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Abstract

Multivariate Pattern (MVP) classification can map different
cognitive states to the brain tasks. One of the main chal-
lenges in MVP analysis is validating the generated results
across subjects. However, analyzing multi-subject fMRI data
requires accurate functional alignments between neuronal ac-
tivities of different subjects, which can rapidly increase the
performance and robustness of the final results. Hyperalign-
ment (HA) is one of the most effective functional alignment
methods, which can be mathematically formulated by the
Canonical Correlation Analysis (CCA) methods. Since HA
mostly uses the unsupervised CCA techniques, its solution
may not be optimized for MVP analysis. By incorporating the
idea of Local Discriminant Analysis (LDA) into CCA, this
paper proposes Local Discriminant Hyperalignment (LDHA)
as a novel supervised HA method, which can provide better
functional alignment for MVP analysis. Indeed, the locality is
defined based on the stimuli categories in the train-set, where
the correlation between all stimuli in the same category will
be maximized and the correlation between distinct categories
of stimuli approaches to near zero. Experimental studies on
multi-subject MVP analysis confirm that the LDHA method
achieves superior performance to other state-of-the-art HA al-
gorithms.

Introduction

As an imaging technology, functional Magnetic Resonance
Imaging (fMRI) measures neural activity by employing
the Blood-Oxygen-Level-Dependent (BOLD) contrast as a
proxy for neural activation. The main idea is utilizing these
measurements of neural activities to shed light on cogni-
tive processes. Indeed, fMRI enables us to ask what infor-
mation is represented in a region of the human brain and
how that information is encoded, instead of asking what is
a regions function (Haxby, Connolly, and Guntupalli 2014).
Multivariate Pattern (MVP) classification is one of the main
techniques in fMRI analysis, which can extract and decode
brain patterns by applying the classification methods (Haxby
et al. 2011; Chen et al. 2015; Oswal et al. 2016). In fact, it
can predict patterns of neural activities associated with dif-
ferent cognitive states (Mohr et al. 2015; Chen et al. 2015;
Figueiredo and Nowak 2016) and also can define decision
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surfaces to distinguish different stimuli for decoding the
brain and understanding how it works (Haxby et al. 2011;
Haxby, Connolly, and Guntupalli 2014). MVP analysis can
be used to find novel treatments for mental diseases or even
to create a new generation of the user interface.

One of the main challenges in fMRI studies, especially
MVP analysis, is using multi-subject datasets. On the one
hand, the multi-subject analysis is critical to figure out the
generality and validity of the generated results across sub-
jects. On the other hand, analyzing multi-subject fMRI data
requires accurate functional and anatomical alignments be-
tween neuronal activities of different subjects in order to
increase the performance of the final results (Haxby et al.
2011; Chen et al. 2014). Indeed, the fMRI datasets must
be aligned across subjects in multi-subject studies in order
to take between-subject variability into account. As men-
tioned before, there are two main alignment approaches, i.e.
anatomical alignment and functional alignment, which can
work in unison. The anatomical alignment is the most com-
mon method for aligning fMRI images based on anatomi-
cal features by employing structural MRI images, e.g. Ta-
lairach alignment (Talairach and Tournoux 1988). However,
this method generated limited accuracy since the size, shape
and anatomical location of functional loci differ across sub-
jects (Watson et al. 1993; Rademacher et al. 1993). Indeed,
anatomical alignment is just used in many fMRI studies as a
preprocessing step. By contrast, functional alignment seeks
to directly align the brain neural responses across subjects.

Hyperalignment (HA) (Haxby et al. 2011) is one of the
most famous methods for functional alignment. HA can be
mathematically formulated by Canonical Correlation Anal-
ysis (CCA). As a result, HA for multi-subject fMRI stud-
ies can be defined as a multiple-set CCA (Xu et al. 2012;
Lorbert and Ramadge 2012; Chen et al. 2014). Since the un-
supervised CCA techniques are employed for solving HA
problems, the solution may not be optimized for MVP analy-
sis. In other words, CCA just finds a set of mappings to max-
imize the correlation between same time-points of functional
activities (in voxel-level) for all subjects, while it must max-
imize the correlation between homogeneous stimuli (from
the same category) and also remove the correlation between
different categories of stimuli. Indeed, this is a common
problem in Machine Learning. For instance, Linear Discrim-
inant Analysis (LDA) is mostly used rather than Principal
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Component Analysis (PCA) in the classification analysis,
where LDA uses the supervision information such as class
labels or similarity between samples for improving the per-
formance of classification methods.

As the main contribution of this paper, we introduce Lo-
cal Discriminant Hyperalignment (LDHA) method, which
incorporates the idea of Local Discriminate Analysis (LDA)
into CCA (Peng, Zhang, and Zhang 2010) in order to im-
prove the performance of the hyperalignment solution. In
brief, the idea of locality is defined based on the stimuli
categories (class labels) in the train-set, where the proposed
method firstly generates two sets for each category of stim-
uli, i.e. the set of nearest homogeneous stimuli as within-
class neighborhoods and the set of stimuli from distinct cat-
egories as between-class neighborhoods. Then, these two
sets are used to provide a better HA solution, where the
correlation between the within-class neighborhoods is maxi-
mized, and also the correlation among between-class neigh-
borhoods approaches to near zero.

The rest of this paper is organized as follows: In Section
2, this study briefly reviews some related works. Then, it
introduces the proposed method in Section 3. Experimen-
tal results are reported in Section 4; and finally, this paper
presents conclusion and pointed out some future works in
Section 5.

Related Works
There are several studies, which used functional and
anatomical features for alignment. Sabuncu et al. (2010)
employed cortical warping for maximizing the inter-subject
correlation between functional responses across subjects.
Conroy et al. (2009) also developed a method to maximize
the alignment of intra-subject patterns of cortical functional
connectivity by using a cortical warping.

Hyperalignment (HA) is proposed by Haxby et al. (2011),
which is an ‘anatomy free’ alignment method based on func-
tional features. HA utilized the Procrustean transformation
(Schönemann 1966) to map each the functional responses of
each subject into a common high-dimensional model (tem-
plate). The performance of MVP analysis by using the Hy-
peralignment is rapidly increased in comparison with the
methods that just use the anatomical alignment (Haxby et
al. 2011; Haxby, Connolly, and Guntupalli 2014).

Lorbert et al. (2012) developed Kernel Hyperalignment
(KHA) to conduct nonlinear hyperalignment in an embed-
ding space. Xu et al. (2012) introduced the regularized Hy-
peralignment, which makes connections to Canonical Cor-
relation Analysis (CCA) (Gower and Dijksterhuis 2004).
Dmochowski et al. (2012) applied correlated component
analysis to maximize inter-subject correlation by aggregat-
ing the subjects data into an individual matrix. Sui et al.
(2011; 2013) proposed a ‘multimodal CCA + joint inde-
pendent component analysis (ICA)’ on multimodal data to
identify the unique and shared variance associated with each
imaging modality. Chen et al. (2014) examined a two-phase
joint SVD-Hyperalignment algorithm, where a joint Sin-
gular Value Decomposition (SVD) is employed to provide
dimensionality reduction, then HA aligns the subjects’ re-
sponses in the lower dimensional feature space.

Micheal et al. (2015) developed the GICA, IVA algo-
rithms, which do not assume time-synchronized stimulus.
Hence, they concatenate data along the time dimension (im-
plying spatial consistency) and learn spatial independent
components. Recently, Guntupalli et al. (2016) proposed a
linear model of shared representational spaces in human cor-
tex. This model can capture fine-scale distinctions among
population responses with response-tuning basis functions
that are common across brains and models cortical patterns
of neural responses with individual-specific topographic ba-
sis functions.

The Proposed Method

This paper proposes a supervised version of hyperalignment
method for applying the MVP classification. The procedure
is so simple: such as all classification problems, there are
two sets of data points, i.e. train-set and test-set. The train-
set is used for generating the classification model. Then, the
generated model is evaluated on the test-set. Since functional
activities in different brains are originally unaligned in com-
parison with each other, the previous HA methods just used
the data points in the train-set to generate a template for
functional aligning in both the train and test sets before the
MVP analysis. By contrast, our proposed method uses data
points as well as class labels in the train-set for generating
the HA template (which will be denoted by G). In train-set,
the preprocessed fMRI time series collected for S subjects
can be defined by X(i) =

{
x
(i)
mn

}
∈ R

T×V , i = 1:S,m =

1:T, n = 1:V , where T denotes the number of time points
in unites of TRs (Time of Repetition), V is the number of
voxels, and x

(i)
mn ∈ R denotes the functional activity for the

i− th subject in the m− th time point and the n− th voxel.
In test-set, we have similar notations where the data points
are defined by X̄(i) =

{
x̄
(i)
mn

}
∈ R

T×V , i = 1:S̄,m =

1:T, n = 1:V . Here, S̄ is the number of subjects in the test-
set. In addition, the class labels in the train-set is denoted by
Y =

{
ym

}
∈ N

T , m = 1:T . Since there are more voxels

than TRs in most of the fMRI studies, X(i) and the voxel
correlation map (X(i))�X(j) may not be full rank (Chen et
al. 2014; Conroy et al. 2009; Lorbert and Ramadge 2012;
Xu et al. 2012). In addition, time synchronized stimulus en-
sures temporal alignment, i.e. the m−th time point for all of
the subjects represents the same simulation (Xu et al. 2012;
Lorbert and Ramadge 2012). Indeed, the main goal of HA
methods is aligning the columns of X(i) across subjects
(Conroy et al. 2009; Xu et al. 2012), where the column rep-
resentation of the functional activities for i− th subject and
n− th voxel can be also defined as follows:

x(i)
.n ∈ R

T =
{
x(i)
mn|x(i)

mn ∈ X(i) and m = 1:T
}

(1)

We firstly need a metric to qualify the functional align-
ment. Inter-Subject Correlation (ISC) is a classical metric
for functional alignment, which can be defined for two dif-
ferent subjects as follows (Haxby et al. 2011; Xu et al. 2012;
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Chen et al. 2014):

ISC(X(i),X(j)) = (1/V )tr((X(i))�X(j)) =

1

V

V∑
n=1

(
x(i)
.n

)�
x(j)
.n =

1

V

V∑
m=1

V∑
n=1

x(i)
mnx

(j)
mn

(2)

where tr() is the trace function. If the functional activities are
column-wise standardized (X(i) ∼ N (0, 1)), the ISC lies in
[−1,+1], where the large values represent better alignment
(Conroy et al. 2009; Lorbert and Ramadge 2012; Xu et al.
2012; Chen et al. 2014). Based on (2), the hyperalignment
can be formulated as follows:

ρ = argmax
i,j=1:S

∑
i<j

ISC(X(i)R(i),X(j)R(j))

= argmax
i,j=1:S

∑
i<j

V∑
m=1

V∑
n=1

x(i)
mnr

(i)
nmx(j)

mnr
(j)
nm

(3)

where R(i) =
{
r
(i)
mn

}
∈ R

V×V is the HA solution for

i − th subject. Constrains must be imposed in R(i) to
avoid overfitting (Xu et al. 2012). The general assumption
in the basic hyperalignment is that the R(i), i = 1:S are
noisy ‘rotation’ of a common template (Haxby et al. 2011;
Guntupalli et al. 2016; Xu et al. 2012). This assumption
leads us to define following problem:

ρ = argmin
i,j=1:S

∑
i<j

‖X(i)R(i) −X(j)R(j)‖2F

subject to (R(�))�A(�)R(�) = I, � = 1:S
(4)

where I denotes the identity matrix and the matrices A(�) ∈
R

V×V , � = 1:S are symmetric and positive definite. Gener-
ally, if A(�) = I, then we have hyperalignment or a multi-
set orthogonal Procrustes problem, which is commonly used
in share analysis. In addition, if A(�) = (X(�))�X(�), then
(4) denotes a form of multi-set Canonical Correlation Anal-
ysis (CCA) (Lorbert and Ramadge 2012; Xu et al. 2012;
Lorbert and Ramadge 2012; Chen et al. 2014).
Lemma 1. The equation (4) is equivalent to:

ρ = argmin

S∑
i=1

‖X(i)R(i) −G‖2F

subject to (R(�))�A(�)R(�) = I, � = 1:S

(5)

where G ∈ R
T×V is the HA template:

G =
1

S

S∑
j=1

X(j)R(j) (6)

Proof. Please refer to (Gower and Dijksterhuis 2004; Lorbert
and Ramadge 2012) for the proof.

Indeed, the HA template (G) can be used for functional
alignment in the test-set before MVP analysis. Most of pre-
vious studies have used CCA for finding this template (Xu
et al. 2012; Haxby et al. 2011; Chen et al. 2014).

Lemma 2. Canonical Correlation Analysis (CCA) finds an
optimum solution for solving (4) by exploiting the objective
function max

i,j=1:S

(
(R(i))�C(i,j)R(j)

)
, and then G also can

be calculated based on (6). Briefly, the CCA solution can be
formulated as follows:

ρ = argmax
i,j=1:S

(
(R(i))�C(i,j)R(j)√

((R(i))�C(i)R(i))((R(j))�C(j)R(j))

)
(7)

where C(i) ∈ R
V×V = E

[
(X(i))�X(i)

]
= (X(i))�X(i),

C(j) ∈ R
V×V = E

[
(X(j))�X(j)

]
= (X(j))�X(j), and

C(i,j) ∈ R
V×V = E

[
(X(i))�X(j)

]
= (X(i))�X(j). The

solution of CCA can be obtained by computing a generalized
eigenvalue decomposition problem (Hardoon, Szedmak, and
Shawe Taylor 2004; Peng, Zhang, and Zhang 2010).
Proof. Equation (4) can be written as follows:

‖X(i)R(i) −X(j)R(j)‖2F = −2(R(i))�(X(i))�X(j)R(j)

+(R(i))�(X(i))�X(i)R(i) + (R(j))�(X(j))�X(j)R(j) ≡
(R(i))�(X(i))�X(j)R(j)√

((R(i))�(X(i))�X(i)R(i))((R(j))�(X(j))�X(j)R(j))
(8)

Remark 1. The HA solution generated by unsupervised
CCA may not be optimum for MVP analysis. We just explain
two issues in the unsupervised solutions. Consider fMRI time
series included visual stimuli, where two subjects watch two
photos of cats as well as two photos of human faces. In
this example, the sequence of stimuli is demonstrated by
[cat1, face1, cat2, face2] for each subject after prepro-
cessing steps. The unsupervised solution finds two mappings
to maximize the correlation in the voxel-level, where the vox-
els for each subject are only compared with the voxels for
other subjects with the same locations. As a result, the se-
quence of the mentioned comparison in the stimulus-level is
shown by:

(S1:cat1 ↑ S2:cat1) ; (S1:face1 ↑ S2:face1);
(S1:cat2 ↑ S2:cat2) ; (S1:face2 ↑ S2:face2)

where ↑ denotes the operator for maximizing correlation and
the S1 and S2 are the indices of subjects 1 and 2, respec-
tively. Now, we can explain two issues. Indeed, the CCA so-
lution here just maximized the correlation for the stimuli in
the same locations, while they must also maximize the corre-
lation between all stimuli in the same category and minimize
the correlation between different categories of stimuli. Our
approach for solving mentioned issues can be illustrated by:

(S1:cat1,2 ↑ S2:cat1,2); (S1:face1,2 ↑ S2 : face1,2);
(S1:cat1,2 ↓ S2:face1,2); (S1:face1,2 ↓ S2:cat1,2)

where ↓ denotes the operator for minimizing correlation.

This paper proposes Local Discriminant Hyperalignment
(LDHA), which combines the idea of locality into CCA
(Peng, Zhang, and Zhang 2010) in order to provide a better
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HA solution in the MVP analysis. Since unaligned (before
applying the HA method) functional activities in different
subjects cannot be directly compared with each other, the
neighborhoods matrix α =

{
αmn

}
∈ R

T×T is defined by
using class labels (Y) in the train-set as follows:

αnm = αmn =

{
0 ym �= yn

1 ym = yn
, m, n = 1:T , m < n

(9)
where the number of within-class neighborhoods is the per-
mutation of all stimuli in each category, and the number of
between-classes neighborhoods denotes by the permutation
of all stimuli in distinct categories. The covariance matrices
for within-class W(i,j) =

{
w

(i,j)
mn

}
∈ R

V×V and between-

classes B(i,j) =
{
b
(i,j)
mn

}
∈ R

V×V are defined as follows:

w(i,j)
mn =

T∑
�=1

T∑
k=1

α�kx
(i)
�mx

(j)
kn + α�kx

(i)
�nx

(j)
km (10)

b(i,j)
mn =

T∑
�=1

T∑
k=1

(1−α�k)x
(i)
�mx

(j)
kn+(1−α�k)x

(i)
�nx

(j)
km (11)

where m,n = 1:V . The Local Discriminant Hy-
peralignment (LDHA) objective function is defined by
max

i,j=1:S

(
(R(i))�C̃(i,j)R(j)

)
where C̃(i,j) = W(i,j) −

(η/T 2)B(i,j). Here, η is the number of non-zero cells in the
matrix α, and T is the number of time points in unites of
TRs. In addition, the solution of the LDHA can be reformu-
lated as follows:

ρ = argmax
i,j=1:S,i<j

(R(i))�C̃(i,j)R(j)√
((R(i))�C(i)R(i))((R(j))�C(j)R(j))

subject to (R(�))�C(�)R(�) = I, � = 1:S
(12)

The main difference between LHDA and HA is the super-
vised covariance matrix (C̃(i,j)). Indeed, LDHA can be con-
sidered equivalent of the classical CCA (Lemma 2), where
the correlations of non-homogeneous stimuli (B(i,j)) are
participated to the CCA problem with a negative sign and
all of the homogeneous stimuli in each category will be
compared (W(i,j)) with each other. In addition, LDHA is
related to the LDCCA method (Peng, Zhang, and Zhang
2010), where we have a mechanism in the LDCCA to man-
ually select the relevant neighborhoods for each category of
stimuli based on class-labels and also the balance factor is
dynamically assigned based on the data structure.

Lemma 3. Same as the classical CCA, LDHA can be solved
as a generalized eigenvalue decomposition problem.
Proof.

C̃(i,j)
(
C(j)

)−1

C̃(j,i)R(i) =
(
Λ(i,j)

)2

C(i)R(i)

C̃(j,i)
(
C(i)

)−1

C̃(i,j)R(j) =
(
Λ(i,j)

)2

C(j)R(j)

(13)

Algorithm 1 Local Discriminate Hyperalignment (LDHA)

Input: Data points X(i) and X(j), class labels Y:
Output: Hyperalignment parameters R(i) and R(j):
Method:

1. Generate α by (9).
2. Calculate W(i,j), B(i,j) by using (10) and (11).
3. Calculate C̃(i,j).

4. Compute H(i,j) =
(
C(i)

) − 1/2

C̃(i,j)
(
C(j)

) − 1/2

.

5. Perform SVD: H(i,j) = P(i,j)Λ(i,j)
(
Q(i,j)

)�
.

6. Return R(i) =
(
C(i)

) − 1/2

P(i,j)

and R(j) =
(
C(j)

) − 1/2

Q(i,j).

This paper uses the Singular Value Decomposition
(SVD) to solve LDHA problem, where H(i,j) =(
C(i)

) − 1/2

C̃(i,j)
(
C(j)

) − 1/2

, P(i,j) =
(
C(i)

)1/2

R(i),

and Q(i,j) =
(
C(j)

)1/2

R(j). By considering SVD parame-
ters, the (13) is equivalent to:⎧⎪⎨

⎪⎩
H(i,j)

(
H(i,j)

)�
P(i,j) =

(
Λ(i,j)

)2

P(i,j)(
H(i,j)

)�
H(i,j)Q(i,j) =

(
Λ(i,j)

)2

Q(i,j)
(14)

where H(i,j) = P(i,j)Λ(i,j)
(
Q(i,j)

)�
. The Hyperalign-

ment solution also can be defined as follows:⎧⎪⎨
⎪⎩
R(i) =

(
C(i)

) − 1/2

P(i,j)

R(j) =
(
C(j)

) − 1/2

Q(i,j)
(15)

Algorithm 1 illustrates the LDHA procedure for solving
the HA problem between two different subjects. As men-
tioned before, the LDHA is used for MVP analysis. Algo-
rithm 2 demonstrates a general template for MVP analysis
based on LDHA method. As this algorithm depicted, the
procedure of generating the HA template (G) in the train
stage is changed, while the template is used in the test stage
such as the unsupervised HA methods. Therefore, we do
not need the class labels in the test stage. Indeed, the pro-
posed method in comparison with the unsupervised solu-
tions just generates more optimum HA template for aligning
functional neural activities, where this template can maxi-
mize the correlation between all stimuli in the same category
and minimize the correlation between different categories of
stimuli.

Experiments

The empirical studies are presented in this section. Same
as previous studies (Chen et al. 2014; Xu et al. 2012;
Lorbert and Ramadge 2012; Haxby et al. 2011), this paper
generates the classification model by using the ν-SVM algo-
rithms (Smola and Schölkopf 2004), i.e. the binary ν-SVM
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Table 1: Accuracy of Classification Methods

Data Sets ν-SVM HA KHA SCCA SVD-HA LDHA
DS005 (2 classes) 71.65±0.97 81.27±0.59 83.06±0.36 85.29±0.49 90.82±1.23 94.32±0.16
DS105 (8 classes) 22.89±1.02 30.03±0.87 32.62±0.52 37.14±0.91 40.21±0.83 54.04±0.09
DS107 (4 classes) 38.84±0.82 43.01±0.56 46.82±0.37 52.69±0.69 59.54±0.99 74.73±0.19
DS117 (2 classes) 73.32±1.67 77.93±0.29 84.22±0.44 83.32±0.41 95.62±0.83 95.07±0.27

Table 2: Area Under the ROC Curve (AUC) of Classification Methods

Data Sets ν-SVM HA KHA SCCA SVD-HA LDHA
DS005 (2 classes) 68.37±1.01 70.32±0.92 82.22±0.42 80.91±0.21 88.54±0.71 93.25±0.92
DS105 (8 classes) 21.76±0.91 28.91±1.03 30.35±0.39 36.23±0.57 37.61±0.62 53.86±0.17
DS107 (4 classes) 36.84±1.45 40.21±0.33 43.63±0.61 50.41±0.92 57.54±0.31 72.03±0.37
DS117 (2 classes) 70.17±0.59 76.14±0.49 81.54±0.92 80.92±0.28 92.14±0.42 94.23±0.94

Algorithm 2 A general template for MVP analysis by using
Local Discriminate Hyperalignment (LDHA)

Input: Train Set X(i), i = 1:S, Test Set X̂(j), j = 1:Ŝ:
Output: Classification Performance (ACC, AUC):
Method:

01. Initiate R(i), i = 1:S.
02. Do
03. Foreach subject X(i), i = 1:S:
04. Update R(i) by Alg. 1 and X(�), � = i+1:S.
05. End Foreach
06. Until X(i)R(i), i = 1:S do not change in this step.
07. Train a classifier by X(i)R(i), i = 1:S
08. Initiate R̂(j), j = 1:Ŝ.
09. Generate G based on (6) by using R(i), i = 1:S
10. Foreach subject X̂(j), j = 1:Ŝ:
11. Compute R̂(j) by classical HA (Eq. 5,7) and G.
12. End Foreach
13. Evaluate the classifier by using X̂(j)R̂(j), j = 1:Ŝ.

for datasets with just two categories of stimuli, and multi-
label ν-SVM (Smola and Schölkopf 2004; Lorbert and Ra-
madge 2012) as multi-class approach. All employed datasets
in this paper are separately preprocessed by SPM 12 (6685)
(www.fil.ion.ucl.ac.uk/spm/), i.e. slice timing, anatomical
alignment, normalization, smoothing. Regions of Interests
(ROIs) are also defined by using the main references of each
dataset. The features (voxels in the ROIs) are partitioned to
train set and test set by using Leave-One-Out (LOO) cross-
validation across subjects (leave-one-subject-out). The HA
methods are applied for functional aligning the neural ac-
tivities and generating the general template (G). Finally,
the classification model is generated for evaluating the per-
formance of different methods. Performance of LDHA is
compared with the ν-SVM algorithm as the baseline (it
just uses anatomical alignment without the hyperalignment
mapping), the standard hyperalignment (HA) (Haxby et al.
2011; Guntupalli et al. 2016), Kernel-based hyperalignment
(KHA) (Lorbert and Ramadge 2012), Regularized hyper-
alignment (SCCA) (Xu et al. 2012), and Joint SVD hyper-
alignment (SVD-HA) (Chen et al. 2014). Further, KHA al-

gorithm is employed by the Gaussian kernel, which gener-
ated the best results in the original paper (Lorbert and Ra-
madge 2012). In addition, regularized parameters (α, β) in
SCCA are considered optimum based on (Xu et al. 2012).
All algorithms are implemented in the MATLAB R2016b
(9.1) on a PC with certain specifications1 by authors in or-
der to generate experimental results.

Simple Tasks Analysis

This paper utilizes 4 datasets, shared by openfmri.org, for
running empirical studies of this section. These datasets
contain simple tasks such as watching a gray-scale photo
or tapping a key, etc. As the first dataset, ‘Visual Object
Recognition’ (DS105) includes 6 subjects and 71 sessions.
It also contains 8 classes (categories) of visual stimuli, i.e.
gray-scale images of faces, houses, cats, bottles, scissors,
shoes, chairs, and scrambles (nonsense patterns). Please
see (Haxby et al. 2011; Haxby, Connolly, and Guntupalli
2014) for more information. As the second dataset, ‘Multi-
subject, multi-modal human neuroimaging dataset’ (DS117)
includes MEG and fMRI images for 19 subjects and 171 ses-
sions. This paper just uses the fMRI images of this dataset.
It also contains 2 classes of visual stimuli, i.e. human faces,
and scrambles. Please see (Wakeman and Henson 2015) for
more information. The responses of voxels in the ventral
temporal cortex (VT) are analyzed for these two datasets.
As the third dataset, ‘Word and Object Processing’ (DS107)
includes 49 subjects and 98 sessions. It contains 4 classes
of visual stimuli, i.e. words, objects, scrambles, consonants.
ROIs and technical information are defined based on (Dun-
can et al. 2009). As the last dataset, ‘Mixed-gambles task’
(DS005) includes 16 subjects and 48 sessions. It also con-
tains 2 classes of risk tasks in the human brain, where the
chance of selection is 50/50. Further, the ROIs for func-
tional alignment are selected based on the original paper
(Tom et al. 2007).

Table 1 and 2 respectively demonstrate the classification
Accuracy and Area Under the ROC Curve (AUC) in per-
centage (%) for the predictors. These tables report the per-

1DEL , CPU = Intel Xeon E5-2630 v3 (8×2.4 GHz), RAM =
64GB, OS = Elementary OS 0.4 Loki
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(a) Forrest Gump
(TRs = 100)

(b) Raiders of the Lost Ark
(TRs = 100)

(c) Forrest Gump
(TRs = 200)

(d) Raiders of the Lost Ark
(TRs = 200)

(e) Forrest Gump
(TRs = 400)

(f) Raiders of the Lost Ark
(TRs = 400)

(g) Forrest Gump
(TRs = 2000)

(h) Raiders of the Lost Ark
(TRs = 2000)

Figure 1: Comparison of 6 different HA algorithms by using
100 TRs, 400 TRs, 800 TRs, and 2000 TRs and 100 to 1200
ranked voxels.

formance of predictors based on the categories of the stim-
uli. As these tables demonstrate, the proposed algorithm
has generated better performance in comparison with other
methods because it provided a better functional alignment of
neural activities by exploiting the locality properties of the
fMRI datasets. This issue is more significant when the num-
ber of classes is more than 2 such as datasets DS105 and
DS107.

Complex Tasks Analysis

This section employs two fMRI datasets, which are related
to watching movies. As the first dataset, ‘A high-resolution
7-Tesla fMRI dataset from complex natural stimulation with
an audio movie’ (DS113) includes the fMRI data of 20 sub-
jects, who watched ‘Forrest Gump (1994)’ movie during the
experiment. This dataset provided by www.openfmri.org.
Please see (Hanke et al. 2014) for more information. In the
second dataset, subjects watched ‘Raiders of the Lost Ark
(1981)’, where whole brain volumes are 48 and the num-

ber of subjects are 10. Please see (Chen et al. 2014; 2015;
Lorbert and Ramadge 2012; Sabuncu et al. 2010) for more
information. The responses of voxels in the ventral tempo-
ral cortex (VT) are collected to align the data while subjects
watched the movie. Figure 1 illustrates the generated results
for these two datasets. As depicted in this figure, we rank
order the voxels by employing the voxel selection method in
(Haxby et al. 2011; Chen et al. 2014); and the experiments
are repeated by using the different number of ranked voxels,
i.e. 100, 200, 400, 600, 800, 1000, and 1200. In addition, the
empirical studies are reported by using the first 100 TRs, 400
TRs, 800 TRs, and 2000 TRs in both datasets. Figure 1 illus-
trates that the LDHA achieves superior performance to other
HA algorithms. As mentioned before, our method can gen-
erate a better functional alignment of neural activities when
the concept of the locality used for functional alignments.
This improvement is more significant when the number of
TRs in figure 1 is limited.

Conclusion

One of the main challenges in fMRI studies, especially MVP
analysis, is using multi-subject datasets. On the one hand,
the multi-subject analysis is necessary to estimate the va-
lidity of the generated results across subjects. On the other
hand, analyzing multi-subject fMRI data requires accurate
functional alignment between neuronal activities of differ-
ent subjects for improving the performance of the final re-
sults. Hyperalignment (HA) is one of the most effective
functional alignment methods, which can be formulated as a
CCA problem for aligning neural activities of different sub-
jects to a common space. The HA solution in MVP analysis
may not be optimum because it mostly utilizes the unsuper-
vised CCA techniques for functional alignment. This paper
proposes the Local Discriminant Hyperalignment (LDHA)
as a novel supervised HA solution, which employs the con-
cept of locality in machine learning for improving the per-
formances of both functional alignment and MVP analysis.
Indeed, this paper defines the locality based on the stimuli
categories (class labels) in the train-set. In a nutshell, the
proposed method firstly generates two sets for each category
of stimuli, i.e. the set of homogeneous stimuli as within-
class neighborhoods and the set of stimuli from distinct cate-
gories as between-class neighborhoods. Then, these two sets
are used to provide a better HA solution, where the correla-
tion between the homogeneous stimuli is maximized, and
also the correlation between different categories of stimuli
is near to zero. Experimental studies on multi-subject MVP
analysis demonstrate that the LDHA method achieves supe-
rior performance to other state-of-the-art HA algorithms. In
the future, we will plan to develop a kernel-based version
of LDHA for improving its performance in non-linear prob-
lems.
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