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Abstract

Social influence has been shown to create a Matthew ef-
fect in online markets, increasing inequalities and leading
to “winner-take-all” phenomena. Matthew effects have been
observed for numerous market policies, including when the
products are presented to consumers by popularity or qual-
ity. This paper studies how to reduce Matthew effects, while
keeping markets efficient and predictable when social influ-
ence is used. It presents a market strategy based on random-
ization and segmentation, that ensures that the best products,
if they are close in quality, will have reasonably close market
shares. The benefits of this market strategy is justified both
theoretically and empirically and the loss in market efficiency
is shown to be acceptable.

Introduction

Salganik, Dodds, and Watts (2006) wrote a seminal paper on
the negative influence of social influence in cultural markets.
They created an experimental virtual market, called the MU-
SICLAB, in which participants can listen to songs and then
download them if they like them. The songs are organized in
a list or matrix form, giving different visibilities to the var-
ious songs, as is typically the case in online advertisement,
online stores, or physical retail stores (e.g., (Craswell et al.
2008; Lim, Rodrigues, and Zhang 2004)). Each song was
also associated with a popularity signal (e.g., (Engstrom and
Forsell 2014; Viglia, Furlan, and Ladrón-de Guevara 2014)),
i.e., the number of downloads of the song by earlier market
participants. In addition, all the songs were ranked by pop-
ularity, which means that the song with the most downloads
received the most visible position (i.e., the top of the list),
the second most popular song the second most visible posi-
tion, and so on. Salganik, Dodds, and Watts (2006) showed
that social influence creates unpredictable markets, as well
as significant Matthew effects (Rigney 2010). Indeed, mul-
tiple realizations of the MUSICLAB with various sets of par-
ticipants show significantly different outcomes and strong
inequalities in market shares between the songs. Those re-
sults have been reproduced by many authors in subsequent
experiments or simulations (e.g., (Hu, Milner, and Wu 2016;
Lerman and Hogg 2014; Muchnik, Aral, and Taylor 2013;
van de Rijt et al. 2014)). The MUSICLAB is an example of
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trial and offer markets which are particularly relevant in on-
line settings. The popularity ranking is also widely used by
firms running such markets in practice.

In recent years, some authors have started revisiting some
of the assumptions in the MUSICLAB experiment and, in
particular, the ranking policy which is the main controllable
action of the firm running such a market. Van Hentenryck
et al. (2016) showed that, when the products are ranked by
quality instead of popularity, the market becomes asuymp-
totically predictable and optimal: It leads a monopoly for
the product of highest quality. Abeliuk et al. (2016) also
proved that the dynamic ranking that optimizes the num-
ber of downloads at each step, which they called the perfor-
mance ranking (Abeliuk et al. 2015), leads to the same out-
come. These two ranking policies address the unpredictabil-
ity and inefficiency of the market under social influence
identified by Salganik, Dodds, and Watts (2006). However,
they fail to address the market inequalities created by social
influence: Two products of similar appeals and qualities will
have fundamentally different outcomes with one becoming
a monopoly in the long run. This “winner-takes-all” phe-
nomena, although optimal from an efficiency standpoint, is
typically considered undesirable..

This paper proposes a novel strategy that aims at ad-
dressing the three problems identified by Salganik, Dodds,
and Watts (2006) simultaneously: unpredictability, ineffi-
ciencies, and inequalities. The strategy is a randomized seg-
mentation protocol and is simple to deploy in online settings.
The paper also analyzes its properties both theoretically and
experimentally and shows that the protocol dramatically re-
duces inequalities among the best products in the market,
while preserving high predictability and efficiency. The rest
of the paper briefly reviews trial and offer markets, presents
the new randomized segmentation protocol, and analyzes its
properties both theoretically and experimentally.

Trial and Offer Markets

Following Krumme et al. (2012), this paper considers trial
and offer markets modeled with an extended multinomial
logit that includes product visibilities and social influence.
In these markets, an incoming consumer observes n prod-
ucts in a list and a social influence vector dt, where dti is
the number of purchases of product i at time t. She can then
sample one product (e.g., listening to a song) and then de-
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cides whether she wants to purchase it. Each position j in
the list is associated with a visibility vj that represents the
inherent probability of sampling a product in position j or,
intuitively, how much customers are attracted by a given po-
sition in the list. Each product i is characterized by two val-
ues: an appeal ai which represents the probability of sam-
pling product i and a quality qi which captures the probabil-
ity of purchasing product i after it has been sampled. Note
that the appeals can capture some form of externalities such
as marketing campaigns.

The firm running the market controls how to present the
products to consumers, i.e., where the products are posi-
tioned in the list. In particular, the firm must choose a rank-
ing θ that assigns a position θ(i) to each product i. As a re-
sult, the probability that a customer samples product i given
ranking θ and social signal d is given by

pi(θ, d) =
vθ(i)(ai + di)∑n

j=1 vθ(j)(aj + dj)
.

The probability that a customer purchases product i is then
given by pi(θ, d) qi. The firm is interested in maximizing the
total number of purchases over time, i.e.,

∑
t

n∑
i=1

pi(θ
t, dt) qi

where θt and dt are the ranking and social signals at time t.
Prior work by Van Hentenryck et al. (2016) has shown

that the quality ranking, a static ranking which ranks the
products of highest quality to the highest visibilities (i.e.,
qi > qj ⇒ vθ(i) ≥ vθ(j)), leads to markets where the prod-
uct of highest quality becomes a monopoly asymptotically.1
The same outcome holds for the so-called performance rank-
ing that determines the optimal ranking θ∗ at each step t,
i.e., θ∗ = arg-maxθ

∑n
i=1 pi(θ, d

t) qi. These two ranking
policies are optimal and predictable asymptotically but they
obviously create major Matthew effects: A small difference
in quality leads to a product losing its entire market share in
the long run.

Randomized Segmentation

We now propose a Randomized Segmentation Protocol
(RSP) to address the Matthew effect, while preserving pre-
dictability and efficiency. The RSP is presented in Figure 1:
It uses two key ideas to tame the Matthew effect. First, it
segments the market in m submarkets that we call worlds.
These worlds evolve independently with their own social in-
fluence signals and ranking policies. This segmentation it-
self has no impact on the Matthew effect if the quality or
performance ranking is used, since the best-quality product
will still obtain a monopoly in each world asymptotically
and a large market share over a finite horizon. To counter-
act the Matthew effect, the RSP perturbs the product qual-
ities slightly with some random noise of zero means and
then applies the quality ranking on these perturbed qualities.

1If several products have the same highest product vθ(i)qi, then
the market becomes a beta distribution among them.

Overview of The Randomized Segmentation Protocol

1. The market is organized in m sub-markets called worlds.
2. In each world, the product qualities are perturbed with a

random noise of zero mean. The products are displayed
using the quality ranking over the perturbed qualities.

3. Each world maintains social influence signals indepen-
dently of the other world.

4. When a customer enters the market, she is randomly as-
signed to a world and presented with the ranking and the
social signals of that world.

5. If the customer buys the product she sampled, the social
signal of that product in that world is increased.

Figure 1: The Randomized Segmentation Protocol (RSP).

The qualities obviously remain the same for the purpose of
downloading the products. As a result, each world may now
use a different ranking and a different product may now take
a substantial market share. Indeed, if the product with the
second highest quality is placed in first position, it may be-
come the most attractive product through the position visi-
bilities, i.e., v1q2 > v2q1. As a consequence, the RSP will
balance the market shares across the different worlds, ensur-
ing a fairer distribution of the market shares.

Theoretical Analysis

This section formalizes the RSP more precisely and presents
a theoretical analysis of its behavior both in terms of inequal-
ities, efficiency, and predictability. Given the complexity of
the formulas, the analysis is only carried out for the perturba-
tions of the first three products, but it generalizes naturally to
more products. For simplicity, assume that the product qual-
ities sastify q1 ≥ . . . ≥ qn and that the qualities of the top
three products are reasonably close, i.e.,

q2 = q1 − ε2 (1)
q3 = q1 − ε3 (2)

where ε3 ≥ ε2 ≥ 0. More precisely, we assume that ε2 and
ε3 are small enough such that v1q3 > v2q1. As a result, a
ranking (3, 1, 2) ensures that product 3 has the best normal-
ized quality (i.e., its inherent quality times the visibility of its
position) and the market will go to a monopoly for product
3 asymptically.

Our proposed randomized segmentation protocol parti-
tions the market in m worlds and defines pertubed qualities
q̂i,w for each product i and world w as

q̂i,w = qi + ηi,w

where ηi,w is a normally distributed noise with zero mean
and standard deviation σ. In other words, ηi,w is a random
variable distributed under the normal distribution

fσ(x) =
1

σ
√
2π

exp

(
− x2

2σ2

)
(3)
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whose CDF Fσ(x) is given by

Fσ(x) =
1

2

[
1 + erf

(
x

σ
√
2

)]
.

Combining this with the fact that the highest qualities are
close, the perturbed qualities can thus be rewritten as

q̂1,w = q1 + η1,w,

q̂2,w = q1 − ε2 + η2,w,

q̂3,w = q1 − ε3 + η3,w

In each world w, the products are ranked in terms of their
perturbed qualities q̂i,w instead of their intrinsic quality qi.
Hence, depending on the outcomes of the random variables
η1,w, η2,w and η3,w, the products may be ranked in the se-
quences (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), or (3,2,1).
As a result, asymptically, the different worlds will converge
to different monopolies: In some of them, the market will be-
come a monopoly for product 1 while, in other worlds, the
market will become a monopoly for product 2 or product 3.
To derive the theoretical results, we will use the following
notations:

x+
i

.
= x+ εi,

x−
i

.
= x− εi,

η+i,w
.
= ηi,w + εi and

η−i,w
.
= ηi,w − εi for i ∈ {2, 3}.

Theorem 1. When the perturbed quality ranking is per-
formed in m different worlds, the number of worlds in which
products 1, 2 and 3 are ranked first (denoted by s1,m, s2,m
and s3,m respectively) are given by the following binomial
distributions

P(s1,m = k) =

(
m
k

)
P k
1 (P2 + P3)

m−k

P(s2,m = k) =

(
m
k

)
P k
2 (P1 + P3)

m−k

P(s3,m = k) =

(
m
k

)
P k
3 (P1 + P2)

m−k

where

P1 =

∫ ∞

−∞
fσ(x)Fσ(x

+
2 )Fσ(x

+
3 )dx (4)

P2 =

∫ ∞

−∞
fσ(x

+
2 )Fσ(x)Fσ(x

+
3 )dx (5)

P3 =

∫ ∞

−∞
fσ(x

+
3 )Fσ(x)Fσ(x

+
2 )dx. (6)

Proof. Let P1 be the probability that q̂1,w be greater than
max(q̂2,w, q̂3,w), i.e.,

P1 = P(q̂1,w > max(q̂2,w, q̂3,w))

= P
(
η1,w > max(η−2,w, η

−
3,w)

)

=

∫ ∞

−∞
fσ(x)P(x > η−2,w)P(x > η−3,w)dx

=

∫ ∞

−∞
fσ(x)Fσ(x

+
2 )Fσ(x

+
3 )dx.

Now let P2 be the probabilty that q̂2,w be greater than
max(q̂1,w, q̂3,w), i.e.,

P2 = P(q̂2,w > max(q̂1,w, q̂3,w))

= P
(
η−2,w > max(η1,w, η

−
3,w)

)

=

∫ ∞

−∞
fσ(x

+
2 )P(x > η1,w)P(x > η−3,w)dx

=

∫ ∞

−∞
fσ(x

+
2 )Fσ(x)Fσ(x

+
3 )dx.

Finally, let P3 be the probability that q̂3,w be greater than
max(q̂1,w, q̂2,w).

P3 = P(q̂3,w > max(q̂1,w, q̂2,w))

= P
(
η−2,w > max(η1,w, η

−
3,w)

)

=

∫ ∞

−∞
fσ(x

+
3 )P(x > η1,w)P(x > η−2,w)dx

=

∫ ∞

−∞
fσ(x

+
3 )Fσ(x)Fσ(x

+
2 )dx

Now the number of times s1,m that product i is ranked first
among m worlds is binomially distributed since, in each
world, there is a probability Pi that product i is ranked first.

P(s1,m = k) =

(
m
k

)
P k
1 (P2 + P3)

m−k

P(s1,m = k) =

(
m
k

)
P k
2 (P1 + P3)

m−k

P(s1,m = k) =

(
m
k

)
P k
3 (P1 + P2)

m−k.

Corollary 2. The expectation and variance of si,m for i ∈
{1, 2, 3}, is given by

E[si,m] = mPi

Var[si,m] = mPi(1− Pi).

Furthermore, the probabilities that the si,m’s fall between
their expected value ±X% are given by:

P

(
|s1,m − E[s1,m]| ≤ X

100
E[s1,m]

)

=

⌊
(1+ X

100 )E[s1,m]
⌋

∑
k=

⌈
(1− X

100 )E[s1,m]
⌉
(
m
k

)
P k
1 (P2 + P3)

m−k,

(7)

P

(
|s2,m − E[s2,m]| ≤ X

100
E[s2,m]

)

=

⌊
(1+ X

100 )E[s2,m]
⌋

∑
k=

⌈
(1− X

100 )E[s2,m]
⌉
(
m
k

)
P k
2 (P1 + P3)

m−k

(8)

P

(
|s3,m − E[s3,m]| ≤ X

100
E[s3,m]

)

=

⌊
(1+ X

100 )E[s2,m]
⌋

∑
k=

⌈
(1− X

100 )E[s3,m]
⌉
(
m
k

)
P k
3 (P1 + P2)

m−k.

(9)
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Figure 2: Probabilities that the number of worlds in which
products 1, 2 and 3 become a monopoly fall in the expected
value ± X % of the total number of worlds, as a function of
the number of worlds.

We now quantify the loss ratio in purchases induced by
the RSP compared to the (asymptotically) optimal quality
ranking, i.e.,

lt
.
=

dtq − dtrsp
dtq

, (10)

where dtq is the total number of purchases under the quality
ranking at time t and dtrsp is the total number of purchases of
the RSP at t. Expression (10) can be approximated asymp-
totically with

dtq ∼ q1t (11)

and
dtrsp ∼ (q1P1 + q2P2 + q3P3)t, (12)

Equations (11) and (12) together with definition (10) can be
used to characterize the asymptotic loss ratio, i.e.,

l∞t =
ε2P2 + ε3P3

q1
. (13)

Observe that, when q2 and q3 are equal to q1, the RSP is
optimal but has no Matthew effect contrary to the quality
and performance ranking.

We now investigate the consequences of these results.
Figure 2 plots the probability that the number of worlds in
which product i becomes a monopoly falls in between its ex-
pected value ± X % as a function of the number of worlds.
The plots are obtained from Equations 7–9 for various val-
ues of parameters ε2 and ε3 given σ = 0.1. The figure also
reports the formula for the expected market shares that show
a nice distribution of the purchases among the products. The
plots also show a rapid convergence around the mean as the
number of worlds increases.

Figure 3 depicts the probabilities that a given product
becomes a monopoly as a function of ε2 assuming that
ε3 = 2ε2 and σ = 0.1. The results show that, as the dis-
tance in quality increases, the market shares also grow apart

Figure 3: Probabilities that products 1, 2, and 3 become a
monopoly as a function of ε2 where ε3 = 2ε2 and σ = 0.1.

Figure 4: Probability that product 1,2 and 3 become a
monopoly as a function of σ where ε3 = 2ε2 = 0.01.

but they remain nicely distributed among the products as de-
sired.

Figure 4 depicts the probabilities that a given product be-
comes a monopoly as a function of the standard deviation
σ = 0.1 given ε2 = 0.005 and ε3 = 2ε2. The figure shows
how to use the standard deviation to balance the market
shares between the products. It shows that small standard
deviations already balance the market shares well, opening
significant opportunities for controling the market towards a
desired outcome.

Figures 5 plots the loss ratio as a function of ε2. The ra-
tio initially increases as ε2 increases, since a lower quality
product may become a monopoly in some worlds. Once ε2
approaches the standard deviation, the loss ratio starts to de-
crease since this sub-optimal behavior is increasingly less
likely to occur.

Experimental Results

We now describe experimental results on the MusicLab set-
tings (Salganik, Dodds, and Watts 2006). Like previous stud-
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Figure 5: The Loss Ratio (13) as a Function of ε2 When
ε3 = 2ε2 and σ = 0.1.

Figure 6: The Inequality Measure (14) over 50 Experiments.
The largest possible Matthew effect is

√
2.

ies, the experiments use the setting in (Krumme et al. 2012)
which gives specific values for appeals, qualities, and visi-
bilities. The qualities of the second and third best products
are modified to obtain a setting in which ε2 = 0.005 and
ε3 = 0.01 (the quality of the best product is q1 = 0.8).
This makes the Matthew effect particularly dramatic, since a
small difference in quality induces large market inequalities.
The experiments aim at confirming the theoretical results
within a finite horizon and at balancing the market shares
between the top three products. The experiments also use a
standard deviation of σ = 0.1. The presentation discusses
the effectiveness of the RSP to tame the Matthew effect and
the cost involved in doing so. We also present some results
obtained on the original MUSICLAB data for completeness.

Taming the Matthew Effect Figure 6 depicts the effec-
tiveness of the RSP to tame the Matthew effect. It reports

Figure 7: Number of Purchases of the First 3 Products.

Figure 8: Number of Purchases For the First 3 Products.

the inequality measure√
(dt1 − dt2)

2 + (dt1 − dt3)
2 + (dt3 − dt2)

2

dt1 + dt2 + dt3
(14)

for the quality ranking and the RSP as the number of cus-
tomers increases. The plot reports the mean (solid) and the
mean ± the variance (dashed lines) for 50 simulations. The
largest possible Matthew effect with this measure is

√
2. The

figure shows that the quality ranking converges towards 1 in
average, while the RSP converges towards a value around
0.45. This represents a dramatic reduction in inequalities
among the best products.

Figure 7 presents box plots for the total purchases of the
top three products and clearly explains why there is such a
reduction in the Matthew effect. The figures summarize 50
experiments, each with 2 million customers. They show that
the quality ranking may produce significant Matthew effects
since the third quartile exhibits purchases up to the order of
13 105 and 11 105 for the first two products. This severe
Matthew effect arises despite the fact that the products have
almost the same quality, showing the strong need of taming
this effect in practice to obtain reasonably fair markets. In
contrast, the RSP has a third quartile in the order of 8 105

and 6 105 for the same products. Observe also the higher
medians and the smaller variances in the RSP.

Figure 8 depicts the total number of purchases for the first
three products in the quality ranking and in the RSP. The
plots show that the quality ranking has more aggregate pur-
chases. We will come back to this when we discuss the cost
of fairness, i.e., the cost of taming the Matthew effect. Note
also that the variance also increases in the RSP when ag-
gregating the purchases of the three products, which is due
to the added Gaussian noise and the weaker social influence
since the market is split in several words. Of course, the vari-
ance for each product independently decreases in a substan-
tial way, as discussed earlier.
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Figure 9: Purchase distribution for 500 experiments with 2
million customers for the quality ranking and the RSP with
10 worlds (right).

Figure 9 describes an interesting side-effect of the RSP:
a significant decrease in outliers and variances for the total
purchases of all products. Observe how the top three prod-
ucts (left side of the bottom plot) now have very similar
distributions and how the products in the range 4–15 have
much smaller variances. The segmentation of the market has
strong benefits on the predictability of the market as well.

The Cost of Fairness Intuitively, the RSP has two net ef-
fects that make the market less efficient. First, it reduces the
impact of social influence which is spread over many worlds,
increasing the randomness in the early stage of the market.
Second, it allows the market to achieve monopolies that are
not optimal (i.e., monopolies of products whose quality is
not the best among all products). Figure 10 quantifies this
loss of efficiency: It depicts the average loss in purchases
when using the RSP with 10 worlds. As can be seen, the loss
is small and decreases significantly as the number of cus-
tomers increases, matching the theoretical predictions. Fig-
ure 12 depicts the loss for the actual MUSICLAB data for
various values of σ and the noise added to all songs. Figure
12 shows how the loss varies at the number of worlds in-
creases for different number of customers. The figure shows

Figure 10: Purchase Loss Ratio (10 Worlds).

Figure 11: Purchase Loss Ratio (10 Worlds) on the Actual
MusicLab Data.

that the loss slowly increases with the number of worlds.

Conclusion

This paper presented a randomized segmentation protocol
(RMS) to jointly address the unpredictability, inefficiency,
and inequalities created by social influence in trial and of-
fer markets. The RMS was shown, both through theoret-
ical analysis and simulations, to remove the Matthew ef-
fect among the best products, balancing the market shares
as a function of product qualities. The RMS also leads to
predictable and efficient markets as the loss in efficiency is
shown to be very small and tends to zero as the product qual-
ities tend to the same values. As a result, the RMS seems to
be a appealing, easy to deploy marketing strategy to leverage
social influence in trial and offer markets.
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