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Abstract

An associative memory is a framework of content-addressable
memory that stores a collection of message vectors (or a
dataset) over a neural network while enabling a neurally fea-
sible mechanism to recover any message in the dataset from
its noisy version. Designing an associative memory requires
addressing two main tasks: 1) learning phase: given a dataset,
learn a concise representation of the dataset in the form of a
graphical model (or a neural network), 2) recall phase: given
a noisy version of a message vector from the dataset, output
the correct message vector via a neurally feasible algorithm
over the network learnt during the learning phase. This paper
studies the problem of designing a class of neural associa-
tive memories which learns a network representation for a
large dataset that ensures correction against a large number
of adversarial errors during the recall phase. Specifically, the
associative memories designed in this paper can store dataset
containing exp(n) n-length message vectors over a network
with O(n) nodes and can tolerate Ω( n

polylogn
) adversarial er-

rors. This paper carries out this memory design by mapping
the learning phase and recall phase to the tasks of dictionary
learning with a square dictionary and iterative error correction
in an expander code, respectively.

1 Introduction

Associative memories aim to address a problem that natu-
rally arises in many information processing systems: given a
dataset M which consists of n-length vectors, design a mech-
anism to concisely store this dataset so that any future query
corresponding to a noisy version of one of the vectors in the
dataset can be mapped to the correct vector. An associative
memory based solution to this problem is broadly required
to have two key components: 1) dataset must be stored in
the form of a neural network (graph) and 2) the mechanism
to map a noisy query to the associated valid vector should
be implementable in an iterative neurally feasible manner
over the network (a neurally feasible algorithm employs only
local computations at the nodes of the corresponding network
based on the information obtained from their neighboring
nodes). The tasks of learning the graph representation from
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the dataset and mapping erroneous vectors to the associated
correct vectors are referred to as learning phase and recall
phase, respectively.

The overarching goal of designing an associative mem-
ory that can store a large dataset (ideally containing exp(n)
message vectors using a neural network with O(n) nodes)
while ensuring robustness to a large number of errors (ide-
ally Ω(n) errors) during the recall phase has led to multiple
research efforts in the literature. The binary Hopfield net-
works, as studied in (Hopfield 1982; McEliece et al. 1987),
provide one of the earliest designs for the associative memo-
ries. Given a dataset containing binary vectors from {±1}n,
Hopfield networks learn this dataset in the form of an n-
node weighted graph by employing Hebbian learning (Hebb
2005), i.e., the weighted adjacency matrix of the graph is de-
fined by summing the outer products of all message vectors
in the dataset. However, in their most general form, these
networks suffer from small capacity. In (McEliece et al.
1987), McEliece et al. show that these networks can only
store O

(
n

logn ) message vectors when these messages cor-
respond to arbitrary n-length binary vectors and the recall
phase is required to tolerate linear Ω(n) random errors. This
has motivated the researchers to look at various generaliza-
tions of Hopfield networks (see, (Gross and Mezard 1984;
Jankowski, Lozowski, and Zurada 1996; McEliece and
Posner 1985; Muezzinoglu, Guzelis, and Zurada 2003;
Tanaka and Edwards 1980) and references therein). How-
ever, these solutions again fail to simultaneously achieve
both large capacity and error tolerance.

One remedy to small capacity is to design associative
memories with structural assumptions on the dataset. This
approach has been considered in (Gripon and Berrou 2011;
Hillar and Tran 2014; Karbasi, Salavati, and Shokrollahi
2014; Kumar, Salavati, and Shokrollahi 2011; Mazumdar
and Rawat 2015; Salavati and Karbasi 2012). In partic-
ular in (Gripon and Berrou 2011), Gripon et al. store a
dataset comprising O(n2) sparse vectors in the form of
cliques in a neural network. In (Hillar and Tran 2014),
Hillar and Tran design a Hopfield network with n nodes
that can store ∼ 2

√
2n/n1/4 message vectors and is ro-

bust against n/2 random errors. In (Karbasi, Salavati, and
Shokrollahi 2014; Kumar, Salavati, and Shokrollahi 2011;
Salavati and Karbasi 2012; Mazumdar and Rawat 2015), the
message vectors that need to be stored are assumed to consti-
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tute a subspace. In (Karbasi, Salavati, and Shokrollahi 2014;
Kumar, Salavati, and Shokrollahi 2011; Salavati and Karbasi
2012), the task is to learn a bipartite factor graph of the linear
constraints satisfied by the dataset subspace. The error correc-
tion during recall phase is then performed by running a belief
propagation algorithm (Richardson and Urbanke 2008) over
the bipartite graph. In (Karbasi, Salavati, and Shokrollahi
2014), Karbasi et al. work with a model where the message
vectors in the dataset have overlapping sets of coordinates
so that shortened vectors obtained by restricting the original
message vectors to each of these overlapping sets belong to
a subspace. Under this model, they design associative mem-
ories that can store exponential number (in n) of message
vectors while correcting linear number (in n) of random er-
rors during the recall phase.

The results in (Karbasi, Salavati, and Shokrollahi 2014)
hinge on the fact that the learning phase of their memory
design recovers a bipartite graph which has certain desir-
able structural properties that are required for belief prop-
agation type decoders to converge. However, no guaran-
tee of recovering such a bipartite graph during the learn-
ing phase is provided in (Karbasi, Salavati, and Shokrol-
lahi 2014) even when we assume the subspace associated
with the dataset has one such graphical representation to
begin with. Recognizing the requirement of learning cor-
rect bipartite graph during the learning phase, we explore a
sparse recovery based approach to design associative mem-
ories with the subspace dataset model in (Mazumdar and
Rawat 2015). This approach assumes that the dataset belongs
to a subspace whose orthogonal subspace has null space
property, a sufficient condition for sparse signal recovery.
This allows one to learn any basis for the orthogonal sub-
space during the learning phase and then recast the recall
phase as a sparse recovery problem (Candes and Tao 2006;
Donoho 2006). The approach in (Mazumdar and Rawat 2015)
also allows for the strong error model containing adversarial
errors. Specifically, (Mazumdar and Rawat 2015) considers
two candidate signal models which contain n-length message
vectors and utilize O(n) sized neural networks to store the
signals. The two models have the datasets of sizes exp(n3/4)
and exp(r) with 1 ≤ r ≤ n, respectively. Furthermore, the
designed associative memories based on these two signal
models respectively allow for recovery from Ω(n1/4) and
Ω
(

n−r
log6 n

)
adversarial errors in a neurally feasible manner.

In this paper, we also follow the subspace model as in
(Karbasi, Salavati, and Shokrollahi 2014; Kumar, Salavati,
and Shokrollahi 2011; Salavati and Karbasi 2012; Mazumdar
and Rawat 2015). We assume the dataset to form a subspace
which is defined by sparse linear constraints. The model
of sparse linear constraints are quite natural and less restric-
tive than the previous models of works such as (Mazumdar
and Rawat 2015). Note that this signal model is similar to
the model explored in Karbasi et al. (Karbasi, Salavati, and
Shokrollahi 2014). However, our approach and contributions
differ from (Karbasi, Salavati, and Shokrollahi 2014), as we
ensure that the learning phase provably generates the correct
bipartite graph which can guarantee the error correction from
a large number of errors using an iterative algorithm during

the recall phase. We also note that similar to (Mazumdar and
Rawat 2015) we work with the stronger error model involv-
ing adversarial errors, but our scheme is superior to that of
(Mazumdar and Rawat 2015) in terms of storage capacity
(see, Theorems 1, 3) and number of correctable adversarial
errors (improvement by poly-log factors, see, Theorems 1,
2, 3). We want to point out that the main technical challenge
in associative memory is not to individually design the learn-
ing or recall phases, but to interface them in a way that is
consistent with the operations of both phases, and to give an
end-to-end performance guarantee.

Here, we note that the problem of designing an associative
memory is closely related to the well studied nearest neighbor
search (NNS) problem and its relaxation approximate nearest
neighbor search (A-NNS) problem (Indyk and Motwani 1998;
Andoni and Indyk 2008; Samet 2005; Wang et al. 2014). The
solutions to the A-NNS problem enable one to store a dataset
in such a manner that noisy versions of the vectors in a dataset
(with bounded noise) can be mapped to the correct vectors.
Additionally, the A-NNS solutions do not put assumptions
on the dataset. However, this comes at the cost of removing
the requirement of having a fast iterative or neurally feasible
recall phase. Furthermore, the A-NNS solutions, especially
based on locally sensitive hashing (Indyk and Motwani 1998;
Har-Peled, Indyk, and Motwani 2012) have large space com-
plexity, i.e., polynomial in size of dataset. We note that the
A-NNS solutions are very much aligned to the vector (image)
retrieval task (Jégou, Douze, and Schmid 2011; Yu et al. 2015;
Ferro, Gripon, and Jiang 2016) which need not have a neu-
rally feasible retrieval algorithm.

The rest of the paper is organized as follows. In Sec. 2,
we define the dataset model considered in this paper and
present the main results of this paper along with key tech-
niques and ideas involved in establishing those results. Sec.
3 is dedicated to the proof of the main theorem. In Sec. 3.1,
we describe the learning phase of the associative memory
design results along with the relevant technical details. In
Sec. 3.2, we present an iterative error correction algorithm
which is employed during the recall phase of the designed as-
sociative memory. This analysis of the algorithm relies on the
expansion properties of the bipartite graph which defines the
dataset and is learnt during the learning phase. We conclude
the paper with some comments on performance in Sec. 5.

2 Main results and techniques

2.1 Model for datasets

We focus on the associative memories based on the operations
on R, the set of real numbers. In our first model, we consider
the message patterns to be vectors over R. In the second
model we comment on neural associative memories storing
binary message patterns that are obtained by our approach.

Dataset over real numbers: the sparse-sub-Gaussian
model We assume the message set to form a linear sub-
space defined by sparse linear constraints over R. Let M ⊆
R

n denote the set of message vectors (signals) that need to be
stored on the associative memory. Let B be an m× n matrix
comprising the linear constraints that define the message set
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M. In particular, we have

Bx = 0 ∀ x = (x1, x2, . . . , xn) ∈ M. (1)

In order to fully specify the message set M, we still need to
provide a stochastic model for the matrix B. Towards this, we
consider a random ensemble of sparse matrices. For each j ∈
[n] := {1, 2, . . . , n}, we consider the following experiment.
We pick d element uniformly at random with replacement
from the set [m]. Let Nj denote the set comprising these
randomly picked elements. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, we
define

ξi,j =

{
1 if i ∈ Nj ⊂ [m]

0 otherwise.
(2)

Let
{
Ri,j

}
1≤i≤m, 1≤j≤n

be a collection of independent and
identically distributed (i.i.d.) sub-Gaussian random variables.
Given the random variables,

{
ξi,j , Ri,j

}
1≤i≤m, 1≤j≤n

, we
assume that the (i, j)-th entry of the matrix B is defined as

Bi,j = ξi,jRi,j ∈ R for 1 ≤ i ≤ m, 1 ≤ j ≤ n. (3)

Through out this paper, we refer to this model for the dataset
to be stored on a neural associative memory as sparse-sub-
Gaussian model. We work with various values of d which we
specify while stating different parameters that we obtain for
the designed associative memories in Sec. 2.2.

This model is a quite natural random model of bipartite
graphs that allow for multi-edges. Indeed, consider a bipartite
graph with disjoint sets of vertices [n] (variable nodes) and
[m] (check nodes). There are d edges out of each variable
node, being incident on uniformly and independently chosen
vertices from the check nodes.

Remark 1. The requirement on Ri,j is quite generic as
it allows for many distributions. For example, we can as-
sume that Ri,j belongs to a finite set of integers {−L,−L+
1, . . . ,−1, 1, . . . , L−1, L}. Similarly, in another setup, Ri,j

can be assumed to be a Gaussian random variable.

Binary dataset Our model of binary dataset is same as
above except for the fact that 1) M ⊆ {+1,−1}n, and 2)
Ri,j is uniform over {+1,−1} in (3). The condition of (1)
must be satisfied for any x ∈ M.

2.2 Our main results

We establish that, for a dataset M corresponding to the null-
space defined by the matrix B, the said matrix B can be
exactly recovered from the dataset in polynomial time. Recall
that there can be many sets of basis-vectors for the null-
space of M. Still, we claim that it is possible to accurately
recover the matrix B that has been generated by the sparse-
sub-Gaussian model described above.

It is essential for us that we recover the matrix B exactly.
Being generated by the random model defined above, B
exhibits certain graph expansion property that is necessary
for our recall phase to be successful. This matrix B enables
the error correction during the recall phase with the help of a
simple iterative (neurally feasible algorithm). We summarize
the parameters achieved by such memory as follows.

Theorem 1. Suppose that c, c′, c′′ > 0 are three constants.
Let n be a large enough integer and m = c n

logn . Assume
that B is an m × n matrix generated from the sparse-sub-
Gaussian model described in Sec. 2.1 with c′ ≤ d ≤ c′′ log n,
and M = {x ∈ R

n : Bx = 0}. Then, with high probabil-
ity (w.h.p.) M is an n−m = n(1− c/ log n) dimensional
subspace that can be stored in a neural network (learned
in poly-time in the learning phase) while allowing for cor-
rect recovery from Ω( n

d2 log2 n
) adversarial errors during the

recall phase with a neurally feasible algorithm.
The proof of this theorem has been provided in Sec. 3. This

result is obtained by utilizing a novel connection between
recovering the matrix B defining the underlying dataset
M and the dictionary learning problem with a square dic-
tionary as studied in (Spielman, Wang, and Wright 2012;
Adamczak 2016; Blasiok and Nelson 2016). Given access to
the dataset M, we can easily find a basis for the null-space
of M containing m = n − dim(M) n-length vectors. Let
A denote the m× n matrix which has the m vectors in this
basis as its rows. Note that the row vectors of B also span the
subspace orthogonal to the dataset M. Moreover, w.h.p., B is
a full rank matrix. This implies that the following relationship
holds w.h.p.,

A = DB, (4)

where D is an invertible m×m matrix. Note that recovering
the matrix B from A is now equivalent to dictionary learning
problem (Olshausen and Field 1997) where n columns of A
and B corresponds to n observations and the associated coef-
ficients, respectively. Furthermore the matrix D corresponds
to a square dictionary (Spielman, Wang, and Wright 2012).

As for the recall phase, we rely on the observations (as
shown in Sec. 3.2) that w.h.p. the bipartite graph associated
with the sparse random matrix B is an expander graph. As-
sume that we are given a noisy version y of a valid message
vector x ∈ M such that we have

y = x+ e (5)

where e denotes the error vector. Recovering x from the
observation y can be cast as a sparse recovery problem of
recovering e from z = By = B(x+ e) = Be. If the bipar-
tite graphs associated with B is an expander graph (which
holds w.h.p.), we can solve this sparse recovery problem by
an efficient and iterative algorithm (Jafarpour et al. 2009)
which is motivated by the decoding algorithm of expander
codes (Sipser and Spielman 1996) in coding theory literature.

Due to the sample complexity requirements for efficient
square-dictionary learning algorithms (Spielman, Wang, and
Wright 2012; Adamczak 2016; Blasiok and Nelson 2016),
the above model allows us to store datasets that satisfy at
most O

(
n

logn

)
linear constraints. However if we allow for a

learning-phase that takes quasi-polynomial time, then it is
possible to store restricted datasets that satisfy m = Θ(n)
sparse-linear constraints. We summarize the result below.
Theorem 2. Let n be a large enough integer and m = cn
for a some constant c < 1/200. For a large enough constant
C > 0, let B be an m× n matrix generated from the sparse-
sub-Gaussian model described in Sec. 2.1 with d = C log n
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and M = {x ∈ R
n : Bx = 0}. Then w.h.p., M is an

n−m = n(1− c) dimensional subspace that can be stored
in a neural network (learned in quasi-polynomial-time in
the learning phase) while allowing for error correction from
Ω( n

log2 n
) adversarial errors during the recall phase with a

neurally feasible algorithm.

While in terms of storage capacity this theorem is inferior
to that of Theorem 1, it may represent some datasets better,
and has better error correction capability. While the recall
phase of this algorithm works same as above, for the learning
phase we can no longer rely on the dictionary-learning algo-
rithms. Instead we do an exhaustive search over all possible
sparse vectors to find out a sparse basis for the null-space
of M which end up taking a quasi-polynomial time, if we
choose parameters suitable for the recall phase. We here cru-
cially use the fact that for m = cn and d = C log n such
a sparse basis is unique, which can be obtained from the
results of (Spielman, Wang, and Wright 2012). The proof
of the recall phase for this theorem remains same as that of
Theorem 1.

Finally, while both Theorems 1 and 2 have their counter-
parts when storing binary vectors, we present only one result
for brevity. A sketch of the proof of the following theorem
has been given in Sec. 4.

Theorem 3 (Binary dataset). Suppose that c, c′, c′′ > 0 are
three constants. Let n be a large enough integer such that
m = c n

logn . Assume that B is an m × n matrix generated
from the binary dataset model described in Sec. 2.1 with
c′ ≤ d ≤ c′′ log n and M = {x ∈ {±1}n : Bx = 0}.
Then w.h.p., |M| = exp(n − αn log(d log n)/ log n) for a
constant α and M can be stored in a neural network (learned
in polynomial-time in the learning phase) while allowing for
error correction from O( n

d2 log2 n
) adversarial errors during

the recall phase with a neurally feasible algorithm.

3 Proof of Theorem 1

3.1 Learning phase of associative memory design

As discussed in the previous section, under the dataset
model considered in this paper, the learning phase of the
associative memory design can be mapped to the problem
of dictionary learning with a square dictionary. The very
same dictionary learning problem with slightly different
random model for the coefficient vector has been studied
in (Spielman, Wang, and Wright 2012; Adamczak 2016;
Blasiok and Nelson 2016). (We refer the reader to a longer
version of this paper (Mazumdar and Rawat 2016) for a de-
scription of this line of work.) We then utilize the dictionary
learning algorithm used in (Adamczak 2016) to exactly learn
the matrix B which define our dataset and comment on the
modifications required in the analysis of Adamczak (Adam-
czak 2016) to obtain guarantees on the performance of this
algorithm.

Exact recovery of the matrix B Our learning phase con-
stitutes learning the matrix B exactly from the dataset M.
Utilizing the dictionary learning algorithm from (Adamczak
2016), we design the learning phase for an associative mem-

ory storing the message set described in Sec. 2.1. The learning
phase consists of the following two steps.

1. Given the message vectors from the dataset M, first con-
struct a basis for the subspace orthogonal to the dataset
subspace M = {x : Bx = 0} ⊂ R

n with dim(M) =
n−m.

2. Let A ∈ R
m×n denote the basis obtained in the previous

step. Since w.h.p. B is a full-rank matrix, we have

A = DB,

where D ∈ R
m×m is a non-singular matrix. Now em-

ploy the modified ERSpUD dictionary learning algo-
rithm (Adamczak 2016) with the matrix A as its input.
Note that the algorithm outputs candidates for the matrices
D and B. The method of this square-dictionary learning
and the algorithm are summarized in the longer version of
this paper (Mazumdar and Rawat 2016).

Next, we show that the proposed learning phase w.h.p.
exactly recovers the matrix B. Note that the sparse-sub-
Gaussian model used to generate B (cf. Sec. 2.1) slightly dif-
fers from the Bernoulli-sub-Gaussian model studied in (Spiel-
man, Wang, and Wright 2012; Adamczak 2016) (cf. (Mazum-
dar and Rawat 2016, Appendix A)). In particular, for every
j ∈ [n], the distribution of the random variables {ξi,j : i ∈
[m]} and {ηi,j : i ∈ [m]} is different1. However, this
difference is not very crucial for the success of the learn-
ing algorithm as we still have independence among the ran-
dom variables ξi,js which are indexed by different values of
j ∈ [n]. We formalize the exact recovery guarantees for the
matrix B in the following result.

Theorem 4. Let B ∈ R
m×n be a matrix generated by the

sparse-sub-Gaussian model (cf. Sec. 2.1) and M be the asso-
ciated dataset, i.e., M = {x : Bx = 0}. Then there exists
a constant c > 0 such that whenever we have n ≥ cm logm
the two step learning phase of the associative memory as
described above exactly recovers the linear constraints in B
with probability at least 1− 1/n.

We refer the reader to (Mazumdar and Rawat 2016) for the
proof of Theorem 4.

3.2 Recall phase of associative memory design

In this section we present an iterative algorithm which recov-
ers the correct message vector among the dataset M from its
noisy version. The noisy observation is assumed to be cor-
rupted at adversarially chosen coordinates. The correctness
of the iterative algorithm relies on the observation that the bi-
partite graph associated with the matrix B which defines our
dataset M is a good expander graph. We first formalize this
expansion property in the following result. We then present
the iterative algorithm and show that it can provably tolerate
Ω
(

n
polylogn

)
adversarial errors.

1We focus on the sparse-sub-Gaussian model as opposed to the
Bernoulli-sub-Gaussian model as the bipartite graph associated with
the matrix B generated by the sparse-sub-Gaussian model is a good
expander w.h.p. We utilize this fact while designing the recall phase
for the proposed associative memory in Sec. 3.2.
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Expansion property of the bipartite graph defined by B
Let GB = (L = [n],R = [m], EB) be a bipartite graph
where L and R denote the index sets of left and right vertices,
respectively. The matrix B which defines our dataset M
gives the m × n adjacency matrix of the graph G, i.e., for
� ∈ L and r ∈ R, we have an edge (�, r) ∈ EB iff Br,� 	= 0.
More specifically, the weight of the edge (�, r) ∈ EB is
w�,r = Br,�. It follows from the sparse-sub-Gaussian model
(cf. Sec. 2.1) which generates the random matrix B that every
vertex in L has degree d and each of the d neighbors for a
vertex in L are chosen uniformly at random from the set of
right vertices R with replacement. The following result states
that expansion properties that hold for such a graph with high
probability.
Proposition 1. Assume that ε > 0 and d = O( n

m logn ). Let
G = (L,R, E) be a random d-left regular graph where each
of the d neighbors for a left vertex are chosen uniformly
at random from the set of right vertices with replacement.
Then, for a large enough n, w.h.p., G is an

(
m2

d2n , (1− ε)d
)

-

expander graph, where a bipartite graph is (t, l)-expander,
if for every S ⊆ L such that |S| ≤ t, we have |N (S)| ≥
l|S|. Here, N (S) ⊆ R denotes the vertices in R that are
neighbors of vertices in S.

Proof. Let’s consider a set S ⊆ L such that |S| = s ≤ m2

d2n .
Let T ⊆ R be a set of right vertices such that |T | < (1 −
ε)ds. The probability that N (S) ⊆ T is upper bounded by(

(1−ε)ds
m

)ds

. Now, taking the union bound over all the sets
S ⊆ L such that |S| = s and the sets T ⊆ R such that
|T | < (1− ε)ds, the probability Ps that the the graph G has
a non-expanding set of size s, is upper bounded as follows.

Ps ≤
(
n

s

)(
m

(1− ε)ds

)
((1− ε)ds/m)

ds

≤ es+(1−ε)ds (n/s)
s
((1− ε)ds/m)

εds
. (6)

We can rewrite (6) as,

Ps ≤ es+(1−ε)ds (dn/m)
s
(ds/m)

εds−s
. (7)

Now, using our assumption that s ≤ m2

d2n , we obtain that

Ps ≤ es+(1−ε)ds (m/dn)
εds−2s

. (8)

Using union bound, we have that G is not an
(

m2

d2n , (1−ε)d
)

-
expander with probability at most

m2

d2n∑
s=1

Ps ≤
m2

d2n
es+(1−ε)ds

( m

dn

)εds−2s

. (9)

Now, for large enough n, the R.H.S. of (9) vanishes as we
have m

dn = O( 1
logn )

Iterative decoding algorithm Remember that during the
recall phase we are given an n-length observation vector y
which is noisy version of one of the message vectors from
the dataset M, i.e.,

y = x+ e, for some x ∈ M. (10)

Expander decoding algorithm

Input: The vector z = Be and the matrix B.
1: Define Nj := {i ∈ [m] : Bi,j 	= 0} ∀ j ∈ [n].
2: Initialize ê = 0.
3: if z = Bê then
4: End the decoding and output ê.
5: else
6: Find an index j ∈ [n] such that the multiset

{ gi
Bi,j

}i∈Nj
has at least (1− 2ε)d identical elements,

say δ. Here, gi is the gap (cf. (12)) of the constraint
defined by the ith row of B.

7: Set êj ← êj + δ and go to 2.
8: end if

Figure 1: Recovery algorithm for sparse vector from expander
graphs based measurement matrix (Jafarpour et al. 2009).

Assuming that we have exactly learnt the m × n matrix B
during the learning phase of the associative memory (as de-
scribed in Sec. 3.1), we obtain an m-length vector as follows.

z = By = B(x+ e) = Be, (11)
where the last equality follows as we have x ∈ M = {x ∈
R

n : Bx = 0}. Note that we have reduced the problem
of recovery of the correct message vector x from y to the
task of recovering e from z. Assuming that the error vector
e satisfies certain sparsity constraint, the latter problem is
exactly the problem of recovering the sparse vector e from
its linear measurements via the measurement matrix B. As
shown in Proposition 1, w.h.p., the matrix B corresponds
to the adjacency matrix of an expander graph. In (Jafarpour
et al. 2009), Jafarpour et al. have adapted the iterative error
correction algorithm for expander codes from (Sipser and
Spielman 1996) to the problem of sparse recovery problem
when the measurement matrix corresponds the adjacency
matrix of a good expander graph. Here we propose to employ
this iterative algorithm to recover e from z. The algorithm
requires calculation of gap for each of the linear constraints
defined by the matrix B (or rows of the matrix B) which we
formally define below.
Definition 1. Let e be an error vector and z = Be. Given
an estimate ê for e, for each linear constraint indexed by
i ∈ [m], we define a gap gi as follows.

gi = zi −
n∑

j=1

Bi,j êj . (12)

We describe the algorithm in Fig. 1 and present the theo-
retical guarantees for the performance of the algorithm from
(Jafarpour et al. 2009) as follows.
Proposition 2 ((Jafarpour et al. 2009)). Let B be an m× n
matrix which is the adjacency matrix for a (2k, (1− ε)d) ex-
pander bipartite graph with ε ≤ 1

4 . Then, given the measure-
ment vector z = Be for any k-sparse vector e, the expander
decoding algorithm (cf. Fig. 1) successfully recovers e in at
most 2k iterations.
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We now employ Proposition 2 to characterize the error
correction performance of the designed associative memories
during the recall phase.
Theorem 5. Let B be the m × n matrix generated by the
sparse-sub-Gaussian model described in Sec. 2.1 and M
denote the dataset associated with the matrix B. Then, with
probability at least 1− o(1), the recall phase based on the
iterative decoding algorithm described in Fig. 1 can correct
at least m2

2d2n adversarial errors.

Proof. It follows from Proposition 1 that with probability at
least 1 − o(1), the matrix B corresponds to the adjacency
matrix of an

(
m2

d2n , (1 − ε)d
)

-expander graph. Combining
the expansion parameters for this expander graph with the
result in Proposition 2, we obtain that the iterative decoding
algorithm (cf. Fig. 1) can recover the error vector e from
z = Be as long as e has at most m2

2d2n non-zero coordinates.
Given y and e, it is straightforward to obtain the correct
message vector as x = y − e. This completes the proof.

4 Proof sketch of Theorem 3: Associative

memory storing binary vectors

Since the graph defined by B is still an expander (with edge
weights {+1,−1}), for the recall phase we rely on the same
expander decoding algorithm. We just want to guarantee that
|M| = |{x ∈ {±1}n : Bx = 0}| is of size about exp(n −
αn log(d log n)/ log n) w.h.p. The algorithm to learn B is
same as that of Theorem 1.

Instead of the random model that we have considered in
Sec. 2.1, consider a random matrix B ∈ {+1, 0,−1}m×n

whose each row has independently and uniformly chosen d′
nonzero ({+1,−1}) values. This model allows us to come up
with a straight-forward analysis of number of binary vectors
in the null-space, while the original model gives the same
estimate but with significantly lengthier analysis, that we
omit for the interest of space. Note that d′ ∼ d n

m w.h.p. Now
for a randomly and uniformly chosen ±1 vector y of length
n, and for some constant c′ > 0,

P
{
By = 0

}
=

((
d′
d′
2

)
/2d

′
)m

≥
( 1

c′d′
)m/2

.

This means E
[
|M|

]
≥ 2n ·

(
1/(c′d′)

)m/2

= 2n−
m
2 log(c′d′).

Substituting, m = c n
logn , we get the promised size of M.

5 Simulation results

Though our main contribution is theoretical, in this section
we evaluate the proposed associative memory on synthetic
dataset to verify if our methods works. Only a representa-
tive figure is presented here (Fig. 2). We consider three sets
of system parameters (m,n, d) for the dataset to be stored.
For each set of parameters, we first generate an m× n ran-
dom matrix B according to the sparse-sub-Gaussian model
(cf. Sec. 2.1). Each non-zero entry of the matrix B is drawn
uniformly at random from the set {±1,±2,±3}. We then
generate multiple message vectors which belong to the sub-
space orthogonal to all the rows of the matrix B and provide
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Figure 2: Performance of recall phase for different sets of
system parameters.

the learning phase with these vectors. Given these vectors
we employ the dictionary learning based approach described
in Sec. 3.1 to obtain an estimate B̂ for the matrix B. As
guaranteed by Theorem 4, in our simulations, B̂ contains all
the rows of the original matrix B (however, in a different
order). For all three sets of parameters under consideration,
we then utilize the estimate B̂ to evaluate the performance of
the expander decoding based recall phase (cf. Sec. 3.2). For
a fixed number E of errors, we generate 100 error vectors
e ∈ R

n with the number of non-zero entries in each error
vector equal to E. The non-zero entries in these vectors are
uniformly generated from the set {±1, . . . ,±4}. The posi-
tions of the non-zeros entries in each of these vectors are
chosen according to a uniform random permutation on the
set [n]. The performance of the recall algorithm in our simu-
lations is illustrated in Fig. 2 where we plot the fraction of
incorrectly recovered error vectors as we increase the number
of errors. As expected from Theorem 5, increasing d while
keeping m and n fixed degrades the performance of the re-
call phase. On the other hand, increasing m while keeping d
and the ratio m

n fixed improves the performance of the recall
phase.
Concluding remarks. While we use dictionary learning as
a tool in the learning phase, the model of our datasets are
subspace models. A large number of datasets on the other
hand are also modeled by the sparse dictionary model (or
union of subspaces). It is of interest to design associative
memories, where the datasets are modeled as such. One other
possible direction of future research would be to consider
a subspace model with a mixture of sparse and dense con-
straints, which potentially will be inclusive of larger classes
of real datasets. For such datasets, under suitable assump-
tion on the generative model, one can potentially employ the
techniques of recovering planted sparse vectors in a subspace
spanned by dense random sub-Gaussian vectors (Demanet
and Hand 2014; Qu, Sun, and Wright 2014) and utilize the re-
covered sparse constraints to design an iterative recall phase
similar to the one presented in this paper. As in the case
of (Karbasi, Salavati, and Shokrollahi 2014), the networks
(graphs) appearing in our associative memory design share
some similarities with the neural networks used for classifi-
cation tasks. It is an interesting problem to further explore
such connections.
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