sensors on the
scalp, each column of L represents the activation pattern of
a particular source to the EEG electrodes, S ∈ R

Nd×Nt rep-
resents the corresponding driving potential in Nd sources lo-
cations for all the Nt time points.The penalty function Θ(S)
is to discourage unnecessary complicated source configura-
tions and enforces neurophysiologically plausible solution.
In our research, we propose a source reconstruction formu-
lation fused with classification information and the label in-
formation is coded in H , the goal function is given below:

〈W,S〉 = argmin
W,S

‖X − LS‖2F + β ‖H −WS‖2F
+ λ ‖W‖2F s.t. ∀i, ‖si‖0 � T

(2)

where H ∈ R
m×Nt is the label matrix where non-zero entry

in each column denotes the corresponding class, there are
m classes corresponding m different brain status. W is the
linear classifier parameter to be trained. For Eqn.2, it can be
rewritten as

〈W,S〉 = argmin
W,S

∥∥∥∥
(

X√
βH

)
−

(
L√
βW

)
S

∥∥∥∥
2

F

+λ ‖W‖2F s.t. ∀i, ‖si‖0 � T

(3)
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We show that the problem can be regarded a dictionary
learning problem and We employed a reviesed version of
DK-SVD algorithm to solve Problem.3.
Due to the fact that true sources are usually corrupted with
noises, we come up with a graph regularized model to pro-
mote in-class consistency and out-class discrimination.

〈W,S 〉 = argmin
S
‖X − LS‖2F + γ‖S‖1,1

+
β

2

N∑
i,j=1

‖si − sj‖22 Mij + α

N∑
i=1

‖hi −Wsi‖22,
(4)

where Mij is defined to be 1 if si and sj belongs to the
same class, and −1 otherwise. G is the Laplacian matrix of
M , which is defined as G = D −M and Dii =

∑
j Mij .

〈W,S〉 =argmin
W,S

‖X − LS‖2F + γ‖S‖1,1 + β(Tr(STGS))

+ α
N∑

i=1

‖hi −Wsi‖22 (5)

The above problem 5 can be solved with feature-sign search
algorithm.

Preliminary Result
Numerical simulations were conducted given different SNR.
We compared our proposed framework with two different
baseline methods, namely Efficient Projections onto the �1-
Ball (EP-�1B) (Liu and Ye 2009), MxNE (Gramfort, Kowal-
ski, and Hämäläinen 2012).

We used three different accuracy criteria to measure the
reconstructed source accuracy. The first one is perfect re-
construction accuracy (PRA), which compare the calculated
source location and the exact ground true. The second mea-
surement is to use Baillet-Garnero’s reconstruction accuracy
(BRA) criteria (Baillet and Garnero 1997). The third mea-
surement is to use the criteria proposed in (Haufe and Ewald
2016) denoted as Haufe reconstruction accuracy (HRA),
which is to measure whether the reconstructed source is lo-
cated in the ROI. To make the solution be more informative,
a sparse solution is always preferred for its interpretability.
The averaged number non-zero entries (NZE) in the solution
is also included to measure the sparsity. ‖X − LS‖F is the
reconstruction error (RE). Fig.1 illustrates the EEG poten-
tials before and after the application of our method, distinc-
tive source activation patterns can be clearly retracted.

Table 1: Performance comparison at SNR=1.2
Method Time PRA BRA HRA NZE RE
DKSVD 2.04 0.77 0.81 0.93 4.00 0.91
�1SR 10.9 0.33 0.37 0.52 308 118
MxNE 10.6 0.22 0.25 0.50 449 85.6

Conclusion and Future Work
We aim to reconstruct discriminative sources given different
brain status. A label guided dictionary learning formulation
was given for the first time with �0-norm and is solved using
our revised version of DK-SVD algorithm. Through numer-
ical simulations, we showed that in terms of accuracy and

Table 2: Performance comparison at SNR=0.5
Method Time PRA BRA HRA NZE RE
DKSVD 2.38 0.63 0.64 0.68 4.0 12.4
�1SR 11.4 0.30 0.32 0.50 410 111
MxNE 12.0 0.25 0.28 0.50 507 89.6

Figure 1: Discriminative filtered topoplots for 3 different
brain status: the top 3 topoplots is cooresponding to 3 differ-
ent brain tasks with high background noise or resting state
potentials, it’s very hard to distinguish them. Below is the
topoplots after we applied our methodology to extract the
discriminative expression for different brain tasks.

speed, our method is better than the �1 or �2 related ones.
The reason is high coherence of lead field matrix and spar-
sity constraints is easy to fail, which we shows in details
in our future coming research. The classification component
trained a W matrix with each row corresponding certain type
of brain status, which is physically meaningful, we termed
as discriminative filter. Our proposed framework can achieve
satisfactory result compared to traditional methods and can
be extended to more specific priors such as spatially smooth-
ness requirement or depth compensation requirement.
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