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Abstract

Visual sentiment analysis, which studies the emotional re-
sponse of humans on visual stimuli such as images and
videos, has been an interesting and challenging problem. It
tries to understand the high-level content of visual data. The
success of current models can be attributed to the develop-
ment of robust algorithms from computer vision. Most of the
existing models try to solve the problem by proposing ei-
ther robust features or more complex models. In particular,
visual features from the whole image or video are the main
proposed inputs. Little attention has been paid to local areas,
which we believe is pretty relevant to human’s emotional re-
sponse to the whole image. In this work, we study the impact
of local image regions on visual sentiment analysis. Our pro-
posed model utilizes the recent studied attention mechanism
to jointly discover the relevant local regions and build a senti-
ment classifier on top of these local regions. The experimental
results suggest that 1) our model is capable of automatically
discovering sentimental local regions of given images and 2)
it outperforms existing state-of-the-art algorithms to visual
sentiment analysis.

Introduction
Visual sentiment analysis studies the emotional response
of humans on visual stimuli such as images and videos.
It is different from textual sentiment analysis (Pang and
Lee 2008), which focus on human’s emotional response
on textual semantics. Recently, visual sentiment analysis
has achieved comparable performance with textual senti-
ment analysis (Borth et al. 2013; Jou et al. ; You et al.
2015). This can be attributed to the success of deep learning
on vision tasks (Krizhevsky, Sutskever, and Hinton 2012),
which makes the understanding of high-level visual seman-
tics, such as image aesthetic analysis (Lu et al. 2014), and
visual sentiment analysis (Borth et al. 2013), tractable.

The studies on visual sentiment analysis have been fo-
cused on designing visual features, from pixel-level (Siers-
dorfer et al. 2010a), to middle attribute level (Borth et al.
2013) and to recent deep visual features (You et al. 2015;
Campos, Jou, and Giro-i Nieto 2016). Thus, the perfor-
mance of visual sentiment analysis systems has been grad-
ually improved due to more and more robust visual fea-
tures. However, almost all of these approaches have been
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trying to reveal the high-level sentiment from the global
perspective of the whole images. Little attention has been
paid to research from which local regions have we obtain
the sentimental response and how is the local regions to-
wards the task of visual sentiment analysis. In this work, we
are trying to solve these two challenging problems. We em-
ploy the recent proposed attention model (Mnih et al. 2014;
Xu et al. 2015) to learn the correspondence between local
image regions and the sentimental visual attributes. In such
a way, we are able to identify the local image regions, which
is relevant to sentiment analysis. Subsequently, a sentiment
classifier is built on top of the visual features extracted from
these local regions.

To the best of our knowledge, our work is the first to auto-
matically discover the relevant local images and build a sen-
timent classifier on top of the features from these local im-
age regions. Indeed, Chen et al. (Chen et al. 2014) has been
trying to identify the local regions corresponding sentiment
related adjective noun pairs. However, their approach is lim-
ited to hand-tuned small number of adjectives and nouns.
The work in (Campos, Jou, and Giro-i Nieto 2016) tries to
visualize the sentiment distribution over a given image using
a fine-tuned fully convolutional neural network on the given
images. Their results are obtained by using the global im-
ages and the localization is only used for visualization pur-
pose.

We evaluate the proposed model on the publicly available
Visual Sentiment Ontology dataset1, which is the largest
available dataset for visual sentiment analysis. We will learn
both the attention model and the sentiment classifier simul-
taneously. The performance on sentiment analysis using lo-
cal visual features will be reported. Meanwhile, we will also
quantitatively validate the attention model on discovering
sentiment relevant local image regions.

Related work

Computer vision and natural language processing are im-
portant application domains of machine learning. Recently,
deep learning has made significant advances in tasks re-
lated to both vision and language (Krizhevsky, Sutskever,
and Hinton 2012). Consequently, the task of higher-level

1http://www.ee.columbia.edu/ln/dvmm/vso/download/
sentibank.html
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semantic understanding, such as machine translation (Bah-
danau, Cho, and Bengio 2014), image aesthetic analysis (Lu
et al. 2014), and visual sentiment analysis (Borth et al. 2013;
You et al. 2015) have become tractable. A more interesting
and challenging task is to bridge the semantic gap between
vision and language, and thus help solve more challenging
problem.

The successes of deep learning make the understanding
and jointly modeling vision and language content a feasible
and attractive research topic. In the context of deep learning,
many related publications have proposed novel models that
address image and text simultaneously. Starting with match-
ing images with word-level concepts (Frome et al. 2013) and
recently onto sentence-level descriptions (Kiros, Salakhut-
dinov, and Zemel 2014; Socher et al. 2014; Ma et al. 2015;
Karpathy and Li 2015), deep neural networks exhibit sig-
nificant performance improvements on these tasks. Despite
of the fact that there are no semantic and syntactic struc-
tures, these models have inspired the idea of joint fea-
ture learning (Srivastava and Salakhutdinov 2014), semantic
transfer (Frome et al. 2013) and design of margin ranking
loss (Weston, Bengio, and Usunier 2011).

In this work, we focus on visual sentiment analysis, which
is different from the widely studied textual sentiment anal-
ysis (Pang and Lee 2008). It is quite new and challenging.
There are several recent works on visual sentiment anal-
ysis using initially pixel-level features (Siersdorfer et al.
2010b), then mid-level attributes (Borth et al. ), and more
recently deep visual features (You et al. 2015) and unsuper-
vised framework (Wang et al. 2015). These approaches have
achieved acceptable performance on visual sentiment anal-
ysis. However, due to the complex nature of visual content,
the performance of visual sentiment analysis still lags be-
hind textual sentiment analysis.

There are also several publications on analyzing sen-
timent using multi-modalities, such as text and image.
Both (Wang et al. 2014) and (Cao et al. 2014) employed both
text and images for sentiment analysis, where late fusion is
employed to combine the prediction results of using n-gram
textual features and mid-level visual features (Borth et al.
). More recently, You et al. (You et al. 2016b) proposed a
cross-modality consistent regression (CCR) scheme for joint
textual-visual sentiment analysis. Their approach employed
deep visual and textual features to learn a regression model.
Their model achieved the best performance over other fusion
models, however, overlook the mapping between image re-
gions and words.

Our work is first to consider the local visual regions in-
duced by sentiment related visual attributes. We build our
model on the recent proposed attention model, which is ca-
pable of learning the context semantics (Bahdanau, Cho, and
Bengio 2014; Xu et al. 2015) or semantic mappings (You et
al. 2016a) between two representations.

The Model
We study the problem of predicting sentiment label of a
given image. Beyond this main task, we are particularly in-
terested in studying the mechanism behind visual sentiment
response. We want to show where and how localized image

regions awake people’s sentiment response towards a given
image. To achieve that goal, we need to discover image re-
gions related

Attention model

Recently, attention model (Bahdanau, Cho, and Bengio
2014; Mnih et al. 2014) is employed to solve various tasks in
natural language processing and computer vision. In partic-
ular, attention model is able to learn the mappings between
different inputs at a given context. In sequence-to-sequence
learning for machine translation (Bahdanau, Cho, and Ben-
gio 2014) and semantic parsing (Vinyals et al. 2015), atten-
tion mechanism is employed to learn the context vector on
the encoder’s hidden state. We denote the encoder’s hidden
state as (h1,h2, · · · , hT ) and the decoder’s hidden state as
(h′

1,h′
2, · · · , h′

T ). The attention vector at decoder’s t-th time
step is computed as:

βt
i =vT tanh(W1hi +W2h

′
t) (1)

αt
i =softmax(βt

i ) (2)

ct =

T∑

i=1

αt
ihi (3)

Next, the attention vector ct is usually concatenated with ht

to produce the input for the next layer in the network. In
such a way, attention model is able to find the relevant infor-
mation for the current state, and hence promote the perfor-
mance of the overall model.

Attention model is also able to bridge the gap between
data from different modalities (Xu et al. 2015; You et al.
2016a). Given a image and one descriptive word of the im-
age, we assume that the attribute word is likely associated
with some local regions in the image. Our goal is to auto-
matically find such kind of connections between the descrip-
tive word and the image regions. Let ti denote the i-th given
word and let Vi = {v1i, v2i, . . . , vni} denote the regions of
the corresponding i-th image, and n is the number of image
regions. In attention model, a score αj (1 ≤ j ≤ n) is as-
signed to each image region vj based on its relevance with
the content of vj . As a common approach to model relevance
in vector space, a bilinear function is used to evaluate αij :

αij ∝ ϕ
(
tTi Uvji

)
, (4)

where the αi·s are taken to normalize over all the {vj},
ϕ(·) is a smooth function, and U is the weight matrix to be
learned. One popular choice for ϕ(·) is the exp(·) as in the
softmax function.

In such a way, we can calculate the attention score to
modulate the strength of relatedness between the descriptive
word and different image regions. We are also able to calcu-
late the weighted sum of all candidate local regions, which
is a mapped visual features for the image.

vi =

n∑

k=1

αik(Uvki). (5)

We obtain a weighted visual feature mapping vi for the
given descriptive word t. Next, we can supply vi as input to
a sentiment classifier, which is based on a weighted sum of
the local visual features.
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Localization of visual regions for visual sentiment
analysis

We present our model in this section. We assume that we
are given one image and one descriptive attribute of the im-
age. Since we are interested in visual sentiment analysis, the
given attribute is sentiment related visual attribute. The over-
all framework is shown in Figure 1. The overall end to end
system accepts image and attribute pairs. Local image re-
gions are represented using convolutional layer features in
order to learn the attention module (Xu et al. 2015). We fol-
low the same strategy to represent local image regions using
convolutional layers.

At the same time, these convolutional layers are also
shared with the task of attribute detector. Following several
fully-connected layers, the main goal of the attribute detec-
tor is to learn a attribute classifier for a given image. In the
training stage, the ground-truth attribute is given for each
image, which is utilized to learn the attribute classifier. In
the testing state, the attribute classifier can be employed to
predict the attribute for any given image. The negative log-
likelihood (NLL) is employed to calculate the cost for the
attribute detector.

L(ti, Vi) = − log (p(F (Vi), yti)) (6)

where F (Vi) is the output of fully connected layer and yti is
the attribute label for the i-th image.

The inputs to the attention model are pairs of image and
its attribute. Using the bilinear attention model introduced in
previous section, we are able to produce a weighted repre-
sentation of the images’ local features. Next, this represen-
tation can be supplied as input to build a softmax classifier
for sentiment analysis. In such a way, we can solve the prob-
lem of visual sentiment analysis. We employ the negative
log-likelihood (NLL) to define the cost:

p(h[ti, Vi]) = softmax
(
Ws tanh(Whv

i)
)

(7)

L′(ti, Vi) = − log (p(h[ti, Vi], li)) (8)

where vi = h[ti, Vi] is the output produced by the attention
module, Wh and Ws are the parameters for the multi-layer
perceptron, and li is the sentiment label for the i-th image
and attribute pair. The overall network can be trained using
back propagation.

Experiments

We evaluate the proposed model on the publicly available
benchmark dataset visual sentiment ontology (VSO). This
dataset is collected by querying Flickr with adjective noun
pairs (ANPs). These adjectives are considered to be senti-
ment related. Thus, each image is related to one ANP and
each image is labelled according to the sentiment label of its
ANP. In total, there are 3244 ANPs and about 1.4 million
images.

We crawl all the images according to the provided URLs.
After removing invalidated URLs, we obtain a total of 1.3
million images. However, the dataset is imbalanced. Be-
cause there are more positively labelled images, we ran-
domly sample the same number of positive images with the

negative images to manually build a balanced dataset. In the
end, we have 1.1 million images, half of them is positive and
the remaining is negative. We randomly split them into 80%
for training, 10% for testing and 10% for validating.

Model settings

In our implementation, the convolutional layers, step b) in
Figure 1, are initialized using the VGG-16 (Simonyan and
Zisserman 2014) convolutional layers, which is pre-trained
on the ImageNet classification challenge. The feature map of
the last convolutional layer is 14×14×512. In other words,
the attention model will operate on these 196 flattened fea-
tures, which is the same with (Xu et al. 2015).

Next, we need to choose feature representations for the at-
tribute words. There are two popular approaches to represent
words. The first is one-hot representation with an embedding
layer. In particular, the goal is to map a word wi with rep-
resentation wi = [0, . . . , 1i, . . . , 0] ∈ R|V | (only the i-th
position is one in the one-hot representation) to ei ∈ Rm,
where |V | is the size of the vocabulary and m is the size
of embedding layer. The second approach is to directly em-
ploy the pre-trained distributed representations of words,
such as Word2Vec (Mikolov et al. 2013) and GloVe (Pen-
nington, Socher, and Manning 2014). We use the pre-trained
300-dimensional GloVe features to represent words, which
has been employed for sentiment analysis (Tai, Socher, and
Manning 2015) and textual-visual semantic learning (You et
al. 2016a). This is particular helpful since insufficient text
data may not lead to well learned word features in the one-
hot representation setting.

All the parameters are automatically learned by minimiz-
ing the two loss functions over the training split. We use
a mini-batch gradient descent algorithm with an adaptive
learning rate to optimize the loss functions.

Preliminary experiments

Before conducting the experiments using the proposed
model in Figure 1, we first experiment with the GloVe fea-
tures and test the upper bound of the system. The entire
number of adjectives is 269. 127 of them are labelled pos-
itive and the remaining are negative. We extract the 300-
dimensional pre-trained GloVe2 vectors to represent these
269 adjectives. Next, we build a logistic classifier on top of
these features. We only use a linear model to transform the
given GloVe feature vectors. The model achieves an accu-
racy of 95%(±0.08) using a 5-fold cross-validation. On the
other hand, the current state-of-the-art performance of visual
sentiment analysis is around 80%. This result implies that
the semantic meaning of the pre-trained GloVe feature vec-
tors is helpful for the task of sentiment analysis. We would
expect an extra advantage by matching these textual seman-
tic embedding using local attended image regions.

Later, we train our model using the ground truth adjec-
tive for training split and we also test the model using the
ground truth adjectives. We do not train the attribute detec-
tor. In such a way, we can produce the performance upper
bound of our framework. Table 1 shows the performance

2http://nlp.stanford.edu/projects/glove/
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Figure 1: Overall end to end architecture for localized visual sentiment analysis. The system has several different modules. It
accepts a image as input. Visual features extracted from convolutional layers and visual attribute which is the output of a visual
attribute detector are supplied as inputs to the attention module. The attention model discovers the correspondence between
local image regions and textual visual attribute. Sentiment classifier accepts the weighted sum of semantic local visual features
produced by the attention model as inputs to train a multi-layer perceptron.

Split Precision Recall F1 Accuracy
Validating 1.000 1.000 1.000 1.000
Testing 0.998 0.997 0.998 0.998

Table 1: Performance upper bound of our model.

of our model on both the validating and testing splits. Af-
ter only 2 epochs over the training split, the classification on
validating split has been all correct. By providing the ground
truth attribute, the model shows significant performance im-
provement on the visual sentiment analysis.

Quantitative analysis of attentions

We also try to visualize the attention weights. In particu-
lar, Xu, et al. (Xu et al. 2015) have employed upsampling
and Gaussian filtering to visualize attention weights. In this
section, we follow the same steps to visualize the attention
weights of the ground truth visual attributes.

Figure 2 show several positive examples. Overall, the
proposed model tends to learn accurate attention given the
ground truth visual attributes. This helps us understand why
the model has almost perfect performance on the visual sen-
timent analysis task. Localized visual regions extract robust
and accurate visual representations, which lead to the signif-
icant improvement of sentiment classifier.

Training attribute detector

The results in previous sections suggest that attention model
is able to find the matching local image regions given the
ground truth visual attribute. Subsequently, we can obtain a
robust visual sentiment classifier trained on these attended
local regions. However, instead of using the ground truth vi-
sual attribute, a more interesting approach is to automati-
cally discover the visual attributes and thus build a visual
sentiment classifier on these attributes. Indeed, visual at-
tribute detection is one of the most challenging problems

Metric Accuracy
Top-1 27.7%
Top-5 60.3%

Table 2: Accuracy of the visual attribute detector.

in computer vision. Recent work (Escorcia, Niebles, and
Ghanem 2015) has studied on utilizing CNN for visual at-
tribute detection. In particular, we follow the study from Jou
and Chang (Jou and Chang 2016), which has compared dif-
ferent architectures on the performance of Visual Ontology
dataset.

Because the number of images in each ANP of VSO fol-
lows a long tail distribution, we follow the steps in (Jou and
Chang 2016) to preprocess the data set. We keep adjective
noun pairs with at least 500 images and filtered out some
abstract and general nouns. Next, we keep those adjectives
which has at least 6,000 images. To build a relatively bal-
anced dataset, we randomly select 6, 000 images for those
ANPs with more than 6, 000 images. In total, we obtain a
dataset with 32 visual attributes and 6, 000 images for each
attribute. Figure 3 shows the architecture for train the visual
attribute detector. We fine-tuned on top of the pre-trained
VGG-16 (Simonyan and Zisserman 2014) by adding one an
adaptation fully-connected layer (Oquab et al. 2014). The
total 192, 000 images are split into 80% for training, 10%
for validating and 10% for testing.

We train the detector using Caffe with mini-batch stochas-
tic gradient descent. We use the validating split of the dataset
for early stopping and hyper-parameter selection. Table 2
shows the top-1 accuracy and top-5 accuracy on the testing
split of the dataset. This performance is comparable with Jon
and Chang (Jou and Chang 2016). Next, we use this model
as the visual attribute detector in Figure 1 to train a visual
sentiment classifier. Specifically, we use this visual attribute
detector to predict at all the training, validating and testing
splits of the dataset. However, since the top-5 accuracy is
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(a) Angry (b) Abandoned

(c) Sunny (d) Clear

Figure 2: Visualization of attention on several selected examples.

Figure 3: Deep architecture for training visual attribute de-
tector.

Algorithm Accuracy F1
Global Multi-task CNN 70.3% 70.4%
Local Attention 69.4% 69.3%

Table 3: Performance of the two sentiment classifier using
global and local visual features respectively.

much better than the top-1 accuracy, we use 5 attributes in-
stead of 1 attribute to train our sentiment classifier. For each
of the 5 predicted attribute, we use Eq.(5) to compute the
attention local visual features. Then, these local visual fea-
tures are concatenated and passed to the sentiment classifier
as inputs.

To compare the performance of this sentiment classifier,
we also train another deep CNN model using global visual
features. Specifically, we follow the mask-task settings pro-
posed in (Jou and Chang 2016) to train the global visual

sentiment classifier. In our settings, there are three tasks:
prediction of the visual attribute (adjective), prediction of
the object (noun) and prediction of the sentiment. All these
tasks share the same lower layers of VGG-16 (see Figure 3).
Meanwhile, each task has their own adaptive layer targeted
for each individual task. Both the local and global sentiment
classifier are trained using the same splits with the visual at-
tribute detector task. Table 3 indicates that the performance
of the two models are comparable. Global CNN in a multi-
task settings show a relatively better performance than the
local attention model. Considering the relatively poor per-
formance of the visual attribute detector, the performance of
local features on visual sentiment analysis is acceptable.

Manually curated visual attributes

In previous section, we study the performance of our model
using a relative poor attribute detector. It is interesting to
check the performance of our model by providing more ac-
curate visual attributes. Indeed, in most of the current image
networks, such as Flickr (http://www.flickr.com) and Adobe
Stock (https://stock.adobe.com), users are allowed to add
tags and descriptions to their uploaded images. Most of the
time, users are likely to carefully choose these text data for
their images to create high quality albums and share with
other users. In this section, we simulate users’ curated visual
attributes by randomly selecting different level of correct vi-
sual attributes.

This experiment follows the same steps in previous sec-
tion. However, we manually change the predicted visual at-
tributes of the previously trained attribute detector. We study
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the performance of two strategies: 1) For the incorrectly pre-
dicted visual attribute (top-1), we randomly replace some of
them with the ground truth visual attribute. We study the
performance of providing different percentages of correctly
top-1 visual attributes3. 2) Instead of provide correct top-1
visual attribute, we provide the correct attribute to randomly
replace one of the top-5 predicted attributes. Specifically, for
samples where all top-5 attributes are incorrect, we just ran-
domly replace one of them with the ground truth visual at-
tribute. In such a way, we are able to manually curate visual
attributes for all the images in the three splits.
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(a) Manually curated on top-1
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(b) Manually curated on top-5

Figure 4: Performance of the proposed model on visual sen-
timent analysis with different level of manually curated vi-
sual attributes.

Next, we train a local sentiment prediction model using
the two curated datasets individually. Figure 4(a) shows the
accuracy and the F1 score of the proposed model given dif-
ferent percentages of correct top-1 visual attributes. As ex-
pected, the model performs better when more correct visual
attributes are provided. In particular, the performance almost
linearly increases with the percentage of correct top-1 vi-
sual attributes. Meanwhile, the performance of our model is
also increased with more correct top-5 manually curated vi-
sual attributes. However, the increase is not as significant as
the top-1 case. This is expected given the fact that the top-1
accuracy can only achieve 35.8% even when we manually
curate the top-5 accuracy to 100%. These results indicate

3The samples with correct visual attributes include both the cor-
rectly predicted samples by the visual attribute detector and the
randomly replaced samples

that the proposed attention model needs good attributes in
order to have better visual sentiment analysis results. How-
ever, it is interesting to see that the proposed attention mech-
anism make the localization of sentiment related image re-
gions possible, which is another interesting and challenging
research problem.

Conclusions

Visual sentiment analysis is a challenging and interesting
problem. Current state-of-the-art approaches focus on us-
ing visual features from the whole image to build sentiment
classifiers. In this paper, we adopt attention mechanism to
discover sentiment relevant local regions and build senti-
ment classifiers on these localized visual features. The key
idea is to match local image regions with the descriptive vi-
sual attributes. Because visual attribute detector is not our
main problem to solve, we have experimented with differ-
ent strategies of generating visual attributes to evaluate the
effectiveness of the proposed model. The experimental re-
sults suggest that more accurate visual attributes will lead to
better performance on visual sentiment analysis. In particu-
lar, the studied attribute detector, which is a basic and direct
fine-tuning strategy on CNN, could lead to comparable per-
formance of CNN using global visual features. More impor-
tantly, the utilization of attention model enables us to match
the local regions in an image, which is much more interest-
ing. We hope that our work on using local image regions can
encourage more studies on visual sentiment analysis. In the
future, we plan to incorporate visual context and large scale
user generated images for building rich and robust attribute
detector, localizing sentiment relevant local image regions
and learning robust visual sentiment classifier.
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