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Abstract

Automated prostate segmentation from 3D MR images is
very challenging due to large variations of prostate shape and
indistinct prostate boundaries. We propose a novel volumet-
ric convolutional neural network (ConvNet) with mixed resid-
ual connections to cope with this challenging problem. Com-
pared with previous methods, our volumetric ConvNet has
two compelling advantages. First, it is implemented in a 3D
manner and can fully exploit the 3D spatial contextual infor-
mation of input data to perform efficient, precise and volume-
to-volume prediction. Second and more important, the novel
combination of residual connections (i.e., long and short) can
greatly improve the training efficiency and discriminative ca-
pability of our network by enhancing the information prop-
agation within the ConvNet both locally and globally. While
the forward propagation of location information can improve
the segmentation accuracy, the smooth backward propagation
of gradient flow can accelerate the convergence speed and
enhance the discrimination capability. Extensive experiments
on the open MICCAI PROMISE12 challenge dataset corrob-
orated the effectiveness of the proposed volumetric ConvNet
with mixed residual connections. Our method ranked the first
in the challenge, outperforming other competitors by a large
margin with respect to most of evaluation metrics. The pro-
posed volumetric ConvNet is general enough and can be eas-
ily extended to other medical image analysis tasks, especially
ones with limited training data.

Introduction
Prostate diseases (e.g., prostate cancer, prostatitis and en-
larged prostate) are very common in men. In particular,
prostate cancer is the second leading cause of cancer death in
American men. It is estimated to have caused 26,120 deaths
in 2016 according to American Cancer Society (Siegel,
Miller, and Jemal 2016). Due to a huge increase in screening,
prostate cancer is now the most commonly diagnosed can-
cer in men in American. Accurate segmentation of prostate
from 3D Magnetic Resonance (MR) images is very use-
ful for treatment planning and many other diagnostic and
therapeutic procedures for prostate cancer as well as other
prostate diseases. However, manual segmentation from 3D
MR images is time-consuming and subjective with limited
reproducibility. It heavily depends on experience and has
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Figure 1: Example of prostate MR images displaying large
variations (only show the center slice of prostates in 3D MR
images and the yellow contours indicate prostates).

large inter- and intra-observer variations. In this regard, au-
tomated segmentation methods are highly demanded in clin-
ical practice.

Automated segmentation of prostate from MR images,
however, is very challenging for several reasons (Mahapatra
and Buhmann 2014). First, different MR images have global
inter-scan variability and intra-scan intensity variation due
to different MR scanning protocols, such as with/without
endorectal coil (a thin wire placed inside the body to gener-
ate detailed MR images). Second, the lack of clear prostate
boundaries due to similar appearance of prostate and sur-
rounding tissues (e.g., blood vessels, bladder, rectum and
seminal vessels) makes the automated segmentation even
harder. Third, prostate has a wide variation in size and shape
among different subjects due to pathological changes or dif-
ferent resolutions of images. Figure 1 shows examples of
segmented prostate in different MR images and we can see
the large variation of prostates.

Over the past few years, lots of automated prostate
segmentation methods have been proposed to meet these
challenges, such as atlas (registration) based methods, de-
formable methods and machine learning based methods. Al-
though great progress is achieved, there still exists an ob-
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vious gap between the automated segmentation results and
manual annotations.

Recently, deep convolutional neural networks (ConvNets)
with hierarchical feature learning capability have become
the dominant machine learning approach in computer vision
field and have achieved promising results in different vision
tasks (He et al. 2015; Long, Shelhamer, and Darrell 2015;
Xie and Tu 2015). Some researchers have employed Con-
vNets in automated prostate segmentation (Cheng et al.
2016). Nevertheless, most of these methods employed 2D
ConvNets on 2D MR image slices and hence were inca-
pable of taking full use of the 3D spatial information of
the whole volumetric data for more accurate segmentation.
Recently, many 3D ConvNets were proposed for both nat-
ural video and medical image analysis tasks (Ji et al. 2013;
Tran et al. 2015; Kamnitsas et al. 2016). Nevertheless, how
to train an efficient volumetric ConvNet under limited train-
ing data for medical image analysis applications is still a
challenging problem.

Commonly, there are several schemes to dig the potential
of the limited training data. The first is harnessing the data
augmentation methods (Krizhevsky, Sutskever, and Hinton
2012). Such a scheme usually has performance gains by
transforming the training data. However, the information
added by these augmented data is limited and we need more
efficient methods to further improve the performance. The
second scheme is employing skip connections in ConvNet
architecture to boost the information propagation within the
ConvNet in order to achieve more efficient training with
limited training data. Recently, a special skip connection,
namely residual connection has been demonstrated as an ef-
fective mechanism to train very deep ConvNets and led to
a series of breakthrough on some challenge datasets, such
as ImageNet and MS COCO dataset (He et al. 2015). It
has been demonstrated that the residual connections can im-
prove the information flow within the networks and hence
accelerate the convergence speed and improve the perfor-
mance (He et al. 2016; Szegedy, Ioffe, and Vanhoucke 2016;
Drozdzal et al. 2016).

In this paper, we distill the residual connections into
a volumetric ConvNet and propose a novel learning ar-
chitecture with mixed long and short residual connections
for automated prostate segmentation from 3D MR images.
Our volumetric ConvNet adopts fully convolutional archi-
tecture (Long, Shelhamer, and Darrell 2015) and can be
trained end-to-end to perform efficient, precise and volume-
to-volume prediction. Compared with previous works that
just leverage the residual connections within local residual
blocks, we extend the residual connections across residual
blocks and promote the information exchange between the
down-sampling path and up-sampling path in the fully con-
volutional architecture. By incorporating mixed long and
short residual connections into our volumetric network, the
information can be smoothly propagated throughout the net-
work, which enhances the discriminative capability of net-
works and improves the training efficiency. Particularly, the
long residual connections can recover the spatial informa-
tion loss caused by down-sampling operations of the net-
work and leverage the location information propagated from

earlier layers of the network to achieve better segmenta-
tion results. We evaluated our method on the open MICCAI
PROMISE12 challenge dataset; it ranked first in the chal-
lenge, outperforming other methods by a large margin.

Related Work
Prostate segmentation Previous automated prostate seg-
mentation methods mainly include multi-atlas based meth-
ods (Klein et al. 2008) and deformable methods (Toth and
Madabhushi 2012). For example, Klein et al. (2008) pro-
posed an automated segmentation method based on atlas
matching. In this method, several template images with cor-
responding segmentations are registered to the target image
using a non-rigid registration method, and then the aligned
segmentations are fused to obtain the final results. Toth
et al. (2012) proposed an extension of active appearance
model (AAM) to capture shape information with a multi-
feature landmark-free framework. On the other hand, var-
ious graph cut based methods were also proposed to seg-
ment the prostate from MR images. Tian et al. (2016) pro-
posed a superpixel-based 3D graph cut algorithm to obtain
the prostate surface. Many successful approaches were pro-
posed to use feature-based machine learning methods, such
as K-nearest-neighbor, random forest classifier and marginal
space learning (Zheng and Comaniciu 2014). Recently, with
the impressive performance achieved by deep learning meth-
ods, some researchers proposed to utilize deep learning
techniques to learn representation features for automated
prostate segmentation. For example, Liao et al. (2013) pro-
posed a deep learning framework with an independent sub-
space analysis network and Cheng et al. (2016) combined
CNN and AAM methods for accurate prostate segmentation.

Deep learning for volumetric data processing In the
field of medical image computing, many imaging modalities
are volumetric, such as 3D Computed Tomography (CT) and
MR Images. A lot of effort has been dedicated to employ-
ing CNNs to process volumetric data. Some of them em-
ployed variants of 2D CNNs to exploit adjacent slices (Chen
et al. 2015), orthogonal planes (Prasoon et al. 2013; Roth
et al. 2014) or multi-view planes (Setio et al. 2016) to ag-
gregate 3D contextual feature in the model. However, these
methods cannot effectively make full use of the 3D spa-
tial information. Some studies started to employ 3D CNN
to cope with detection and segmentation problems in med-
ical volumetric data (Li et al. 2014; Brosch et al. 2016;
Kamnitsas et al. 2016; Chen et al. 2016a). These networks
adopted some relatively simple architectures and hence suf-
fered from limited representation capability. By borrowing
the design principles of U-Net (Ronneberger, Fischer, and
Brox 2015), some researchers proposed 3D fully convolu-
tional networks for efficient segmentation tasks (Çiçek et al.
2016; Milletari, Navab, and Ahmadi 2016; Merkow et al.
2016). Although these networks improved the segmentation
performance, there was still much room to dig the potential
of CNNs by effectively training the networks under limited
training data. Our work is also related to Chen et al. (2016b),
which is a 3D extension of residual networks for the segmen-
tation task. But in our work, we extend the short residual
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Figure 2: (a) The architecture of the proposed volumetric ConvNet. The number in each box represents the number of feature
maps and all convolutional layers contain 3×3×3 filter kernels. (b) The illustration of one residual block.

connections across residual blocks and seamlessly combine
the long and short residual connections, which greatly im-
proves the training efficiency and discriminative capability
of our network under limited training data.

Method
Residual Connections
Deep ConvNets with residual connections have achieved
promising results in many challenging natural image pro-
cessing tasks. Residual connection, in principle, is a kind of
skip connection that bypasses the non-linear transformations
with an identity mapping and explicitly reformulates the lay-
ers as learning residual functions with reference to the layer
inputs (He et al. 2015). Formally, the residual connection
can be expressed as:

x� = H�(x�−1) + x�−1, (1)

where x�−1 and x� are input and output of the �th unit,
and H�(·) denotes the residual function corresponding to �th

unit.
While the residual connection is originally proposed

to address the degradation problem when training a very
deep ConvNet, a few recent studies have demonstrated that
residual connection can also promote information propa-
gation within a ConvNet both forward and backward (He
et al. 2016), and hence accelerate its convergence and im-
prove performance (Szegedy, Ioffe, and Vanhoucke 2016;
Zagoruyko and Komodakis 2016). In this paper, we extend
such a skip connection from local residual unit to the whole
ConvNet and propose a learning architecture with mixed
residual connections in order to further boost the informa-
tion propagation during training. This is essential to generate
an effective ConvNet under limited training samples com-
monly occurring in medical image analysis applications.

Our Basic Volumetric ConvNet
In order to fully leverage the 3D spatial contextual informa-
tion of volumetric data to dig the potential of learning capa-

bility of ConvNet, we first extend a 2D fully ConvNet (FCN)
into a volumetric ConvNet to enable volume-to-volume pre-
diction. Our volumetric ConvNet is extended from the 2D
architecture reported in (Long, Shelhamer, and Darrell 2015;
Ronneberger, Fischer, and Brox 2015), which consists of
two parts: a fine-to-coarse down-sampling path and a coarse-
to-fine up-sampling path. The down-sampling path, consist-
ing of convolutional and pooling layers, can extract abstract
features and increase the receptive field of the ConvNet to
enclose more contextual information. However, from the
down-sampling path, we can only obtain a coarse predic-
tion, which is sufficient for some detection and classifica-
tion tasks but is unfit for voxel-wise semantic segmentation.
Hence, an up-sampling path, consisting of deconvolutional
and convolutional layers, is implemented to generate dense
predictions with much higher resolutions (Long, Shelhamer,
and Darrell 2015). Note that all layers in our ConvNet, in-
cluding convolutional, pooling, and deconvolutional layers
are implemented in a 3D manner, and thus the ConvNet can
fully preserve and exploit the 3D spatial information when
extracting features and making predictions.

In addition, we also integrate a deep supervision mech-
anism (Lee et al. 2015; Dou et al. 2016) in our volumet-
ric ConvNet to accelerate its convergence speed. We exploit
additional supervision injected into some hidden layers via
auxiliary predictions. Specifically, we add one convolutional
layer (kernel size 1×1×1) at the end of the network to gen-
erate the main prediction. Besides, we also employ several
convolutional layers (kernel size 1×1×1) followed by hid-
den feature maps in the up-sampling path to obtain auxiliary
coarse predictions, and then use deconvolutional layers to
get auxiliary dense predictions with the same size of input.
We minimize the weighted sum of cross-entropy losses of
the main prediction and auxiliary predictions when training
the volumetric ConvNet. In principle, the deep supervision
mechanism can function as a strong “regularization” during
training and thus it is important for training ConvNet with
limited training data (Lee et al. 2015).
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Our Volumetric ConvNet with Mixed Residual
Connections

In order to improve the segmentation performance of our
volumetric ConvNet under limited training data, we incor-
porate residual connections to our basic ConvNet to enhance
the propagation of volumetric context information locally
and globally, and by this way to achieve more performance
gains from the limited training data. Specifically, we intro-
duce two kinds of residual connections into our volumet-
ric ConvNet. The first kind of residual connections are em-
ployed to construct the local residual blocks. It is the same
connections with those reported in (He et al. 2015) and we
refer them as short residual connections in this paper. The
second kind of residual connections are applied to connect
the residual blocks with the same resolution in the down-
sampling and up-sampling paths. These connections can ef-
fectively propagate context and gradient information both
forward and backward during the end-to-end training pro-
cess. We refer these connections as long residual connec-
tions. Figure 2 (a) shows the architecture of our volumetric
ConvNet with mixed residual connections for prostate seg-
mentation from 3D MR images.

Our volumetric ConvNet consists of several residual
blocks (ResBlocks). We design the residual blocks with
short residual connections based on the design scheme of He
et al. (2015). As shown in Figure 2 (b), it is composed of two
convolutional layers and two rectified linear units (ReLUs).
Previous studies (Simonyan and Zisserman 2014; Tran et al.
2015) have demonstrated that smaller convolutional kernels
are more efficient in ConvNet design. Therefore, we adopt
small convolution kernels with size of 3×3×3 in convo-
lutional layers. Each convolutional layer is followed by a
ReLU as an activation function. We further employ batch
normalization (BN) (Ioffe and Szegedy 2015) between each
pair of convolution and ReLU, as the BN can reduce the
internal covariance shift, and hence accelerate the training
process and improve performance.

The down-sampling path contains one convolutional layer
and three residual blocks, as shown in Figure 2 (a). Three
2×2×2 max pooling layers with stride of 2 are applied be-
tween them. As for the up-sampling path, we also employ
three residual blocks. Three deconvolutional layers with
stride of 2 are employed to restore the feature map size.
Note that in the down-sampling path, the input and output
of residual blocks have different numbers of feature maps.
We add 1×1×1 convolutional layers in the short residual
connections in the down-sampling path to match the dimen-
sions of input and output (He et al. 2015).

To further boost the information exchange among differ-
ent layers, we implement long residual connections to our
volumetric ConvNet by connecting the corresponding resid-
ual blocks with the same resolutions in the down-sampling
path and the up-sampling path using the same residual learn-
ing scheme as the short residual connections. These long
residual connections are illustrated as the solid-line arrows
in Figure 2 (a). These skip connections can explicitly prop-
agate two kinds of important information within the Con-
vNet. First, they can propagate the spatial location infor-

mation forward to the up-sampling path in order to recover
the spatial information loss caused by down-sampling op-
erations for more accurate segmentation. Second, as we
employ summation operations to construct the skip con-
nections, our architecture can more smoothly propagate
the gradient flow backward, and hence improve the train-
ing efficiency and network performance (He et al. 2016;
Wang et al. 2016). In addition, such connections can also
implicitly promote the information exchange between fea-
ture extraction and prediction and thus offer guidance for
the training of earlier layers in the ConvNet, which can be
considered as a kind of intermediate supervision to enhance
the training. Overall, our volumetric ConvNet with mixed
residual connections can be trained end-to-end and achieve
efficient volume-to-volume prediction by improving the in-
formation propagation within the ConvNet.

Experiments and Results
Dataset and Pre-processing
We performed extensive experiments to evaluate our
method on MICCAI Prostate MR Image Segmentation
(PROMISE12) challenge dataset (Litjens et al. 2014), an on-
going benchmark for evaluating algorithms for segmentation
of the prostate from MR images. The training dataset con-
tains 50 transversal T2-weighted MR images of the prostate
and corresponding segmentation ground truth. The testing
dataset consists of 30 MR images and the ground truth is
held out by the organizer for independent evaluation. These
images are acquired in different hospitals, using different
equipments and different acquisition protocols, and display
the maximum variations of MR images acquired in clinical
setting: there are variations in voxel size, dynamic range,
position, field of view and anatomic appearance. Different
from previous works using complex pre-processing steps,
like N4 bias field correction, we simply resized all MR vol-
umes into a fixed resolution of 0.625×0.625×1.5 mm and
then normalized them as zero mean and unit variance. We
also utilized simple data augmentation strategy to enlarge
the training dataset. The augmentation operations included
rotation (90, 180 and 270 degrees) and flip in axial plane.

Implementation
Our volumetric ConvNet was implemented based on a mod-
ified Caffe library (Jia et al. 2014) supporting 3D operations.
All the trainings and experiments were conducted on a work-
station equipped with a NVIDIA TITAN X GPU. The net-
works were trained with Stochastic Gradient Descent (SGD)
method with a mini-batch size of 8 due to the limited ca-
pacity of GPU memory. The learning rate was set as 0.001
initially and is divided by 10 every 3000 iterations; the mod-
els were trained for up to 10000 iterations. We employed a
weight decay of 0.0005 and a momentum of 0.9. We utilized
two auxiliary predictions in deep supervision scheme and
the balancing weights were 0.3 and 0.6, respectively. Due to
the limited GPU memory, we randomly cropped 64×64×16
sub-volumes from every sample as input when training the
network. In the test phase, we used overlapped sliding win-
dows strategy to crop sub-volumes and then used the av-
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Figure 3: Training and validation loss of networks with and
without mixed residual connections.

Table 1: Cross validation performance of our volumetric
ConvNets with different configurations.

Method Dice coefficient [%]

Long-short connections 86.93
Only short connections 84.68
Only long connections 84.38

Without residual connections 81.63

erage of the probability maps of these sub-volumes to get
the whole volume prediction. The sub-volume size was also
64×64×16 and the stride was 50×50×12. Generally, it took
about 4 hours to train the network and about 12 seconds for
processing one MR images with size of 320×320×60.

Ablation Analysis of Residual Connections
In order to evaluate the effectiveness of the residual connec-
tions in our volumetric ConvNet, we performed a set of abla-
tion experiments on the ConvNet. Because the ground truth
of testing data is held out by organizers and the challenge
organizers only allow resubmission of substantially differ-
ent methods, we conducted experiments via standard 10-fold
cross validation scheme.

We first analyze the learning behaviors of our volumet-
ric ConvNet with and without mixed residual connections.
Figure 3 presents the training and validation losses of differ-
ent networks with and without mixed residual connections.
It is observed that the ConvNet with mixed residual con-
nections converges faster and achieves lower validation loss
than the one without mixed residual connections, demon-
strating that residual connections can improve the training
efficiency of the volumetric ConvNet. Table 1 further shows
the performance of our volumetric networks with different
residual connections via cross validation. It is observed that
adding either long or short residual connections can achieve
better Dice performance than networks without residual con-
nections, demonstrating residual connections, as a general
skip connection design strategy, can improve the discrimina-
tive capability of networks by promoting information prop-
agation. The network with only short residual connections

Figure 4: Qualitative segmentation results of case 4 (first
row) and case 22 (second row) at the apex(left), center (mid-
dle) and base (right) of the prostate in testing dataset. The
yellow and red contours indicate the ground truth and our
segmentation results. Note that these results are directly ob-
tained from challenge website.

has marginally better performance than that with only long
residual connections. The network with mixed residual con-
nections achieves the best performance in the ablation ex-
periments, indicating that long and short residual connec-
tions can provide different information propagation locally
and globally in the volumetric ConvNet and combining them
together can further improve the performance.

Comparison with Other Methods
The evaluation metrics used in the PROMISE12 challenge
include the Dice coefficient (DSC), the percentage of the ab-
solute difference between the volumes (aRVD), the average
over the shortest distance between the boundary points of the
volumes (ABD) and the 95% Hausdorff distance (95HD).
Note that all evaluation metrics including both boundary and
volume metrics were calculated in 3D not only for the en-
tire prostate segmentation but also specially for the apex and
base parts of the prostate, which are the most difficult yet
important parts in clinical practice (Litjens et al. 2014). The
organizers calculated a total score incorporating above com-
pletely different but equally important metrics to rank the
submitted methods. Readers can refer to Litjens et al. (2014)
for more evaluation details.

Some qualitative results of our method are shown in Fig-
ure 4. It is observed that our method can produce accu-
rate segmentation results and delineate the clear contours of
prostates in MR images with (case 22) and without (case 4)
endorectal coil. The quantitative results of our method and
our competitors are shown in Table 2. There were totally 21
teams submitting their results until the paper submission and
only top 10 teams are listed in the Table.1 Note that all the
results reported in this section were obtained directly from
the organizers.

1Complete results can be found in https://grand-challenge.org/
site/promise12/results/
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Table 2: Quantitative comparison between the proposed method and other methods

Method Type ABD [mm] 95HD [mm] DSC [%] aRVD [%] ScoreWhole Base Apex Whole Base Apex Whole Base Apex Whole Base Apex
CUMED (ours) Auto 1.95 2.13 1.74 5.54 5.41 4.29 89.43 86.42 86.81 6.95 11.04 15.18 86.65
Imorphics Auto 2.10 2.18 1.96 5.94 5.45 4.73 87.99 86.06 84.53 11.65 13.33 20.75 84.36
Emory Semi 2.14 2.65 2.41 5.04 6.03 5.31 87.03 83.52 81.53 8.64 15.70 20.32 83.66
ScrAutoProstate Auto 2.13 2.23 2.18 5.58 5.60 4.93 87.45 86.30 83.47 13.56 14.46 23.78 83.49
CAMP-TUM2 Auto 2.23 2.46 2.03 5.71 5.84 4.62 86.91 84.31 84.40 14.98 20.84 21.21 82.39
ETHZ Semi 2.25 2.40 2.52 5.95 5.96 5.99 86.74 84.43 78.16 15.05 19.83 25.14 81.24
SIATMIDS Auto 2.49 2.58 2.76 6.17 6.21 6.09 84.29 83.20 75.75 12.60 16.16 27.51 80.85
CBA Interactive 2.33 2.60 2.44 6.57 6.64 5.75 86.56 84.33 80.31 15.49 23.17 23.59 80.66
CAMP-TUM Auto 2.48 2.96 2.47 5.77 6.48 5.31 84.65 79.49 80.62 15.77 25.59 24.62 79.65
SBIA Auto 2.85 2.82 2.13 7.73 6.99 4.60 83.55 81.06 83.90 22.78 26.94 24.52 78.34

For ABD, 95HD and aRVD, lower values are better; for DSC, higher values are better.

Seven of the top ten teams employed various hand-crafted
features. Besides team (CUMED), the other two teams that
utilized ConvNet are SIATMIDS and CAMP-TUM2. The
team SIATMIDS proposed a multi-stage method that com-
bines the hand-crafted features and features learned from a
ConvNet. The team CAMP-TUM2 harnessed a ConvNet im-
plemented based on V-net (Milletari, Navab, and Ahmadi
2016). However, both of the two teams did not achieve bet-
ter performance than the algorithms with hand-crafted fea-
tures. This indicates that, while ConvNet has achieved re-
markable succuss in many medical image analysis applica-
tions, it is still difficult for it to obtain satisfactory results for
some medical applications, where the training data are quite
limited. In this regard, it is essential to design more efficient
learning algorithms and architectures to dig the potential of
the limited training data and improve the performance of
ConvNet. Our method ranked the first and achieved the best
performance in all metrics except the metric 95HD on the
whole prostate, demonstrating the effectiveness of the pro-
posed volumetric ConvNet with mixed residual connections,
which improve the performance of ConvNet by enhancing
the information propagation through residual connections.

Conclusion

We present a novel volumetric ConvNet with mixed long and
short residual connections for automated prostate segmen-
tation from MR images. Our method adopts 3D fully con-
volutional architecture and is very efficient when handling
large MR images. The incorporation of residual connections
improves the network performance and indicates the effec-
tiveness of enhancing information propagation through skip
connections (especially residual connections) in 3D Con-
vNet architecture design. We also demonstrate that the com-
bination of long and short residual connections can further
improve the segmentation performance. Extensive experi-
ments on an open challenge dataset corroborate the effi-
cacy of our method in dealing with medical 3D segmenta-
tion under limited training data. In addition, our network
architecture is general enough and can be easily extended
to other applications. Future investigations include assess-
ing our method on more 3D volumetric data and further ex-
ploring the information propagation mechanism of residual
connections.
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