
Gated Neural Networks for Option Pricing: Rationality by Design

Yongxin Yang,� Yu Zheng,♠ Timothy M. Hospedales�

EECS, Queen Mary, University of London�, Imperial Business School, Imperial College London♠
yongxin.yang@qmul.ac.uk, t.hospedales@qmul.ac.uk, y.zheng12@imperial.ac.uk

Abstract

We propose a neural network approach to price EU call
options that significantly outperforms some existing pricing
models and comes with guarantees that its predictions are
economically reasonable. To achieve this, we introduce a
class of gated neural networks that automatically learn to
divide-and-conquer the problem space for robust and accu-
rate pricing. We then derive instantiations of these networks
that are ‘rational by design’ in terms of naturally encoding a
valid call option surface that enforces no arbitrage principles.
This integration of human insight within data-driven learning
provides significantly better generalisation in pricing perfor-
mance due to the encoded inductive bias in the learning, guar-
antees sanity in the model’s predictions, and provides econo-
metrically useful byproduct such as risk neutral density.

Introduction

Option pricing models have long been a popular research
area. From a theoretical perspective, new option pricing
models provide an opportunity for academics to examine
financial markets’ mechanics. From a practical viewpoint,
market makers desire efficient pricing models to set bid and
ask prices in derivative markets. The earliest and simplest
pricing model, Black–Scholes (Black and Scholes 1973)
gives a rough theoretical estimate of European option price.
Since then many studies attempted to find better option pric-
ing models by relaxing the strict assumptions in Black–
Scholes. The models proposed by economists usually start
from a set of economic assumptions and end up with a de-
terministic formula that takes as input some market signals
(e.g., moneyness, time to maturity, and risk-free rate). In
contrast, machine learning studies solve option pricing in a
data-driven way: as a regression problem, with similar in-
puts to econometric models, and real market option prices
as outputs. The complicated relationship between input and
output (e.g., a Black–Scholes like formula) is learned from
a large amount of data rather than derived from econometric
axioms. Progress in data-driven option pricing can be driven
by improvements in model expressivity, as well as integrat-
ing selected econometric axioms into a data-driven model
as inductive bias. In this paper we achieve excellent option
pricing results by contributing on both of these lines.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Regression models trained by machine learning tech-
niques, such as kernel machines and neural networks, gen-
eralise well to out-of-sample cases as long as the training
data is sufficient. Such data-driven methods give good op-
tion price estimates (Malliaris and Salchenberger 1993), and
can even surpass formula derived from economic principles.
One drawback of existing data-driven approaches is that they
seek a unique solution for all options. However, learned pric-
ing models fail on certain options, for example, some over-
estimate deep out-of-the money options (Bennell and Sut-
cliffe 2004), or underestimate options very close to maturity
(Dugas et al. 2000). To alleviate these issues, (Gradojevic,
Gencay, and Kukolj 2009) proposed a ‘divide-and-conquer’
strategy, by first grouping options into sub-categories, and
building distinct pricing models for each sub-category. How-
ever, this categorisation is done by manually defined heuris-
tics, and may not be consistent with market conditions, and
their changes in time. In this paper, we propose a novel class
of neural networks for option pricing. These implement a
divide-and-conquer method where option grouping is auto-
matic and learned from data rather than manual heuristics.
Therefore, it can dynamically adjust both option classifica-
tion and refine the per-class pricing model as the market
changes with time. Experiments on S&P 500 index options
show that our approach is significantly better than others.

A limitation of all the above machine learning-based
methods is that while they may fit the data well (e.g., mean
square error), they do not enforce some economic principles,
thus ruling out their suitability for pricing in practice. E.g.,
option prices have theoretical bounds, the violation of which
makes investors gain risk-free profit (so-called arbitrage).
This motivates another less-studied approach to improving
data-driven option pricing: opening up black box models to
integrate economic axioms as constraints into learning al-
gorithms (Dugas et al. 2000). From an economic perspec-
tive, this is designing a NN to make economically meaning-
ful predictions, and from a learning perspective it is provid-
ing domain-specific inductive bias to improve generalisation
and avoid overfitting. In this paper, we derive a class of gated
neural networks with stronger economic rationality guaran-
tees than existing work. In particular our neural price predic-
tor is the first learning based approach to carry a valid risk
neutral density function, i.e., a valid probability distribution
over the future asset price in risk neutral probability space.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

52

The terminology risk neutral roughly implies no arbitrage
but its rigorous definition is out of scope of this work, see
(Jeanblanc, Yor, and Chesney 2009) for details.

Our contribution is three-fold: (1) We propose a neural
network with superior option pricing performance. (2) We
evaluate our method against several baselines on a large-
scale dataset: it includes 5139 trading days and 3029327 op-
tion contracts – this is 70 times larger than previous studies
(Dugas et al. 2000; Gradojevic, Gencay, and Kukolj 2009).
(3) Our neural network model is meaningful in that it en-
forces all the necessary requirements for an economically
valid (no arbitrage) call option pricing model. This results in
a valid risk neutral density function, from which users can
extract many metrics, e.g., variance, kurtosis and skewness,
that are crucial for risk management purposes.

Related Work
Econometric Methods Asset pricing is a very active re-
search area in finance and mathematical finance. The old-
est and most famous model for option pricing is Black–
Scholes (Black and Scholes 1973). The biggest criticism
of this model is its incompatibility with the volatility smile
behaviour in real markets due to its constant volatility as-
sumption. The volatility smile exists due to the fact that
real-world distributions are often fat-tailed and asymmet-
ric. Stochastic volatility models, (e.g. (Heston 1993)), aim to
model the above smile behaviour through allowing random-
ness of volatility, compensated for by introducing random
volatility process (Heston 1993). Another stream of research
suggests including jumps which represent rare events in the
underlying process to alleviate the smile problem. These
models are called Levy models (Merton 1976; Kou 2002;
Madan, Carr, and Chang 1998; Barndorff-Nielsen 1997;
Carr and Geman 2002) and are able to generate volatility
skew or smile. A comprehensive theoretical explanation of
asset pricing models can be found in (Jeanblanc, Yor, and
Chesney 2009). This paper tackles the skew/smile problem
in a more data-driven way: it learns from market prices so
that a model that fits the market prices well is expected to
carry the same smile structure.

There are many methods for implementing option pricing
models including: Fourier-based (Carr and Madan 1999),
Tree-based (Cox, Ross, and Rubinstein 1979), Finite dif-
ference (Schwartz 1977) and Monte Carlo methods (Boyle
1977). In this paper, we employ the fractional FFT method
(Cooley and Tukey 1965) for our benchmark option pricing
models as their characteristic functions are known.
Neural Network Methods There is a long history of com-
puter scientists trying to solve option pricing using neural
networks (Malliaris and Salchenberger 1993). Option pric-
ing can be seen a standard regression task for which there are
many established methods and neural networks (rebranded
deep learning) are one of the most popular choices.

Some researchers claim that it is an advantage of neural
network (NN) methods that they do not make as many as-
sumptions as the econometric methods. However, NNs are
not orthogonal to econometric methods. In fact, some NN
methods leverage classic econometric insights. For exam-
ple, (Garcia and Gençay 2000) proposed a neural option

pricing model with a Black–Scholes like formula. (Dugas
et al. 2000) chose specific activation functions and positive
weight parameter constraints such that their model has the
second-order derivative properties required by economic ax-
ioms. These studies suggested that introducing econometric
constraints produces better option pricing models compared
to vanilla feed-forward NNs. A good survey of this line of
work can be found in (Garcia, Ghysels, and Renault 2010).

While some NN methods have benefited from economet-
ric insights, these methods have always tried to find a univer-
sal pricing model for all options in the market. However, it
has been shown that for deep out-of-money options or those
with long maturity, NN methods perform very badly (Ben-
nell and Sutcliffe 2004). This is unsurprising because NN
methods usually produce a smooth pricing surface that fails
to capture these awkward and low-volume parts of the mar-
ket. (Gradojevic, Gencay, and Kukolj 2009) tried to address
this issue by categorising options based on their moneyness
and time to maturity, and training independent NNs for each
class of options. Their grouping of options is based on fixed
manual heuristic that is suboptimal, and does not adapt to the
changing market data over time. Our method is a neural net-
work that exploits a similar divide-and-conquer idea, how-
ever it jointly learns the inter-related problems of separating
options into groups and pricing each group. Providing this
increased model expressivity challenges our previous goal
of building in econometric axioms to ensure meaningful pre-
dictions, because rationality constraints are harder to enforce
in this more complex model. Thus we apply significant ef-
fort to contribute both a more expressive neural learner, and
stronger rationality constraints guarantees to existing work.

Methodology

Background

We focus on EU call options. A call option is a contract that
gives the buyer the right, but not the obligation, to acquire
the underlying asset (e.g., stock) at a specified price (called
strike price) on a certain future date (called maturity date).
For example, at time t = 0 (today), a company’s stock is
worth $100, and a trader pays a certain amount (option cost)
to buy a call option with strike price $110 and maturity date
T = 5 (five days later). After five days, if the company’s
stock price is $120, he can exercise the option to get the
stock by paying the strike price $110. If he sells the stock im-
mediately at $120, he profits $10 (ignoring the option cost).
If the company’s stock price is below $110, the trader will
not exercise the option and he has only lost the money paid
to buy the option contract. The option pricing problem is:
what should the price for this option at time t = 0 be?

We denote the true option price from the market as c, and
the estimate of the option pricing model as ĉ. The strike price
($110 in above example) is K, and the time-to-maturity is τ
(τ = T − t). The underlying asset price at time t is St and
the underlying asset price at time T is ST ($120 in above
example – but this is unknown at time t = 0).

For a call option pricing model ĉ(·) with three inputs K,
St, and τ , with the assumption of no arbitrage we have,

53

ĉ(K,St, τ) = e−rτ

∫ ∞

0

max(0, ST −K)f(ST |St, τ)dST .

Here r is the risk-free rate constant and e−rτ serves as a dis-
count term. f(x|St, τ) is the conditional risk neutral prob-
ability density function for the asset price at time T (i.e.,
ST), given its price at time t (i.e., St) and time difference
(i.e., τ = T − t). This equation can be explained intuitively:
max(0, ST −K) is the potential revenue of having this op-
tion at time T , and f(ST |St, τ) is the probability density of
that revenue, thus the integral term is in fact the expected
revenue at time T given the current status (St and τ) in risk
neutral probability space. Because of the no arbitrage as-
sumption, this expected revenue in the future should be dis-
counted at risk-free rate to get the price at time t. (Note that
we do not consider the dividend for simplicity).

Because the risk-free rate and discount term are ob-
tained independently, what the option pricing method actu-
ally models is the integral term, denoted c̃,

c̃(K,St, τ) =

∫ ∞

0

max(0, ST −K)f(ST |St, τ)dST .

c̃ can be learned from data as a regression problem, but this
does not necessarily lead to a meaningful predictive model
unless f(·) is a valid probability density function.

Requirements for Rational Predictions

We next list six conditions (Föllmer and Schied 2004) C1-
C6 that a meaningful option pricing model should meet.

∂c̃

∂K
≤ 0 (C1)

∂c̃
∂K =

∫K

0
f(ST |St, τ)dST − 1 and

∫K

0
f(ST |St, τ)dST is

a cumulative distribution function P(ST ≤ K) thus its value
can not be larger than one.

∂2c̃

∂K2
≥ 0 (C2)

∂2c̃
∂K2 = f(ST |St, τ) is a probability density function so its
value can not be smaller than zero.

∂c̃

∂τ
≥ 0 (C3)

This is intuitive: the longer you wait (larger τ), the higher
chance that the underlying asset price will eventually be
greater than the strike price. Thus the price should be non-
decreasing with time to maturity.

lim
K→∞

c̃(K,St, τ) = c̃(∞, St, τ) = 0 (C4)

If the strike price is infinity, the option price should be zero
because the underlying asset price is always smaller than the
strike price. There is no point in trading the option.

c̃(K,St, 0) = max(0, St −K) when τ = 0 (C5)

When τ = 0, the option is ready to execute immediately, so
its price should be exactly max(0, St −K) since St = ST .

max(0, St −K) ≤ c̃(K,St, τ) ≤ St (C6)

This boundary can be easily derived from put-call parity
and payoff of the call option. Call option price can not ex-
ceed the underlying price, otherwise an investor can arbi-
trage by buying the stock and selling the option at same
time and closing all positions when the option is expired.
Note that the upper bound implies that when K = 0 we
should have c̃(0, St, τ) =

∫∞
0

ST f(ST |St, τ)dST = erτSt

(also, ĉ(0, St, τ) = St). Some studies (Roper 2010) prefer
the integral formula instead of the upper bound, while they
are actually the same. For the lower bound, call option price
must exceed max(0, St −K) as option has time value.
Assumptions In the above we have made the assumptions:
(i) the first and second-order derivative of c̃ with respect to
K exist. (ii) the first-order derivative of c̃ with respect to
τ exists. Before we introduce our proposed option pricing
model, we make the last assumption: the pricing model is
rescalable w.r.t. St:

c̃(
K

St
, 1, τ) :=

c̃(K,St, τ)

St
(1)

where the fraction term K
St

is usually called (inverse) mon-
eyness and denoted as m = K

St
.

Single Model

The core part of our option pricing model y(m, τ) is

y(m, τ) ≡ c̃(m, 1, τ) :=
c̃(K,St, τ)

St
. (2)

It takes two inputs: moneyness m and time-to-maturity τ .
The objective is then to minimise the difference between the
true market price of the option c and the estimate ĉ produced
by the pricing model, where ĉ = e−rτ c̃ = e−rτSty.

Our pricing function y(m, τ) is modelled by a neural net-
work illustrated in Fig. 1 and specified by the formula

y(m, τ) =
J∑

j=1

σ1(b̃j −mew̃j)σ2(b̄j + τew̄j)eŵj . (3)

Here σ1(x) = log(1 + ex) (softplus function) and σ2(x) =
1

1+e−x (sigmoid function). J is the number of neurons in
the hidden layer. The parameters to learn are weight (w̃, w̄,
and ŵ) and bias (b̃ and b̄) terms. We can see that this is a
gated neural network (Sigaud et al. 2015) with two sides:
the left-hand side takes m and produces j = 1 . . . J neurons
σ1(b̃j−mew̃j) and the right-hand side takes τ produces j =
1 . . . J neurons σ2(b̄j+τew̄j). Then paired neurons (with the
same index) from two sides are merged by a multiplication
gate. Finally the J penultimate layer neurons produce the
final prediction y using weights ŵ.
Verifying Rationality We now show how the network of
Eq. 3 meets the rationality conditions laid out earlier. The
derivative of softplus is sigmoid function: σ′

1(x) = σ2(x),
and the derivative of sigmoid is σ′

2(x) = σ2(x)(1− σ2(x)).
Thus, we can tell that σ1(x), σ2(x), σ′

1(x), and σ′
2(x) =

σ′′
1 (x) all produce positive values. Note that the weights have

constrained sign: Left-branch weights are negative by im-
posing −ew̃, and right and top layer weights are positive by
imposing ew̄ and eŵ.

54

Figure 1: The proposed model (single). Note that bias terms exist,
although they are omitted for neat appearance. ⊗ is the multiplica-
tion gate that outputs the product of the inputs.

We can verify that Eq. 3 meets conditions C1-C3 since

∂y

∂m
=

J∑
j=1

−ew̃jσ2(b̃j −mew̃j)σ2(b̄j + τew̄j)eŵj ≤ 0

∂2y

∂m2
=

J∑
j=1

e2w̃jσ′
2(b̃j −mew̃j)σ2(b̄j + τew̄j)eŵj ≥ 0

∂y

∂τ
=

J∑
j=1

ew̄jσ1(b̃j −mew̃j)σ′
2(b̄j + τew̄j)eŵj ≥ 0

and the conditions C1, C2 and C3 can be rewritten as,

∂c̃

∂K
=

∂Sty

∂K
= St

∂y

∂m

∂m

∂K
= St

∂y

∂m

1

St
=

∂y

∂m
≤ 0

∂2c̃

∂K2
=

∂2y

∂m∂K
=

∂2y

∂m2

∂m

∂K
=

1

St

∂2y

∂m2
≥ 0

∂c̃

∂τ
=

∂Sty

∂τ
= St

∂y

∂τ
≥ 0

Condition C4 can be easily verified as m → ∞ when
K →∞, and σ1(b̃j−mew̃j) = 0 when m→∞. Therefore
y = 0 and then c̃ = Sty = 0. This also explains why there
is no bias term for the top layer.

Conditions C5 and C6 are hard to achieve by network
architecture design (e.g., weight constraints, or activation
function selection). We therefore meet them by synthesising
virtual option contracts in training – they do not exist in the
real market and their true prices c are equal to their theoreti-
cally estimated prices ĉ. In detail, to meet condition C5, we
generate a number of virtual data points: For every unique
St, we fix τ = 0 and uniformly sample K in [0, St], and
the option price should be exactly St−K. An illustration of
examples of virtual options can be found in Table 1.

Condition C6 is trickier. For the upper bound, we again
synthesise virtual training options: For every unique τ , we
create an option with K = 0 corresponding to the most ex-
pensive option. Empirically the lower bound is very unlikely
to be violated because (i) when K ≥ St the lower bound is
0 – this is met due to the neural network design (ii) when

τ e−rτ St K ĉ and c c̃ y (expected)
0 1 1000 10 990 990 0.9900
0 1 1000 20 980 980 0.9800
0 1 1000 990 10 10 0.0100
..
0 1 1100 10 1090 1090 0.9909
0 1 1100 20 1080 1080 0.9818
0 1 1100 1090 10 10 0.0091
..

Table 1: Virtual Options for Condition C5

τ e−rτ St K ĉ and c c̃ y (expected)
7 0.98 1000 0 1000 1020 1.0200
14 0.95 1100 0 1100 1158 1.0526
..

Table 2: Virtual Options for Condition C6

K < St, the virtual data for condition C5 and the market
data are highly unlikely to be mis-priced as we convert (out-
of-the-money) put options into (in-the-money) call options
(details see the first part of Experiment section), so the NN
model learns this lower bound from data. An illustration of
examples of virtual options can be found in Table 2.

Multi Model

The previous network provides a single rational prediction
model for all options. Our full model jointly trains multiple
pricing models, as well as a weighting model to softly switch
them. As illustrated in Fig. 2, the full model’s left-hand side
has i = 1 . . . I single pricing models:

yi(m, τ) =

J∑
j=1

σ1(b̃
(i)
j −mew̃

(i)
j)σ2(b̄

(i)
j +τew̄

(i)
j)eŵ

(i)
j (4)

Its right-hand branch is a network with one K unit hidden
layer, and the top layer has an I-way softmax activation
function that provides a model selector for the left branch.

wi(m, τ) =
e
∑K

k=1 σ2(mẆ1,k+τẆ2,k+ḃk)Ẅk,i+b̈i∑I
i=1 e

∑K
k=1 σ2(mẆ1,k+τẆ2,k+ḃk)Ẅk,i+b̈i

(5)

Finally, the overall output y is the softmax weighted average
of the I local option pricing models’ outputs. Due to the
softmax activation, the sum of weights (wi’s) is one.

y(m, τ) =
I∑

i=1

yi(m, τ)wi(m, τ). (6)

One can see the multi model as a mixture of expert ensemble
(Jacobs et al. 1991), or a multi-task learning model (Yang
and Hospedales 2015). The parameters of the single and
multi model approaches are summarised in Table 3.
Verifying Rationality It can be verified that the multi-
network above still meets Conditions C1, C3 and C4. Con-
ditions C5, C6 are again softly enforced by feed virtual data
training data. The outstanding issue is that the multi-model

55

Figure 2: The proposed model (multi): The right side is the weight
generating model, and the left side is a set of single models. Note
that the left side is not a single layer. Each (m, τ) → yi (linked
by two dashed arrows) is realised by a full-sized single model. ⊕
is the addition gate that outputs the sum of the inputs.

Sym. Shape Comment Number
in Single

Number
in Multi

w̃ 1× J Weight for moneyness 1 I

b̃ J Bias term for moneyness 1 I
w̄ 1× J Weight for time to maturity 1 I
b̄ J Bias term for time to maturity 1 I
ŵ J × 1 Weight for final pricing 1 I

Ẇ 2×K Weight for input to hidden 0 1
ḃ K Bias term for hidden 0 1
Ẅ K × I Weight for hidden to output 0 1
b̈ I Bias term for output 0 1

Table 3: Notation and parameter summary. Top: single pricing
model. Bottom: Weighting network (right-branch) in multi model.

breaks the Condition C2. To alleviate this, we use the learn-
ing from hints trick (Abu-Mostafa 1993).

Denoting the first-order derivative of y(m, τ) w.r.t. m as
g(m, τ) = ∂y

∂m , we introduce a new loss,

P∑
p=1

Q∑
q=1

max(0, g(mp,q, τq)− g(mp,q +Δ, τq)) (7)

Where Δ is an small number, e.g., Δ = 0.001. Q is the num-
ber of unique time-to-maturity in the training set, and P is
the number of pseudo data generated for every unique time-
to-maturity. Eq. 7 will push g(m, τ) to a monotonically in-
creasing function w.r.t. m, thus ∂g

∂m (equivalently ∂2y
∂m2) tends

to be larger than zero. Recall that ∂2c̃
∂K2 = 1

St

∂2y
∂m2 , so Eq. 7

fixes the negative second derivative issue. Unlike the virtual
options for condition C5 and C6, we do not consider the loss
caused by price difference for these data points, i.e., the data
are generated for ensuring second derivative property only
and we do not actually price them. In summary, the multi-
model now also passes all the rationality checks.
Loss Functions and Optimisation Option pricing can be
sensitive to choice of loss function (Christoffersen and Ja-
cobs 2004). We combine two objectives: Mean Square Error

(MSE) and Mean Absolute Percentage Error (MAPE). For
the multi-model, we have the extra loss in Eq. 7. To train the
NNs, we use the Adam Optimiser (Kingma and Ba 2015).

Experiments

Data and Preprocessing The option data for S&P500 in-
dex comes from OptionMetrics and Bloomberg, which pro-
vide historical End-of-Day bid and ask quotes. The data
sample covers the period 04/01/1996-31/05/2016. The cor-
responding risk free rates and index dividend yields are also
provided by OptionMetrics and Bloomberg. The risk-free
rates are interpolated by cubic spline to match the option
maturity. Several data filters should be carried out before
model calibration. Bid-ask mid-point price is calculated as
a proxy for closing price. We discard in-the-money option
quotes because trading is very inactive for those options thus
their prices are not reliable. Furthermore, we aim to keep
as many contracts as possible. We only omit contracts with
maturity less than 2 days. After these procedures, we have
3029327 option quotes left. As our model focuses on pricing
call options, we transfer put prices into call prices through
put-call parity rather than discarding all put prices – this
will introduce many in-the-money call options as the com-
plement since we discard the original in-the-money call op-
tion quotes. Time-to-maturity is annually normalised, e.g.,
for τ = 7 (seven days), the actual input is 7

365 = 0.019178.

Experiments I: Quantitative Comparison

We design the experiment as follows: we train a model with
five continuous trading days data, and use the following one
day for testing. We compare our models denoted as Sin-
gle and Multi with five baseline methods: PSSF (Dugas
et al. 2000), Modular Neural Networks (MNN) (Gradoje-
vic, Gencay, and Kukolj 2009), Black–Scholes (BS) (Black
and Scholes 1973), Variance Gamma (VG) (Madan, Carr,
and Chang 1998), and Kou Jump (Kou 2002). For the three
econometric methods1, namely BS, VG, and Kou Jump, we
only use the last training day’s data to calibrate their param-
eters (see Discussion for why). For Single and PSSF, the
number of hidden layer neurons is J = 5. The number of
pricing models in Multi is I = 9 as MNN has this setting.
The number of neurons in hidden layer for the right-branch
weighting network of Multi is K = 5. We report the MSE
and MAPE on (c, e−rτSty) for a meaningful comparison,
though for numerical stability we train the model to (equiv-
alently) minimise the difference on (erτ c

St
, y).

Both Table 4 and Fig. 3 show the superiority of our multi
model in the terms of both performance and stability. We
note that all methods simultaneously have drops in perfor-
mance in Fig. 3 at a few time points which correspond to
Dot-com bubble (1998), global financial crisis (2008), and
European debt crisis (2011).

Experiments II: Analysis of Contributions

In this section, we illustrate and validate our virtual-option
strategy for meeting conditions C5 and C6, and the second

1We release the code of these methods in Github:
github.com/arraystream/fft-option-pricing

56

Figure 3: Test MAPE by Seasons: The shadowed parts correspond to the following events: Dot-com bubble (1998), global financial crisis
(2008), and European debt crisis (2011).

Train Test
MSE MAPE (%) MSE MAPE (%)

PSSF 267.48 25.77 269.56 26.25
MNN 50.08 16.89 63.16 18.22
Single 579.74 34.74 580.47 34.99
Multi 9.91 5.75 12.11 6.84

BS 63.73 21.64 64.71 22.42
VG 55.40 18.42 61.57 22.64

Kou Jump 18.37 8.69 20.13 9.90

Table 4: Quantitative comparison of pricing on 3M contracts.

derivative fix used by our multi-model for C2. We show an
example when the testing day is 15th May 2008, on which
the S&P Index is 1423. We plot the risk neutral density of
the S&P Index after 7 days (i.e., τ = 7). Fig. 4 shows the
necessity of both virtual option contracts and positive second
derivative enforcement. Both are required to generate a valid
probability density, i.e., (i) non-negative and (ii) integrate to
one. Furthermore, the probability density function should be
economically reasonable, e.g. asset price close to zero after
τ = 7 days should be a rare event (small probability).

Our model produces a valid density as a natural conse-
quence of constraints C1-C6. In contrast, PSSF (Dugas et al.
2000) in Fig. 5 only meets conditions C1-C3 and it produces
both an invalid density and. an unreasonable large zero-
price probability. Theoretically speaking, MNN (Gradoje-
vic, Gencay, and Kukolj 2009) can not produce a density
function because its derivative w.r.t. K is not well-defined.
A numerical result in Fig. 5 (Right) illustrates this, where
we can see a discontinuous point.
Discussion We explain why we feed only one day data to
the econometric methods and five days data to train the NNs.
Unlike the machine learning based methods, every parame-
ter in econometric methods has a specific meaning. There
is no analogy to increasing model capacity through increas-
ing the number of parameters. In contrast, NN methods offer
flexible model capacity e.g. changing the number of hidden
neurons. The econometric methods are designed, by princi-
ple, to fit at most one day data where St is unique (some
of them can only fit one day’s data with a unique τ thus a
separate step of interpolation is further required). Feeding
multiple days’ data to the econometric models leads to se-
vere under-fitting and catastrophically bad performance.

In fact, requiring our model to fit multiple days’ data (cor-

Figure 4: Implied distribution over future asset price. Top Left:
Our multi model. Top Right: Without second derivative constraint
(C2), we observe invalid negative values. Bottom Left: Without vir-
tual options (conditions C5 and C6): we see density around zero
which is senseless. Bottom Right: No derivative constraint or vir-
tual options gives invalid and meaningless density.

Figure 5: Neither PSSF nor MNN produces a valid distribution.
Left: PSSF risk neural density for X-axis range [0, 2000]. Middle:
PSSF risk neural density for X-axis range [400, 2000] (note the
difference on Y-axis scale). Right: Risk neural density of MNN.

responding to multiple St values) increases the training dif-
ficulty. In our experiments, we found that the performance
of neural network based models is negatively related to the
number of training days. The performance of NN models in
Table 4 would improve if trained with one day data. This
is against the established idea that more training data leads

57

to better performance. The reason is that feeding multiple
days’ data implicitly assumes the market structure is stable
in those days. This is likely to be violated as the number of
days grows, introducing a domain-shift problem.

Why do we take this approach? Because a model that
adapts to different underlying asset prices is extremely valu-
able when one wants to apply the option pricing model on
high-frequency data: St is no longer a constant (as underly-
ing asset’s closed price) but a changing value (as underlying
asset’s current price). We tend to feed five days rather than
one day data in our model to illustrate that it is possible to
model the call option price using high frequency data.

Conclusion

We introduced a neural network for option pricing that out-
performs existing learning-based and some econometric al-
ternatives, and comes with guarantees about the economic
rationality of its outputs. In future work we will apply this
option pricing model on high-frequency data, and exploit
similar constraints for other finance problems such as im-
plied volatility surface.
Acknowledgements This project received support from
the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement #640891.

References

Abu-Mostafa, Y. S. 1993. A method for learning from hints.
In Neural Information Processing Systems (NIPS).
Barndorff-Nielsen, O. E. 1997. Normal inverse gaussian dis-
tributions and stochastic volatility modelling. Scandinavian
Journal of Statistics 24(1):1–13.
Bennell, J., and Sutcliffe, C. 2004. Black–scholes versus
artificial neural networks in pricing ftse 100 options. In-
telligent Systems in Accounting, Finance and Management
12(4):243–260.
Black, F., and Scholes, M. 1973. The pricing of op-
tions and corporate liabilities. Journal of political economy
81(3):637–654.
Boyle, P. P. 1977. Options: A monte carlo approach. Journal
of Financial Economics 4(3):323–338.
Carr, P., and Geman, H. 2002. The fine structure of asset
returns: An empirical investigation. The Journal of Business
75(2):305–332.
Carr, P., and Madan, D. B. 1999. Option valuation using the
fast fourier transform. Journal Of Computational Finance
2:61–73.
Christoffersen, P., and Jacobs, K. 2004. The importance of
the loss function in option valuation. Journal of Financial
Economics 72(2):291–318.
Cooley, J. W., and Tukey, J. W. 1965. An algorithm for the
machine calculation of complex Fourier series. Mathematics
of Computation 19:297–301.
Cox, J. C.; Ross, S. A.; and Rubinstein, M. 1979. Option
pricing: A simplified approach. Journal of Financial Eco-
nomics 7(3):229–263.

Dugas, C.; Bengio, Y.; Belisle, F.; Nadeau, C.; and Garcia,
R. 2000. Incorporating second-order functional knowledge
for better option pricing. In Neural Information Processing
Systems (NIPS).
Föllmer, H., and Schied, A. 2004. Stochastic Finance: An
Introduction in Discrete Time. De Gruyter studies in mathe-
matics. Walter de Gruyter.
Garcia, R., and Gençay, R. 2000. Pricing and hedging
derivative securities with neural networks and a homogene-
ity hint. Journal of Econometrics 94(1):93–115.
Garcia, R.; Ghysels, E.; and Renault, E. 2010. The Econo-
metrics of Option Pricing. Elsevier Inc. 479–552.
Gradojevic, N.; Gencay, R.; and Kukolj, D. 2009. Option
pricing with modular neural networks. IEEE Transactions
on Neural Networks 20(4):626–637.
Heston, S. L. 1993. A closed-form solution for options with
stochastic volatility with applications to bond and currency
options. Review of Financial Studies 6:327–343.
Jacobs, R.; Jordan, M. I.; J., N. S.; and Hinton, G. E. 1991.
Adaptive mixtures of local experts. In Neural Computation,
volume 3, 79–87.
Jeanblanc, M.; Yor, M.; and Chesney, M. 2009. Mathe-
matical Methods for Financial Markets. Springer Finance.
Springer-Verlag London Ltd.
Kingma, D., and Ba, J. 2015. Adam: A method for stochas-
tic optimization. In International Conference on Learning
Representations (ICLR).
Kou, S. G. 2002. A jump-diffusion model for option pricing.
Management Science 48(8):1086–1101.
Madan, D. B.; Carr, P.; and Chang, E. C. 1998. The vari-
ance gamma process and option pricing. European Finance
Review 2:79–105.
Malliaris, M., and Salchenberger, L. 1993. A neural net-
work model for estimating option prices. Applied Intelli-
gence 3(3):193–206.
Merton, R. C. 1976. Option pricing when underlying stock
returns are discontinuous. Journal of Financial Economics
3:125–144.
Roper, M. 2010. Arbitrage free implied volatility surfaces.
Preprint.
Schwartz, E. S. 1977. The valuation of warrants: Imple-
menting a new approach. Journal of Financial Economics
4(1):79–93.
Sigaud, O.; Masson, C.; Filliat, D.; and Stulp, F. 2015. Gated
networks: an inventory. CoRR abs/1512.03201.
Yang, Y., and Hospedales, T. M. 2015. A unified perspective
on multi-domain and multi-task learning. In International
Conference on Learning Representations (ICLR).

58

