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Abstract

Social influence is a fundamental issue in social network anal-
ysis and has attracted tremendous attention with the rapid
growth of online social networks. However, existing research
mainly focuses on studying peer influence. This paper intro-
duces a novel notion of structural influence and studies how
to efficiently discover structural influence patterns from so-
cial streams. We present three sampling algorithms with the-
oretical unbiased guarantee to speed up the discovery pro-
cess. Experiments on a big microblogging dataset show that
the proposed sampling algorithms can achieve a 10× speedup
compared to the exact influence pattern mining algorithm,
with an average error rate of only 1.0%. The extracted struc-
tural influence patterns have many applications. We apply
them to predict retweet behavior, with performance being sig-
nificantly improved.

1 Introduction

Social influence occurs when one’s behaviors or opinions
are affected by others. It forms a fundamental mechanism
governing the dynamics of social networks, and recently,
has attracted tremendous attention with the availability of
large online social behavior data. For example, a field ex-
periment conducted on Facebook shows strong evidence of
social influence on political mobilization (Bond et al. 2012).
The theory of three degrees of influence (Fowler, Christakis,
and others 2008) claims that our behavior can influence peo-
ple we have never met. However, the underlying mechanism
is still unclear and a thorough investigation is thus needed.

We show an example of retweet behavior influence in
three different structures on a dataset of Sina Weibo1 in Fig-
ure 1. The red node represents a neighboring user (followee
in Weibo) who retweets a message before time t; the white
node denotes the target user to be studied. The general ques-
tion is how likely it is that the target user will retweet this
message at time t′ (0 < t′ − t ≤ τ , τ is a short time inter-
val), conditioned on different influence structures. We can
see several interesting patterns. First, the conditional prob-
ability in Figure 1(b) increases to 150% higher than that of

Copyright c© 2017, Association for the Advancement of Artificial
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1The most popular Chinese microblogging site (weibo.com).

(a) P=0.07% (b) P=0.11% (c) P=0.31%

Figure 1: Probability that the target user (white node)
retweets a message on Weibo, conditioned on their neigh-
bors (red nodes) having already retweeted the message.

Figure 1(a), suggesting more active neighbors can improve
the retweet likelihood. On the other hand, the probability
in Figure 1(c) increases to 300% higher than that of Figure
1(b). The difference between them is the relationship be-
tween the neighbors. Please note that the target user may
be unaware of such a relationship. How does the network
structure formed by friends matter in influencing users’ be-
havior changes? What are the most significant influence
structures hidden in the huge volume of streaming behavior
data? Although social influence has been extensively stud-
ied before (Anagnostopoulos, Kumar, and Mahdian 2008;
Kempe, Kleinberg, and Tardos 2003; Tang et al. 2009), most
of the existing work focused on peer influence, and ignored
the effect of such influence structures. Ugander et al. (2012)
presented the idea of structural diversity and showed that di-
verse structures of neighboring users can influence user’s be-
haviors. However, they only focused on investigating qual-
itative effects of social influence, but ignored quantitative
estimation.

In this work, we formalize the problem of mining struc-
tural influence from the social stream. Specifically, given
large user behavior logs and the network structure among
users, how can we discover influence structures with high
confidence? The discovered influence structures can be ap-
plied in many different applications, e.g., to be used as fea-
tures in a paper’s citation network to predict whether the pa-
per will be extensively cited (Shi, Leskovec, and McFarland
2010), or to predict one’s “following” behaviors in a user’s
“following” network (Zhang et al. 2015).

We address the above issue and make the following con-
tributions: (1) we formally define a novel notion of struc-
tural influence; (2) to handle large streaming behavior data,
we propose an exact and several sampling algorithms to
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quickly estimate structural influence; we provide theoreti-
cal unbiased guarantees for the sampling algorithms; (3) our
empirical study on a large Weibo dataset, show that the pro-
posed sampling algorithms achieve a 10× speedup and re-
sult in an average error rate of only 1.0%, compared to our
exact counting algorithm; (4) finally, we demonstrate the ef-
fect of structural influence on retweet behavior prediction.

2 Problem Formulation

Let G = (V,E) denote a social network, where V is a set of
users and E ⊂ V ×V is a set of relationships. We use vi ∈ V
to represent a user and eij ∈ E to represent a relationship
between vi and vj . A relationship can be either directed or
undirected. With a directed relationship eij , we only con-
sider one-way influence from vi to vj . An undirected rela-
tionship can be divided into two directed relationships, eij
and eji, and the influence is also two-way. We use N (vi)
to indicate the neighbors of user vi. Another input of our
problem is a stream of user action logs.

Definition 1 Action Logs. Let L denote a stream of action
logs, where each log entry l ∈ L is a triple (v, a, t), repre-
senting user v ∈ V performed action a ∈ A at time t. Here
A is a set of action types.

For example, in a microblogging site, a retweet behavior
is an action, and each tweet can be considered as an action
type. We build an action diffusion graph from G and L.

Definition 2 Action Diffusion Graph. An action diffusion
graph, Gp = (L,Ep), is a directed graph, where each node
is a log entry in L, and each edge epij ∈ Ep between two log
entries (vi, a, ti) and (vj , a, tj) satisfies 1) (vi, vj) ∈ E and
2) 0 < tj − ti ≤ τ , where τ is a short time interval.

We use N p(l) to indicate the neighbors in Gp that point
to l. In an action diffusion graph, an edge epij represents that
when user vi performs action a at time ti, vi has a poten-
tial influence on her neighbor vj to perform a at tj , a short
time interval τ after ti. We define (vi, a, ti) as influencing
action and (vj , a, tj) as target action. If later (vj , a, tj) ac-
tually happens in L, we call it as active target action; other-
wise inactive target action. Different from conventional re-
search that mainly decomposes the influence from neighbors
into peer influences, we propose a new notion as:

Definition 3 Structural Influence. When the target user vj
performs action a at tj and her γ-degree (γ ≥ 1) friends
who already performed the action before tj (0 < tj−ti ≤ τ ,
ti is the latest time when a friend performed the action), we
define structural influence as the combination effect of peer
influences exerted by those γ-degree active friends on the
target user, when the friends and target user form an influ-
ence structure. Table 1 lists all the structures when consider-
ing 1, 2, and 3 active γ-degree friends. We also name influ-
ence structure as structural influence pattern and use Ck to
represent the k-th pattern. An instance of Ck for any action
is named a pattern instance, and is denoted by cki .

Structural influence can be formulated as a conditional
probability, IPk = xk

xk+yk
, where xk represents the fre-

quency of the instances with pattern Ck and target action lt

being active in L, while yk is that of Ck’s instances with
lt being inactive in L. Given the above definition, the key
question we want to answer is to efficiently discover the
structural influence patterns with high influence probability.
Note that a node may be influenced by multiple pattern in-
stances, and this combination effect can be modeled by a
partial credit model or a cascade model (Goyal, Bonchi, and
Lakshmanan 2010). This paper simply follows the assump-
tion of Bernoulli distribution (Goyal, Bonchi, and Laksh-
manan 2010) to estimate structural influences from different
pattern instances independently. Other assumptions will be
studied in the future. Note also that when enumerating an
instance, we assign the maximal matched pattern for it. For
example, if an instance can be matched to C4 in Table 1, the
sub patterns of C4, such as C2 and C3, will not be matched.

Later, we aim at quickly estimating IPk for each influence
pattern. One potential application is to incorporate the pat-
terns of high probabilities as features to predict user behav-
iors, and the details will be given in the experimental section.

3 StructInf: Structural Influence Estimation

In this section, we begin by introducing an exact algorithm
to estimate the structural influence from social streams,
based on which we propose three fast sampling strategies.

3.1 StructInf-Basic

For each pattern Ck, the goal is to estimate xk and yk, and
based on which to calculate structural influence of Ck. As-
sume the social network is static, while the action logs are
very large and arrive in real time. Our approach loads the
static network into memory at the beginning and update xk

and yk whenever an action log arrives2. The key idea of the
approach is to 1) identify active and inactive target actions;
and 2) enumerate the structural influence patterns from the
target actions backwards along the diffusion edges.
Identifying Target Actions. We propose Algorithm 1 to
estimate xk and yk. We maintain an action diffusion graph
Gp, a queue Q and a hashtable H , to record the diffusion
edges and action logs within recent time interval τ . For each
newly arrived action, (vi, ak, ti), we first add it into Q and H
(Line 4), and then update �x (Lines 5-8) and �y (Lines 9-19).

To estimate �x, we need to figure out active target actions.
Obviously, each newly arrived action is an active target ac-
tion. Thus when each action lt = (vi, ak, ti) arrives, we first
find those neighbors of vi who are active in [ti − τ, ti], and
create the new diffusion edges from the actions of those ac-
tive neighbors to lt in Gp (Lines 5-7), and then enumerate
the structural influence patterns starting from lt (Line 8).

To estimate �y, we need to figure out inactive target ac-
tions. To achieve this, we enumerate the influence patterns
when an action is outdated rather than newly arrived, be-
cause for any action (v, a, t), we can only know whether
user v’s neighbors are active or not within [t, t + τ ] until
time t+ τ , which is exactly the time that (v, a, t) is popped
up from Q. In particular, whenever a new action arrives, we

2In our implementation, storing a static network with millions
of nodes and edges costs about 5G memory.
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Figure 2: Illustration of pattern enumeration.

remove the outdated actions from Q and H (Lines 9-10). For
each removed action lr = (vj , ah, tj), we identify the neigh-
bors of vj that are inactive in [tj , tj + τ ] (Lines 11-12), and
assign a virtual time tj + τ to each inactive neighbor(Line
13), to create an inactive target action lt. After that, we add a
virtual diffusion edge from lr to lt into Gp (Line 14). Finally,
we complete the diffusion edges from other active actions to
lt (Lines 15-17). After enumerating from lt (Line 18), we
remove the created virtual diffusion edges (Line 19).

Enumerating Influence Patterns. Algorithm 2 presents
how to enumerate all possible influence patterns from a
given action log. The basic idea is: we start by adding an
active or inactive target action into Vin, and their neighbor-
ing actions into Vext. Then we extend Vin by selecting an
arbitrary action l′ from Vext, and update Vext by adding all
the neighbors of l′ that are not included in Vin.

One thing worth noting is the necessary of avoiding du-
plicate enumeration. To achieve this, we assign each action
an incremental (unique) label when it arrives (Line 3 in Al-
gorithm 1), and make sure that, anytime, the labels of the
actions in Vext are smaller than those in Vin (Line 7 in Algo-
rithm 2). Figure 2 illustrates the enumeration process under
this strategy. The left part demonstrates an action diffusion
graph with all the nodes denoted by incremental labels over
time. According to Algorithm 2, we first add the target ac-
tion d4 into Vin, and d4’s neighbors, namely d3 and d2, into
Vext, and then extend Vin by selecting the actions from Vext

one by one. We can see that when selecting d2 into Vin, d3
is removed from Vext because the label of d3 is larger than
that of d2 in Vin. A similar idea of enumerating subgraphs
was used in (Wernicke 2006). They studied static networks,
while we are dealing with the streaming behavior data, and
thus the derived action diffusion graph evolves over time.

When invoking Algorithm 2, we first induce a subgraph
by including all the edges between nodes in Vin, and then
determine which pattern the induced graph belongs to (Line
2). This is essentially a problem of graph isomorphism.
When the pattern is small, we can use the number of
nodes/edges and degree sequences, to uniquely identify a
pattern, and leverage approximate solutions when the pat-
tern gets larger (Leskovec, Singh, and Kleinberg 2006). The
enumeration stops when the considered maximal number of
nodes, i.e., N , is reached (Lines 3-4).

Discussions. In summary, the proposed StructInf-Basic al-
gorithm is a streaming approach that only needs one-time
scan of the streaming action logs and can carefully avoid
duplicate enumeration by a dynamic labeling mechanism.

Algorithm 1: StructInf-Basic
Input: A network G = (V,E), a stream of action logs L.
Output: �x, �y.
Initialize action diffusion graph Gp, queue Q, hashtable H1

foreach lt = (vi, ak, ti) ∈ L do2

Assign an incremental label d(lt) to lt;3

Add lt into Q and H;4

foreach vj ∈ N (vi) do5

if H contains ls = (vj , ak) then6

Add the edge ls → lt into Gp;7

�x += EnumInfPattern(Gp, {lt}, N p(lt), []);8

while lr = (vj , ah, tj) = Q.head() and ti − tj > τ do9

Remove lr from Q and H ;10

foreach vm ∈ N (vj) do11

if H does not contain lt = (vm, ah) then12

Set tm = tj + τ ;13

Add the edge lr → lt into Gp;14

foreach vn ∈ N (vm) do15

if H contains ls = (vn, ah) then16

Add the edge ls → lt into Gp;17

�y += EnumInfPattern(Gp, {lt}, N p(lt), []);18

Remove edges associated with lt from Qp;19

Algorithm 2: EnumInfPattern
Input: Action diffusion graph Gp, selected actions Vin,

extended actions Vext, influence pattern statistics �n.
Output: �n.
if |Vin| > 1 then1

c = InducePattern(Vin); pid = GetPatternID(c); n[pid]++;2

if |Vin| = N then3

return �n;4

foreach l ∈ Vext do5

Vin ← Vin ∪ {l} ;6

V ′
ext ← {l′ ∈ N p(l) ∩ V in ∪ Vext : d(l

′) < d(l)} ;7

EnumInfPattern(Gp, Vin, V ′
ext, �n);8

Some other methods proposed by (Kashtan et al. 2004) and
(Yan and Han 2002) extend neighboring edges of the se-
lected edges, rather that extending nodes. However, when
extending edges, the speeding up is not easy as that of ex-
tending nodes (Wernicke 2006). Regarding the time com-
plexity, in Algorithm 1, the time complexity for enumerating
active target actions is O(|L|dmax), and is O(|L|d2max) for
inactive target actions, where dmax is the maximal degree of
G. The complexity of Algorithm 2 is O((dpmax)

N ), where
dpmax is the maximal degree of Gp and N is the maximal
number of nodes in all the considered influence patterns. In
summary, the total time complexity is O(|L|d2max(d

p
max)

N ).

3.2 StructInf-S: Fast Sampling Algorithms

StructInf-S1. The time complexity of StructInf-Basic is
high because it enumerates all possible influence patterns
for each target action. To speed up the algorithm, we pro-
pose several sampling strategies. The basic requirement is
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to guarantee unbiased estimation of x̂k and ŷk. To achieve
this, outside Line 8 and 18 in Algorithm 1, we add judgment
statements to determine whether target action lt will be enu-
merated by a probability p respectively. In the same way, we
judge whether a neighboring action l will be enumerated by
p outside Lines 6-8 in Algorithm 2. We obtain the lemma:

Lemma 1 Given an influence pattern Ck, any of its in-
stances, cki , is selected uniformly according to probability
pnk , where nk is the number of nodes in Ck.

Proposition 1 Let xk be the exact number by StructInf-
Basic, and x̂k be the approximate number by StructInf-S1,
then x̃k = x̂k/p

nk is an unbiased estimator for xk.

Proof 1 The expectation of x̃k can be written as

E(x̃k) =

S∑
n=1

p(sn)(x̂k/p
nk)sn

where sn represents the nth sample of pattern instances and
there are S possible samples in the whole pattern space. No-
tation (x̂k/p

nk)sn represents the value of x̂k/p
nk that is es-

timated in the sample sn. We can factorize x̂k/p
nk common

to the ith pattern cki and sum over the population:

E(x̃k) =

xk∑
i=1

1

pnk

∑
cki ∈sn

p(sn)

where
∑

cki ∈sn
p(sn) indicates the summation over the prob-

abilities of all samples containing the instance cki , which is
actually the prior probability that cki is selected in a sample.
In StructInf-S1, the probability is pnk , thus we have

E(x̃k) =

xk∑
i=1

1

pnk
× pnk = xk

According to the sampling theory (Horvitz and Thompson
1952), the unbiased estimation of the variance of x̃k is:

Ṽ (x̃k) =

x̂k∑
i=1

1− p(cki )

p2(cki )
+

x̂k∑
i�=j

p(cki c
k
j )− p(cki )p(c

k
j )

p(cki c
k
j )p(c

k
i )p(c

k
j )

(1)

The above variance is determined by both the approxi-
mate estimation, x̂k, and the sampling probability for a pat-
tern, p(cki ). According to the central limit theorem, the sum
of a random sample of a large enough size from an arbi-
trary distribution follows approximately a normal distribu-
tion, i.e., x̃k ∼ N(xk, Ṽ (x̃k)). Thus, the probability of the
sampling error with confidence 1− α is:

p

[
x̃k − zα/2

√
Ṽ (x̃k) ≤ xk ≤ x̃k + zα/2

√
Ṽ (x̃k)

]
= 1− α

where zα/2 represents the number of standard deviations,

i.e.,
√
Ṽ (x̃k), by which an observation x̃k differs from the

mean xk, when the confidence is 1− α.

StructInf-S2. Another idea is to first sample diffusion edges
uniformly to form a sampled action diffusion graph, and
then enumerate the influence patterns based on the sampled
graph. Specifically, in Algorithm 1, outside Lines 6-7, we
add a judgment statement to determine whether ls → lt will
be added into Gp by a probability q. Outside Lines 12-19
and 16-17, we also determine whether lr → lt or ls → lt
will be added into Gp by q. We obtain the following lemma:

Lemma 2 Given an influence pattern Ck, any of its in-
stances, cki , is selected uniformly according to probability
qmk , where mk is the number of edges in Ck.

Proposition 2 Let xk be the exact number and x̂k be the
approximate number obtained by StructInf-S2. For the com-
plete graphs such as C4 and C20 in Table 1, x̂k/q

mk is an
unbiased estimator of xk, while for the incomplete graphs:

x̃k =
x̂k +

∑
Ci:Ck⊂Ci&nk=ni

nikx̂i

qmk
−

∑
Ci:Ck⊂Ci
&nk=ni

nikx̃i (2)

Proof 2 When a pattern is a complete graph, the proof is the
same as that of Proposition 1. When a pattern is an incom-
plete graph, x̂k/q

mk records the number of not only pattern
Ck, but also the patterns that contain Ck as their subgraph
and with the same node size,i.e.,{Ci : Ck ⊂ Ci&nk = ni}.
We name Ci as the parent pattern of Ck. In a sampled action
diffusion graph, when enumerating an incomplete subgraph,
it may be restored to any of its parent patterns. Thus to ob-
tain x̃k, we need to first sum the approximate values of Ck

and all its parents, and then divide by the sampling proba-
bility, qmk , to get an unbiased estimation (the first part of
Eq. (2)), and finally subtract the unbiased value of all the
parent patterns (the second part of Eq. (2)). Notation nik is
the times that Ck is contained in Ci. For example, in Table
1, C6 appears two times in C14. The unbiased value, x̃i, of
each parent pattern can be estimated in the same way itera-
tively, until the pattern itself is a complete graph.

StructInf-S3. StructInf-S3 combines the above two ap-
proaches by not only sampling diffusion edges when build-
ing the action diffusion graph, but also sampling the action
nodes when enumerating pattern instances.

4 Experiment

The dataset and code are available online now.3

Experimental Setup. We perform the evaluation on a
dataset collected from Sina Weibo1, The network consists
of 1,776,950 users as nodes and 308,489,739 “following”
relationships as edges, with the maximal degree dmax as
2,875. We use 23,755,810 tweet/retweet actions to build ac-
tion diffusion graphs of 3,472,004 diffusion edges. The ac-
tion type set A contains 300,000 types (i.e., the original
tweets). Please refer to (Zhang et al. 2013) for details.

In the Weibo dataset, we first use the sampling algorithms
to estimate the structural influence for the patterns in Table

3http://aminer.org/structinf
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Figure 3: The trade-off between error and time by varying p
and q. #Iteration is the times that Algorithm 2 is invoked.

1. We vary sampling probabilities and compare the error and
time trade-off curves. The results of StructInf-Basic are used
as ground truth. Please note that no existing methods can be
directly used to estimate structural influence. Then we ap-
ply the extracted influence patterns to help retweet behav-
ior prediction, to demonstrate the effectiveness of influence
structures.
Experimental Results. We use relative error,

UIPk =
|ĨPk − IPk|

IPk
,

where IPk is the exact/actual estimation and ĨPk is the ap-
proximate estimation, to measure how far the approximate
estimation is from the exact estimation (Ahmed et al. 2014).

We present the optimal estimation of structural influence,
IPk, with k from 1 to 20 in Table 1. The results are obtained
by executing StructInf-S3 with τ = 25 hours, q = 0.9,
px = 0.6 and py = 0.1, where px and py are the node
sampling probabilities for estimating xk and yk respectively,
and q is for sampling edges, and is the same for estimating
xk and yk. Because the ratio between active and inactive
instances is about 1:700, xk can be estimated much faster
than yk. Thus we can first try several parameters to find the
optimal values of q and px, and then estimate py approxi-

mately by px× nk

√
x̃k

ỹk
, that is derived from the variance. We

estimate each x̃k and ỹk by averaging the results of 10 in-
dependent runs, and based on which to calculate ĨPk. Table
1 shows that each ĨPk is very close to the exact value. Most
of the relative errors are around 1.0% and the worst case is
about 5.0%. We also find that the top influential patterns are
those with more nodes or edges than others ( the numbers
that are in boldface). To get the results in Table 1, the exact
method (StructInf-Basic) requires 19 hours, while the sam-
pling method (StructInf-S3) requires only 1.8 hours.

Trade-off between Error and Time. To compare the per-
formance of different sampling methods, we show how ac-
curacy and speed vary by varying the sampling probabilities.
Specifically, we first tune the sampling probabilities. We try
p in the range {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
for StructInf-S1, try q in the same range for StructInf-S2,
and try all the possible combinations of p and q in the same
range for StructInf-S3. Second, for each configuration of p

Table 1: All structural influence patterns formed by 2, 3, and
4 nodes and the structural influence estimation results (%).
The red nodes represent active friends who performed an action
before and the white nodes represent the target user.
k Ck IPk

˜IPk UIPk k Ck IPk
˜IPk UIPk

1 0.066 0.066 0.020 11 0.038 0.038 0.720

2 0.074 0.074 0.085 12 0.186 0.186 0.088

3 0.111 0.110 0.425 13 0.399 0.392 1.785

4 0.307 0.304 0.928 14 0.063 0.062 0.616

5 0.069 0.069 0.530 15 0.619 0.615 0.548

6 0.091 0.090 0.358 16 0.444 0.439 1.378

7 0.067 0.067 0.236 17 0.070 0.070 0.074

8 0.106 0.099 5.852 18 0.420 0.416 0.890

9 0.381 0.388 1.666 19 0.662 0.645 2.696

10 0.165 0.162 1.128 20 0.485 0.479 1.239

(a) C1 (b) C4

Figure 4: Convergence of the relative errors of patterns C1

and C4 by StructInf-S3.

and q, we calculate the average error of x̃k over all the influ-
ence patterns, and further average them over 10 independent
sampling results. Third, we use the number of iterations that
Algorithm 2 is invoked as the metric to measure how fast an
approximate estimation will be. The more iterations we run,
the more influence patterns will be sampled.

Figure 3 plots all the (relative-error, #iterations) pairs
when varying p and q. For each method, the sampling pa-
rameters change from 0.1 to 1.0 incrementally from the
upper-left to the lower-right points. Because StructInf-S3
has two tunable parameters, the points cannot be connected
by one single line. From the results, we can see that first,
the error curves of al the methods almost follow exponen-
tial distributions. The average error drops dramatically when
p increases at the very beginning, and then changes slowly
when p gets larger than 0.5. Second, StructInf-S1 performs
better than StructInf-S2 because its curve is below that of
StructInf-S2, implying that it needs less iterations to achieve
the same error. Finally, the resultant points of StructInf-S3
are more concentrated in the bottom-left corner than those
of StructInf-S1 and StructInf-S2, suggesting that StructInf-
S3 is less sensitive to the parameters. This probably be-
cause StructInf-S3 combines the power of StructInf-S1 and
StructInf-S2, thus achieves a more stable performance.

Unbiasedness. We take StructInf-S3 as an example to
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(a) τ (b) Retweet prediction

Figure 5: (1) Effect of τ on structural influence; (2) Perfor-
mance of retweet behavior prediction.

study the properties of the sampling distribution. Specifi-
cally, for each pair of q and p, we run 20 independent sam-
plings and plot the relative error of each run. From Figure
4, we can see that the sampling distributions of different
patterns are all centered over the line with relative error as
0, which implies the unbiased property of the estimations.
In addition, influence patterns with fewer nodes and edges
can achieve better performance with few iteration times (i.e.,
samples). We see that the simplest pattern C1 obtains 0.5%
relative error with few samples, while C4 needs more sam-
ples to achieve the same error rate, because the sampling
probability p(ci) = pmqn decreases with m and n, making
the variance larger than that of the simple patterns.

Effect of Time Delay τ . We study how time delay τ af-
fects structural influence. Figure 5(a) shows the changes of
structural influence by varying τ . The Y-axis is the struc-
tural influence of C1, which is the basic component of all
the other patterns. We can see that social influence increases
quickly over time and gradually becomes stable after τ gets
larger than 25 hours, implying that social influence decays
over time. Thus, we set τ to 25 hours on the Weibo dataset.

Application Improvements. We demonstrate how the
discovered influence patterns can help improve the applica-
tion of retweet prediction. The goal is, given an action triple
(v, a, t), predict whether user v will retweet the tweet a at
time t. Basically, for each observed action in the dataset,
we treat it as a positive instance. For each positive instance
(v, a, t), if a follower u of user v did not retweet a before
t + τ , we treat (u, a, t + τ) as a negative instance. We uni-
formly sample a balanced dataset with equal number of pos-
itive and negative instances and train a binary classifier with
logistic regression. We feed some basic features, such as the
number of followees/followers, gender, verification status of
the user, to the classifier. We aim at investigating whether
the structural influence patterns can improve prediction per-
formance based on the basic features. Additionally, we add
structural influence patterns as features (the number of each
pattern that is counted from the target action (v, a, t)). In
particular, we divide the patterns into four groups: C1(i.e.,
the number of active neighbors), weak ( ĨPk < 0.1), mod-
erate (0.1 ≤ ĨPk < 0.3), and strong (ĨPk > 0.3). We re-
spectively add the basic features and pattern groups one by
one and evaluate the increase of the predictive performance.
A larger increase means a higher predictive power. From the
results in Figure 5(b), we observe that weak patterns can

improve a lot upon basic features and the number of active
neighbors (+1.1% in terms of F1), indicating the effect of
structural influence on retweet behaviors. Furthermore, sig-
nificant increase on F1 score is observed when adding strong
patterns upon moderate patterns (+1.73%), while no evident
increase is observed when adding moderate patterns, imply-
ing that the discovered significant structural influence pat-
terns can benefit a lot on predicting retweet behaviors.

5 Related Work

Structural Influence. A few research examined the
structural characteristics of social influence. Ugander et
al. (2012) firstly studied structural diversity and found that
the possibility that a user joins Facebook is positively af-
fected by the diverse structure of the friends who have joined
Facebook. Lately quite a few work has been conducted
based on this idea in various scenarios (Fang et al. 2014;
Kloumann et al. 2015; Qiu et al. 2016; Zhang et al. 2013).
However, all the studies about structural diversity do not dis-
tinguish the particular influence structures, and our paper
proposes an algorithm to enumerate all influence structures.
Influence Learning. The aim of influence learning is to as-
sociate each edge euv with a probability puv to represent
the strength of influence exerted by u on v. (Kimura et al.
2011) were the first to learn influence by maximizing the
likelihood of generating historical behavior data. Tang et
al. (2009) and Liu et al. (2012) extended the influence prob-
abilities to the topic level. Kutzkov et al. (Kutzkov et al.
2013) approximately estimated the pairwise influence in a
behavior stream. In addition to learning pairwise influence,
group influence is also studied by (Tang, Wu, and Sun 2013;
Zhang et al. 2014). To the best of our knowledge, this is the
first attempt to define and estimate structural influence.
Subgraph Mining/Sampling. Traditional research counted
triangles (Jha, Seshadhri, and Pinar 2013; Pavan et al. 2013),
4-node subgraphs (Jha, Seshadhri, and Pinar 2015), any
subgraphs (Ahmed et al. 2014; Wernicke 2006), or speci-
fied ones such as cliques, stars, chains, and cascading pat-
terns (Koutra et al. 2015; Leskovec, Singh, and Kleinberg
2006). However, the methods cannot be directly applied to
our problem, because the behavior data is streaming and the
structural influence is beyond the frequency of a subgraph.

6 Conclusion

We present the concept of structural influence and propose a
sampling algorithm to quickly estimate the influence prob-
abilities of different structures from social stream, with the-
oretical proof of unbiasedness properties. Experiments on a
large Weibo data show that, compared to the exact solution,
the third sampling method can achieve the best performance,
with a 10× speedup and an average error rate of only 1.0%.
We also demonstrate the effectiveness of the extracted high
influential patterns on retweet behavior prediction.
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