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Abstract

In the analysis of real-world complex networks, identifying
important vertices is one of the most fundamental operations.
A variety of centrality measures have been proposed and ex-
tensively studied in various research areas. Many of distance-
based centrality measures embrace some issues in treating
disconnected networks, which are resolved by the recently
emerged harmonic centrality. This paper focuses on a fam-
ily of centrality measures including the harmonic centrality
and its variants, and addresses their computational difficulty
on very large graphs by presenting a new estimation algo-
rithm named the random-radius ball (RRB) method. The
RRB method is easy to implement, and a theoretical anal-
ysis, which includes the time complexity and error bounds,
is also provided. The effectiveness of the RRB method over
existing algorithms is demonstrated through experiments on
real-world networks.

Introduction

A measure that indicates the relative importance of a vertex
is called the centrality. Centrality has found many applica-
tions in broad research areas such as sociology, psychology,
biology, and computer science (Borgatti and Everett 2006;
Boldi and Vigna 2014).

Bavelas’ closeness centrality (Bavelas 1950) is one
the most classic centralities and is still actively stud-
ied (Chechik, Cohen, and Kaplan 2015; Bergamini et al.
2016). It formulates the centrality of a vertex as the inverse
of the sum of the distances to the other vertices. More specif-
ically, Bavelas’ closeness centrality of a vertex v ∈ V in a
graph G = (V,E) is defined by

C(v) =
1∑

u∈V d(u, v)
,

where d(u, v) denotes the distance from u to v. However,
Bavelas’ closeness centrality has several drawbacks. First,
it makes sense only on strongly connected graphs; any ver-
tex that is not reachable from some other vertex has the null
centrality value. Second, even if the graph is strongly con-
nected, it can easily be affected by distant vertices.

The recently emerged harmonic centrality (Opsahl, Ag-
neessens, and Skvoretz 2010; Boldi and Vigna 2014) is a
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possible solution to these problems. The harmonic central-
ity has a similar definition, specifically,

CH(v) =
∑

u∈V \{v}

1

d(u, v)
.

This slight modification produces meaningful values even
on disconnected graphs. Moreover, a recent survey on cen-
tralities (Boldi and Vigna 2014) concluded that, although
the appropriate centrality may differ by application, the har-
monic centrality has the most desirable features among pop-
ular centrality notions. In this paper, we focus on a general-
ized notion of the harmonic centrality that we call the (gen-
eralized) closeness centrality. The closeness centrality with
respect to a distance-decay (monotone decreasing) function
α : N → R+ is defined by

Cα(v) =
∑

u∈V \{v}
α(d(u, v)).

For example, Cα(v) with α(x) = 1/x and α(x) = 2−x

coincides with the harmonic centrality and exponentially at-
tenuated centrality (Dangalchev 2006), respectively.

However, the exact computation of the closeness central-
ity is impractical on today’s massive graphs. Computing the
closeness centralities of all the vertices requires the all-pairs
shortest paths (APSP) computation, which costs O(nm)
time on unweighted graphs, where n and m are the number
of vertices and edges, respectively. Moreover, computing
the closeness centrality of a single vertex takes O(m) time,
which is not acceptable on large graphs.

Therefore, faster approximation algorithms are needed.
Regarding the closeness centrality, two ingenious algorithms
have been proposed independently: HyperBall (Boldi, Rosa,
and Vigna 2011; Boldi and Vigna 2013) and All-Distances
Sketches (ADS) (Cohen 1997; 2015).

HyperBall is practically the fastest method for approxi-
mating the closeness centrality. However, this method has
two drawbacks. First, HyperBall relies heavily on a compli-
cated data structure called a HyperLogLog counter (Flajolet
et al. 2007; Heule, Nunkesser, and Hall 2013) and is hard
to implement. Second, although the experimental results on
real-world networks in (Boldi and Vigna 2013) are promis-
ing, no theoretical error bounds are available.

ADS is a framework that can be used to estimate vari-
ous statistics of graphs, including the closeness centrality.
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Although ADS boasts its theoretical guarantee on the time
complexity and error bounds, it has difficulties on massive
graphs due to its space usage (Akiba and Yano 2016).

Our Contributions. In this paper, we present a new ran-
domized approximation method for the closeness centrality
called the random-radius ball (RRB) method. The RRB
method builds upon very simple procedures but is efficient
in practice and has theoretical guarantees. The features of
the RRB method can be summarized as follows.
• Easy to implement: The RRB method is easy to imple-

ment. With a basic breadth-first search (BFS) library, it
can be implemented within only 30 lines of code.

• Theoretically guaranteed: We provide a solid theoreti-
cal analysis. The estimation is unbiased (as opposed to
HyperBall). Moreover, we can control the trade-off be-
tween the running time and the root-mean-square error
(RMSE) of the estimation to the true centrality value.

• Efficient in practice: Our experimental results on real-
world networks demonstrate that the RRB method out-
performs HyperBall and ADS. Space usage (in addition
to the graph itself) is only O(n log n). This feature is cru-
cial when the input graph is massive.

Related Work
Since most centrality notions require a high polynomial time
to compute (such as O(nm)), a lot of estimation methods
have been developed, including methods for the between-
ness centrality (Brandes and Pich 2007; Geisberger and
Schultes 2008; Riondato and Kornaropoulos 2014; Riondato
and Upfal 2016), Bavelas’ closeness centrality (Eppstein
and Wang 2004; Cohen et al. 2014; Chechik, Cohen, and
Kaplan 2015), harmonic centrality (Boldi and Vigna 2013;
Cohen 2015), and spanning tree centrality (Mavroforakis et
al. 2015; Hayashi, Akiba, and Yoshida 2016).

It is shown that computing the APSP is equivalent to com-
puting the vertex with the highest Bavelas’ closeness cen-
trality in terms of (polynomial) time complexity (Abboud,
Grandoni, and Williams 2015).

Preliminaries
Table 1 summarizes the notations that are frequently used
throughout our paper. A distance-decay function α :
N → R+ is a monotone decreasing function such that
limd→∞ α(d) = 0. We abbreviate α(d(u, v)) by α(u, v).
Let Cα =

∑
v∈V Cα(v)/n be the average of the closeness

centralities.
We say that a random variable X is an unbiased estima-

tor of a ∈ R if E[X] = a. The root-mean-square error
(RMSE) of a random variable X with respect to a ∈ R is√
E(X − a)2. When X is an unbiased estimator of a, the

RMSE coincides with the standard deviation σ(X) of X .

Assumptions on graphs. Throughout this paper, we as-
sume that the input graph is directed and unweighted. This
is because we mainly consider applications in social net-
works and Web graphs, which are usually directed and un-
weighted. Having said that, we note that our method can be
easily adapted for undirected and/or weighted graphs.

Table 1: Frequently used notations throughout this paper.
Symbol Description
R+ A set of non-negative real numbers.
Z+ A set of non-negative integers.
σ(X) The standard deviation of X .
G = (V,E) A graph with vertex set V and edge set E.
n The number of vertices: |V |.
m The number of edges: |E|.
d(u, v) The shortest-path distance from u to v.
deg+(u) The out-degree of v.
α(x) A distance-decay function.
α(u, v) An abbreviation for α(d(u, v)).

Proposed Algorithm

In this section, we present the RRB method. Throughout this
section, we fix a directed graph G = (V,E) and a distance-
decay function α : N → R+.

Random-Radius Ball Method

We now describe the idea of the RRB method. Suppose the
goal is to estimate the closeness centrality Cα(v) of a single
vertex v ∈ V . First, we introduce a counter c(v) that is ini-
tialized to zero. Then, for each vertex u ∈ V \{v}, we incre-
ment c(v) with probability tα(u, v), where t is a time-and-
accuracy trade-off parameter. Here, we assume tα(1) ≤ 1.
The case when tα(1) > 1 is discussed later. Note that c(v)/t
is an unbiased estimator of Cα(v); hence, it is outputted as
an estimate of Cα(v).

This idea can be extended to estimate the closeness cen-
tralities of all the vertices. For each vertex v ∈ V , the
counter c(v) is initialized to zero. Then, for each vertex u ∈
V , we assign a random variable ru uniformly sampled from
[0, 1], which is called the rank of u. Then, we increment c(v)
for every vertex with d(u, v) ≤ τ , where τ = �α−1(ru/t)�.
Here, α−1(·) exists because α is monotone decreasing. Note
that c(v) is incremented when ru ∈ [0, tα(u, v)]; hence, the
probability that c(v) is incremented is tα(u, v). Then, we
output Ĉα(v) := c(v)/t as an estimate of Cα(v) for each
v ∈ V . See Algorithm 1 for details.

Before analyzing the RRB method, we define the values
μt(v) ∈ R+ for each v ∈ V and kt ∈ R+ by

μt(v) :=
∑

u∈V \{v}
tα(u, v) = tCα(v),

kt :=
1

n

∑
v∈V

μt(v) = tCα. (1)

In other words, μt(v) is the expected value of c(v), and kt is
the average of μt(v) over all vertices v ∈ V .

Although, as we will see, kt is an important value that de-
termines the running time and accuracy of the RRB method,
we cannot directly specify kt in Algorithm 1. We will ad-
dress this issue later using a bootstrap method, which auto-
matically determines an appropriate t from kt.

Time and Space Complexity

We now analyze the time and space complexities of the RRB
method.
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Algorithm 1: Random-radius ball (RRB) method.
Input: A graph G = (V,E), a distance-decay function

α : N → R+, and a parameter t > 0
Procedure RRB(G,α, t)

1 foreach v ∈ V do
2 c(v) ← 0.
3 foreach u ∈ V do
4 ru ← a value uniformly sampled from [0, 1].
5 τ ← �α−1(ru / t)�.
6 Perform a BFS of depth τ from u.
7 foreach visited vertex v ∈ V with v �= u do
8 c(v) ← c(v) + 1.

9 foreach v ∈ V do

10 Ĉα(v) ← c(v)/t.

11 return
{
Ĉα(v)

}
v∈V

.

Theorem 1: Algorithm 1 runs in O(tm · maxv∈V Cα(v))
expected time with O(n log n) space (in addition to the
graph itself).

Proof. The additional space complexity is O(n log n) be-
cause the RRB method can run with counters {c(v)}v∈V ,
each of which requires only O(log n) bits. The time com-
plexity is dominated by the BFS (Line 6). The expected
number of scanned vertices is∑

v∈V

μt(v) · deg+(v) ≤ max
v∈V

(tCα(v)) ·
∑
v∈V

deg+(v)

= tm ·max
v∈V

Cα(v).

A disadvantage of Theorem 1 is that the obtained
time complexity relies on an unknown value, i.e.,
maxv∈V Cα(v). In small-world networks such as so-
cial networks and Web graphs, the maximum centrality
maxv∈V Cα(v) and average Cα usually differ only by a con-
stant factor. This case leads to the following.

Corollary 2: If maxv∈V Cα(v) ≤ KCα holds for some
K ∈ R+, then Algorithm 1 runs in O(Kktm) time.

Proof. By Theorem 1, the time complexity is O(tm ·
maxv∈V Cα(v)) = O(tmKCα) = O(Kktm).

Although kt is again an unknown value, we will show that
its value can be controlled using the bootstrap method.

Error Bounds

We now analyze the accuracy of Algorithm 1. We begin with
the following fact.

Proposition 3: For every v ∈ V , Ĉα(v) is an unbiased es-
timator of Cα(v).

Proof. The result is immediate from the fact that
E[Ĉα(v)] = E[c(v)/t] = μt(v)/t = Cα(v).

Now, we bound the standard deviation of Ĉα(v) as it co-
incides with the RMSE of Ĉα(v) with respect to Cα(v).
Theorem 4: For every v ∈ V , we have

σ(Ĉα(v)) ≤
√

Cα(v)

t
.

Proof. Recall that c(v) is the sum of n − 1 indepen-
dent Bernoulli random variables whose expectations are
tα(u, v) (u ∈ V \ {v}). Then,

σ(Ĉα(v))
2 = Var

[
c(v)

t

]
=

1

t2

∑
u∈V \{v}

tα(u, v)(1− tα(u, v))

≤ 1

t

∑
u∈V \{v}

α(u, v) =
Cα(v)

t
.

Again, a disadvantage of Theorem 4 is that it relies on an
unknown value of Cα(v). In most applications, we are only
concerned about vertices with high centrality values. For
such vertices, we have the following bound.
Corollary 5: Let v ∈ V be a vertex with Cα(v) ≥ Cα.
Then, we have

σ(Ĉα(v))

Cα(v)
≤ 1√

kt
.

Proof. By Theorem 4, σ(Ĉα(v))/Cα(v) ≤ 1/
√
tCα(v) ≤

1/
√
tCα = 1/

√
kt.

Handling Large t

Theorem 4 states that a small standard deviation can be ob-
tained by increasing the value of t. However, the RRB
method is only defined when tα(1) ≤ 1, which may not
always be the case. To address this issue, when tα(1) > 1,
we consider the following strategy. First, choose a large con-
stant N ∈ N with tα(1)/N ≤ 1 and run the RRB method
N times with parameter t/N . Let Ĉ1

α(v), . . . , Ĉ
N
α (v) be the

obtained estimates for Cα(v). Then, the output is the aver-
age Ĉα(v) :=

∑N
i=1 Ĉ

i
α(v)/N .

Since the random variables Ĉ1
α(v), . . . , Ĉ

N
α (v) are inde-

pendent, by Theorem 4,

σ2(Ĉα(v)) = Var
[ 1

N

N∑
i=1

Ĉi
α(v)

]
≤ N

N2

Cα(v)

t/N
=

Cα(v)

t

as desired (see the correspondence with Theorem 4).

Bootstrap Method

If the value of kt is set to desired k∗ ∈ R+, the time
complexity and standard deviations can be controlled us-
ing Corollaries 2 and 5, respectively. However, the RRB
method takes the parameter t; it is hard to determine t such
that kt = k∗. To address this issue, we present a “boot-
strap” method, which estimates kt by running Algorithm 1
on small t values and then uses the estimates to choose an
appropriate t.

From the counters {c(v)}v∈V computed by Algorithm 1
and with parameter t, we adopt k̂t =

∑
v∈V c(v)/n as an

estimator of kt.
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Algorithm 2: Random-radius ball (RRB) method with
bootstrapping.

Input: A graph G = (V,E), a distance-decay function
α : N → R+, parameters k∗ > 0 and s > 0

Procedure RRB-BOOTSTRAP(G,α, k∗, s)
1 t0 ← α(1) · k∗/n.
2 for i ∈ Z+ do

3 ti ← 2it0.
4 {Ĉα(v)}v∈V ← RRB(G,α, ti).
5 k̂ti ←

∑
v∈V Ĉα(v) · ti/n.

6 if k̂ti ≥ k∗ + s
√
k∗ then

7 Break the loop.

8 return {Ĉα(v)}v∈V .

Proposition 6: k̂t is an unbiased estimator of kt.

Proof. The result follows immediately from the definition
of kt.

Next, we bound the standard deviation of k̂t. Although
c(u) and c(v) may not be independent even when u �= v, a
careful discussion gives us the following bound on σ(k̂t).

Theorem 7: It holds that

σ(k̂t) ≤
√
kt.

Proof. For vertices u, v ∈ V , let I(u, v) ∈ {0, 1} be the
indicator random variable corresponding to the event that
c(v) is incremented when processing u. For a vertex u ∈
V , let X(u) =

∑
v∈V \{u} I(u, v). It follows that k̂tn =∑

v∈V c(v) =
∑

u∈V X(u). Since X(u) depends only on
the rank of u, X(u) and X(u′) are independent when u �=
u′. Therefore, if the variance of X(u) is obtained, we can
calculate the variance of k̂tn by simply summing its values.

Thus, the variance of X(u) is bounded. An issue here is
that I(u, v) and I(u, v′) may not be independent again even
when v �= v′. Indeed, if α(u, v) ≤ α(u, v′) and I(u, v) =
1, we always have I(u, v′) = 1. Thus, we consider the
covariance between I(u, v) and I(u, v′). For any v, v′ ∈ V
with v �= u �= v′, it follows that

Cov[I(u, v), I(u, v′)] ≤ t ·min {α(u, v), α(u, v′)}
using the fact that the covariance between two (dependent)
Bernoulli random variables with success probabilities p1 and
p2 does not exceed min {p1, p2}. Therefore,

Var[X(u)] =
∑

v,v′∈V :v �=u�=v′
Cov[I(u, v), I(u, v′)]

≤ (n− 1)
∑

v∈V \{u}
tα(u, v) ≤ n ·E[X(u)].

By summing these values, we obtain Var[k̂tn] ≤ ktn
2, and

it follows that σ(k̂t) =
√
kt.

Recall that k∗ is the desired value for kt, so let t∗ be the
value such that kt∗ = k∗. We now consider the following
doubling-t strategy to approximate t∗. The idea of this strat-
egy is to repeatedly run Algorithm 1 by doubling t until the
value of the obtained k̂t becomes sufficiently larger than k∗.
To realize this idea, we need to address two issues, which
are described below.

The first issue is how to choose the initial value of t. In
fact, any initial t will suffice as long as the corresponding
kt is smaller than k∗. Hence, for example, we can start with
t0 := α(1)·k∗/n. For notational simplicity, we let ti = 2it0.

The second issue is how we decide that k̂t is sufficiently
large. Since the standard deviation of k̂t is bounded by

√
kt

by Theorem 7, a reasonable solution is to regard k̂t as suf-
ficiently large when k̂t ≥ k∗ + s

√
k∗ for some parameter

s > 0. Algorithm 2 summarizes the discussion above.
We analyze the quality of the kti value used to estimate

the closeness centrality.

Lemma 8: When Algorithm 2 breaks the loop at Line 7,
the integer i satisfies kti ≥ k∗ with probability at least 1 −
4/k∗ − 1/s2.

Proof. By Chebyshev’s inequality, the probability that k̂t >
kt + p

√
kt is at most 1/p2. Hence, as long as i satisfies

kti < k∗, the probability that we break the loop at Line 7 is
at most min

{
kti/(k

∗ − kti)
2, 1/s2

}
.

Let i∗ ∈ Z+ be the first i such that kti ≥ k∗. By the union
bound, the failure probability is at most

∑
i<i∗

Pr[k̂ti ≥ k∗ + s
√
k∗] ≤

∑
i<i∗

min

{
kti

(k∗ − kti)
2
,
1

s2

}

≤
∑

i<i∗−1

kti
(kti∗/2)

2
+

1

s2
=

∑
i<i∗−1

1

2i∗−i

4

2i∗t0Cα
+

1

s2

(By (1))

≤ 4

k∗
+

1

s2
.

In the last inequality, we used 2i
∗
t0Cα = kti∗ ≥ k∗.

By Combining Corollary 5 and Lemma 8, we obtain the
following. Note that we can determine the values of k∗ and
s by ourselves as opposed to t. Hence, we can make the
success probability arbitrarily close to one.

Theorem 9: Let v ∈ V be a vertex with Cα(v) ≥ Cα and
let Ĉα(v) be the estimate of Cα(v) obtained by Algorithm 2.
Then, we have

σ(Ĉα(v))

Cα(v)
≤ 1√

k∗
.

with probability at least 1− 4/k∗ − 1/s2.

An advantage of the doubling-t strategy is that its total
time complexity remains low.

Theorem 10: If maxv∈V Cα(v) ≤ KCα holds for some
K ∈ R+, then Algorithm 2 runs in O(K(k∗ + (2 +

s)
√
k∗)m) time.
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Proof. By Chebyshev’s inequality, the probability that k̂t <
kt − 2

√
kt is at most 1/4. Hence, once i satisfies kti >

k∗+(s+2)
√
k∗, we break the loop at Line 7 with probability

at least 1/4 (in every subsequent iteration).
Let i∗ ∈ Z+ be the first i such that kti > k∗+(2+s)

√
k∗.

Then by Corollary 2, the expected time complexity is

O
(
K

∑
i≤i∗

ktim
)
+O

(
K

∑
i>i∗

ktim
(1
4

)i−i∗
)

= O
(
K

∑
i≤i∗

tiCαm
)
+O

(
K

∑
i>i∗

tiCαm
(1
4

)i−i∗
)

(By (1))

= O(Kti∗Cαm) +O
(
K

∑
i>i∗

ti∗Cαm
(1
2

)i−i∗
)

= O(Kti∗Cαm) = O(K(k∗ + (2 + s)
√
k∗)m).

Optimality of the RRB method

In Algorithm 1, the counter c(v) is incremented by u ∈ V
with probability tα(u, v). A natural question that arises is
whether Algorithm 1 can be improved by changing the prob-
ability. In this section, we will show that the strategy used
in Algorithm 1 is optimal in a certain framework.

We change the probability that the counter c(v) is in-
cremented by u ∈ V from tα(u, v) to β(u, v), where
β : N → R+ is an arbitrary monotone decreasing function
such that limd→∞ β(d) = 0. For each u ∈ V , such a strat-
egy can be achieved by incrementing c(v) for every vertex
with d(u, v) ≤ τ , where τ = �β−1(ru)� and ru is a random
value sampled from [0, 1]. Let β(u, v) stand for β(d(u, v)),
and let S(v) ⊆ V be the random set of vertices u such that
c(v) is incremented by u. As long as there does not exist a
vertex u with α(u, v) > 0 and β(u, v) = 0, an unbiased es-
timator can be given as Ĉβ

α(v) =
∑

u∈S(v) α(u, v)/β(u, v).
We call this method the β-RRB method.

When discussing the optimality of a strategy, it is natural
to fix the value of

∑
u∈V \{v} β(u, v) to some Tv ∈ R+ for

each v ∈ V because Tv corresponds to the expected value
of c(v) and will affect the overall time complexity of the
β-RRB method. The following theorem states that the es-
timator Ĉβ

α has the smallest standard deviation when β is
proportional to α.

Theorem 11: Let v ∈ V be a vertex and let β : N → R+

be a monotone decreasing function. If
∑

u∈V \{v} β(u, v) =

Tv , then σ(Ĉβ
α(v)) takes the minimum value when β(d) =

α(d) · Tv/Cα(v).

Thus, Algorithm 1 is optimal in this sense. The proof of
Theorem 11 is omitted due to the space limitation.

Experiments

In this section, we show our experimental results and the
superiority of the RRB method(s).

Methods. We consider four methods: the RRB method
(RRB, Algorithm 1), the RRB method with bootstrapping

Table 2: Networks used in our experiments.
Name Type n m

Wiki-Vote Social (d) 7,115 103,689
email-Enron Social (u) 36,692 367,662
soc-Slashdot0902 Social (d) 82,168 948,464
web-NotreDame Web (d) 325,729 1,497,134
web-Google Web (d) 875,713 5,105,039
com-youtube Social (u) 1,134,891 5,975,248
dblp-2011 Social (u) 933,258 6,707,236
ego-Gplus Social (d) 107,614 13,673,453
in-2004 Web (d) 1,382,870 16,917,053
soc-Pokec Social (d) 1,632,803 30,622,564
soc-LiveJournal1 Social (d) 4,847,571 68,993,773
enwiki-2013 Social (d) 4,203,325 101,355,853

Table 3: Runtime and the average of the normalized RMSEs
over vertices v ∈ V with Cα(v) ≥ Cα of RRB-BS (PR)
with k∗ = 100.

Graph Time Normalized
(s) RMSE

Wiki-Vote 0.16 1.95%
email-Enron 0.38 2.87%
soc-Slashdot0902 1.28 2.99%
web-NotreDame 2.23 5.50%
web-Google 24.69 3.90%
com-youtube 20.99 2.38%
dblp-2011 29.65 2.92%
ego-Gplus 10.10 4.83%
in-2004 27.49 5.84%
soc-Pokec 107.93 3.67%
soc-LiveJournal1 278.03 2.54%
enwiki-2013 223.64 1.72%

(RRB-BS, Algorithm 2), HyperBall (HB) (Boldi and Vigna
2013), and All-Distances Sketches (ADS) (Cohen 2015).
For RRB-BS, we set s = 3. For all of these methods,
we can control the trade-off between the time complexity
and accuracy by varying select parameters. Throughout all
of the experiments, we estimated the harmonic centrality of
the vertices, i.e., the distance-decay function α(x) was set to
1/x. To evaluate the (normalized) RMSE of an estimate, we
ran an algorithm 100 times with different random seeds and
then took the average.

The permutation-rank technique (Cohen 2015) is the
technique of randomly and bijectively assigning values from
an n-sized set to vertices, instead of uniformly and inde-
pendently sampling values from [0, 1]. It is known that this
technique improves the performance of ADS although there
is no theoretical guarantee. We can also adopt this tech-
nique when assigning ranks to vertices in RRB and RRB-
BS; that is, we randomly and bijectively assign values from{

1
2n ,

3
2n . . . , . . . , 2n−1

2n

}
to the vertices. We call these tech-

niques RRB (PR) and RRB-BS (PR), respectively.

Environment. All of the experiments were conducted on a
machine with two Intel Xeon E5540 processors and 48 GiB
of main memory. Each processor has four cores (2.53GHz),
but all of the programs ran as single-threaded programs. We
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Figure 1: Trade-off between runtime and accuracy.

Figure 2: Comparison of the error distribution and theoretical bound.

implemented RRB, RRB-BS, and ADS in C++11 and com-
piled them with gcc 4.8.2. For HB, we used the WebGraph
framework, which is the Java program provided by the au-
thors (Boldi and Vigna 2004).

Networks. All of the networks were collected from the
Stanford Large Network Dataset Collection (Leskovec and
Krevl 2014) and Laboratory for Web Algorithms (Boldi and
Vigna 2004; Boldi et al. 2011). Table 2 summarizes the de-
tails of the networks used in the experiments. Here, (d) and
(u) denote the corresponding network is directed and undi-
rected, respectively. When counting the number of edges,
we regarded an undirected edge as two directed edges.

Comparison with Existing Methods. Figure 1 shows the
trade-off between the runtime and the average of the RM-
SEs over all the vertices when varying the parameters on the
four smallest networks. Observe that RRB-BS always out-
performs HB and ADS. RRB-BS (PR) shows even better
performance. For example, achieving the same accuracy, it
runs approximately 20 times faster than HB and ADS on the
email-Enron network.

Scalability of RRB-BS. Table 3 shows the runtime of
RRB-BS (PR) for k∗ = 100 on all of the networks. Ob-
serve that the runtime increases almost linearly with the
number of edges, which demonstrates the high scalability of
RRB-BS. In particular, it can handle the enwiki-2013 net-
work, which has 100 million edges, in just four minutes.

Accuracy of RRB-BS. Theorem 9 guarantees that the
normalized RMSEs obtained by RRB-BS when k∗ = 100
for high centrality vertices are at most 0.1. Table 3 shows the
average of the normalized RMSEs over vertices v ∈ V with
Cα(v) ≥ Cα. Notice that it is always at most 0.1 = 10%.

Tightness of Theorem 4. Since all of the error bounds are
derived from Theorem 4, it is important to investigate their

tightness. Figure 2 shows the curve of the RMSEs given
by Theorem 4 and the actual error distributions obtained by
running RRB and RRB (PR). On all of the networks, the
plots for RRB almost lie on the curves given by Theorem 4.
Moreover, notice that the RMSE decreases significantly by
adopting the permutation-rank technique, except for on the
web-NotreDame network. The reason for this exception is
unclear, although it may be related to the fact that it is a Web
graph, whereas the other networks are social networks.

Conclusions

In this paper, we presented new approximation algorithms,
namely, the RRB and RRB-BS methods, for the closeness
centrality. RRB-BS allows us to control the trade-off be-
tween the time complexity and accuracy. Our experimen-
tal results demonstrated that RRB-BS outperforms exist-
ing methods such as HyperBall (Boldi, Rosa, and Vigna
2011; Boldi and Vigna 2013) and All-Distances Sketches
(ADS) (Cohen 1997; 2015). Although they have a certain
guarantee on the relative error for vertices with small cen-
trality values, it is at the cost of a large runtime. In most real-
world applications such as vertex ranking, we are mainly
concerned about vertices with large centrality values; the
RRB-BS method is the best solution in such a case.
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