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Abstract

Wellness is a widely popular concept that is commonly ap-
plied to fitness and self-help products or services. Inference
of personal wellness-related attributes, such as body mass in-
dex or diseases tendency, as well as understanding of global
dependencies between wellness attributes and users’ behav-
ior is of crucial importance to various applications in personal
and public wellness domains. Meanwhile, the emergence of
social media platforms and wearable sensors makes it feasible
to perform wellness profiling for users from multiple perspec-
tives. However, research efforts on wellness profiling and in-
tegration of social media and sensor data are relatively sparse,
and this study represents one of the first attempts in this di-
rection. Specifically, to infer personal wellness attributes, we
proposed multi-source individual user profile learning frame-
work named “TweetFit”. “TweetFit” can handle data incom-
pleteness and perform wellness attributes inference from sen-
sor and social media data simultaneously. Our experimen-
tal results show that the integration of the data from sensors
and multiple social media sources can substantially boost the
wellness profiling performance.

Introduction

During the past decade, social multimedia services have
drastically increased its impact on people’s daily life. For ex-
ample, more than half of American smartphone users were
reported to spend an average of 144 minutes per day brows-
ing their mobile devices, aiming to stay socially connected
with their friends. Meanwhile, these users often follow the
so-called Quantified Self tendency, which includes measur-
ing and publishing various signals from wearable sensors
(such as heart rate, body acceleration or physical location).
These data is of crucial importance for research in wellness
domain since it describes users’ actual physical condition,
which is related to users’ well-being. At the same time, re-
cent works demonstrated the great potential of social me-
dia data for wellness-related research (Mejova et al. 2015;
Akbari et al. 2016). However, most of these works are de-
scriptive in nature and do not study the integration of data
from social media and wearable sensors. Considering that
most Internet-active adults actively use more than four so-
cial media services in their everyday life (GlobalWebIndex
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2016) with wide availability of data from wearable sensors,
it seems reasonable to combine multimodal content from
different social networks with sensor data for joint process-
ing (Jain and Jalali 2014). Such integration will narrow the
gap between users’ online representation and actual physical
status, which is the right step towards realizing the ideal of
360◦ user profiling (Farseev et al. 2016).

This article focuses on the problem of individual wellness
user profiling based on data from multiple social networks
and wearable sensors. Here, an individual wellness profile
involves personal user attributes (Farseev et al. 2016) such as
demographics (age, gender, occupation, etc.) (Farseev et al.
2015), Body Mass Index (BMI) category1, personality (Bu-
raya et al. 2017), or chronic disease tendency (Akbari et al.
2016). In our study, we focus on two important personal
wellness attributes - BMI category and “BMI Trend’ (the
direction of BMI fluctuation over time - Increase/Decrease).
Both attributes are closely related and correlated to one’s
overall health. For example, Field et al. (2001) discovered
that people whose BMI is higher than 35.0 are approxi-
mately 20 times more likely to develop diabetes. Other bene-
fits of such attributes include: a) BMI category can be further
used in public health domain to monitor wellness tendencies
of social media users at the global level; b) “BMI Trend”
information can be utilized by users to rectify their lifestyle
(i.e. via interactive mobile application or a “Smart Watch” ),
and by doctors to gain a complete picture of patient’s health.

There are three challenges in addressing individual well-
ness profiling: 1) Data gathering. The data from modern
social media services and sensor devices is often stored in in-
dependent web resources and hidden behind the privacy set-
tings. Furthermore, the data from wearable sensors as well
as personal attributes such as BMI or demography are of-
ten not publicly accessible. It is thus necessary to imple-
ment data collection and cross-source user account map-
ping techniques to support large-scale social media research.
2) Data representation. Besides the textual data, social me-
dia services involve data of various modalities. For exam-
ple, in Instagram, users share recently taken pictures and

1The BMI measure is defined as the body mass divided by the
square of the body height. Based on BMI, an individual can be cat-
egorized into one out of 8 BMI categories, namely “Severe Thin-
ness”, “Moderate Thinness”, “Mild Thinness”, “Normal”, “Pre
Obese”, “Obese”, “Obese II”, and “Obese III” (WHO 2011).
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videos, while in Endomondo2 users post information about
their workouts, which is strongly dependent on the temporal
and spatial aspects. Integration of such heterogeneous mul-
timodal data sources requires development of efficient and
mutually consistent data representation approaches. 3) Data
modeling: Efficient data integration for individual wellness
profile learning is a tough challenge since the data from
independent media sources is different in nature. Further-
more, multi-source data is often incomplete, which means
that some users may not be active on all social networks.
Finally, high dimensionality of multi-source feature space
often leads to the so-called “curse of dimensionality” prob-
lem. Development of a learning framework that can handle
all these issues is a hard task.

Inspired by previous studies and the challenges above, in
this work we seek to address two research questions. First,
to support the assumptions behind this study, it is important
to understand: (RQ1) Is it possible to improve the per-
formance of BMI category and “BMI Trend” inference
by fusing multiple social media and sensor data? Second,
for further wellness profiling improvement, it is essential to
gain insight into: (RQ2) What is the contribution of sensor
data towards BMI category and “BMI Trend” inference?

To answer the above research questions, we present a new
computational wellness profiling framework named “Tweet-
Fit”. We introduce the techniques to gather and represent
data from a novel sensor data source (the Endomondo work-
outs) and other social media sources: Twitter, Foursquare,
and Instagram, from which we predict users’ BMI category
and “BMI Trend”. To do so, we treat individual wellness
profiling as a regularized multi-task learning (MTL) prob-
lem, where different data source combinations for each in-
ference category are represented as MTL “tasks”. To fa-
cilitate further research, we release our multi-source mul-
timodal sensor-social dataset (Farseev 2017) for public use.

The main contributions of this study are twofold: first,
we present a multi-source multi-task learning framework
for wellness attribute inference, which performs personal
wellness profiling via regularized multi-task learning; sec-
ond, we release a large-scale social-sensor dataset —
a new benchmark towards wellness profiling with multi-
source multimodal data and data from wearable sensors.

Related Work

Recently, medical and healthcare communities suggested the
use of social media and sensor data as a meaningful resource
for different wellness applications. For example, Eggleston
et al. (2014) used social media to monitor food-related habits
for obese and diabetes patients, while Fried et al. (2014)
predicted diabetes and overweight rates for 15 US cities.
At the same time, Mejova et al. (2015) testified the pre-
dictive power of Foursquare-based features for group obe-
sity inference task and cultural differences analysis, while
Abbar et al. (2015) leveraged Twitter data in an attempt to
predict obesity and diabetes statistics based on food names
in tweets. Finally, Akbari et al. (2016) proposed a multi-
task learning framework for personal wellness events cat-

2endomondo.com

egorization. These research efforts were made towards well-
ness lifestyle analysis and the results show the great poten-
tial of social media data to assist in wellness related research.
However, most of the works mentioned above are either de-
scriptive in nature, use only a single data source, or built on
naive data analytics approaches. They may not be useful to
gain deeper insights from multi-source social media data and
wearable sensors.

Meanwhile, there were several research efforts done on
multi-source user profile learning. In an earlier work, Liu
et al. (2009) embedded the so-called �2,1 regularization
in the multi-task learning to obtain sparse data represen-
tations for feature selection purpose, which is useful in
high-dimensional data processing. However, the data source
integration was carried out in an “early-fusion” manner,
where all the features were fused into one vector before
model training. Such a data integration strategy may result
in high dimensionality and suboptimal final results. Farseev
et al. (2015) introduced efficient ensemble learning solu-
tion, aiming to combine multi-source multimodal data for
demographic user profile learning. The model was trained
independently on each data source and consolidated in a
“late-fusion” manner, which does not fully take advantage
of multi-source data. Finally, Song et al. (2015) employed
the structure-constrained multi-task learning framework for
user interests inference from multi-source data. However,
the framework relies on an external knowledge and data
completion techniques, which makes it biased towards par-
ticular datasets and tasks. Due to the reasons above, the
development of a fully-automated multi-source individual
wellness profiling approach that would not rely on external
knowledge and data completion techniques is of crucial im-
portance for wellness profile learning.

NUS-SENSE: Sensor-Social Dataset
To build a comprehensive user profile, it is essential to in-
tegrate multimodal data from various sources that repre-
sent users from multiple perspectives (Song et al. 2015).
At the same time, a complete wellness profile must incor-
porate information about users’ physical health (Corbin et
al. 2001). In the following, we describe the commonly-used
data modalities and their potential for individual wellness
profiling. First, it was noted that textual information is one of
the most valuable contributors towards user profile learning,
mainly because of its high availability and its ability to de-
scribe users’ daily routines comprehensively (Farseev et al.
2016). Second, it was also observed (Farseev et al. 2015) that
visual data plays an important role in age and gender predic-
tion. It is reasonable to hypothesize that this data is also use-
ful for individual user profile learning in wellness domain.
Third, it was reported (Mejova et al. 2015) that data from
location-based social networks is helpful in obesity estima-
tion at the group level, which demonstrates its potential for
use in personal BMI category and “BMI Trend” prediction.
Finally, data from wearable sensors was found to be valuable
for user activity recognition and health monitoring (Banaee,
Ahmed, and Loutfi 2013); this shows its potential towards
individual wellness profile learning. Considering the above,
we harvested data from multiple social media sources. In
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Table 1: Number of data records in NUS-SENSE dataset

Source Twitter End-do Four-re Inst-m
# Posts 1676310 140926 19743 48137
# Users 5375 4205 609 2062
#Age 3974 3111 427 1525
# Gender 5375 4025 609 2062
# BMI Cat. 1052 870 116 372
# BMI Tr. 147 136 18 51

particular, we utilized Twitter tweets as a textual data
source; Instagram pictures and its descriptions (comments)
as image and textual data sources; Foursquare check-ins
and its corresponding comments (shouts) as venue seman-
tics, mobility, and textual data sources; and Endomondo
workouts as a sensor data source and for ground truth con-
struction.

It is noted that other than providing the so-called, exer-
cise semantics, Endomondo also serves as a rich source of
sequential data from wearable sensors and reliable wellness-
related ground truth. The exercise data sequences are of-
ten publicly available and usually include a series of multi-
dimensional data points, each of which may contain such at-
tributes as Altitude, Longitude, Latitude, Time, Heart Rate,
etc. (see Figure 1 (b)). The ground truth labels can there-
fore be derived from these publicly accessible Endomondo
user profiles’ web pages, which often include such personal
attributes as Country of Residence, Postal Code, Age (Birth-
day), Gender (Sex), Height, and Weight (see Figure 1 (a)).
These attributes are either manually input by Endomondo
App. users or automatically measured by connected “smart”
sensors (i.e. FitBit Aria Smart Scale3). In fact, Endomondo
data goes beyond representing users from just one more
modality, but bridges the gap between online social media-
based users’ representation and their actual offline physical
activities and condition.

The data was harvested in the period of 1 May 2015 to
28 Aug 2015. It was conducted in the following three steps:
1) Search of seed users. We collected a “seed” set of Twit-
ter users, who were recently active in Endomondo, by per-
forming a search via Twitter Search API. 2) User-generated
content collection. We then started a Twitter “stream” that
involve all “seed” users and download the multi-source user-
generated content of these users via URLs to the original
Twitter posts (see Figure 1 (c)). 3) Ground truth collec-
tion. During the Twitter crawling process, we monitored the
Endomondo users’ accounts daily and recorded all the BMI
updates during the whole data collection period. The aver-
age between a user’s Weight and Height updates was used to
compute his/her BMI. The difference between a user’s first
and last Weight and Height updates was used to estimate
his/her “BMI Trend”. Table 1 lists the dataset statistics.

To preserve users’ privacy, the dataset is released in
the form of data representations (features) and anonymized
multi-source user timelines, instead of the original user

3www.fitbit.com/aria

posts (Farseev 2017). In the dataset, users are well dis-
tributed in all BMI categories. From Figure 2, it is apparent
that the highest percentage of users (38%) belong to “Nor-
mal” BMI category, and the lowerest percentage of users
(3%) belong to “Moderate Thinness” BMI group. It suggests
that there is sufficient data samples to train a supervised
model for BMI category classification task, but the evalua-
tion must be conducted on each BMI category separately to
avoid the imbalanced dataset evaluation problem (Farseev
et al. 2015). It is also noticed that the distribution of users
among “BMI Trend” is slightly shifted to the “Decrease”
(56%) category, which can be explained by Endomondo
users’ general intention to “lose weight”.

Data Representation

We extracted the following features:
1) Text Features: In our study, we aggregated textual
data from the following data sources: Twitter tweets, In-
stagram image captions, Instagram image comments, and
Foursquare check-in comments (shouts). More specifically,
we extracted the following set of features: a) Latent Topic
Features. We merged all the textual data of each user into
a document. All documents from multiple users were pro-
jected into a latent topic space using Latent Dirichlet Al-
location (LDA) (Blei, Ng, and Jordan 2003), with empiri-
cally determined parameters of T = 50, α = 0.5, β = 0.1.
b) Writing style features. As in Farseev et al. (2015), we
extracted such writing style features as: number of mis-
takes per post, number of slang words per post, average
post sentiment, which, based on our preliminary experi-
ments, were found to be significantly (α = 0.05) corre-
lated to users’ BMI. c) Lexicon-based features. We used
two crowd-sourced lexicons of terms associated with con-
troversial subjects from the US press (Mejova et al. 2014)
and the lexicon of terms’ healthiness category (Mejova et
al. 2015). Additionally, we extracted food type and average
calorie content from each post by using the Twitter Food
Lexicon (Abbar, Mejova, and Weber 2015).
2) Venue Semantics Features: Similar to Farseev et
al. (2015), we represented location data as a distribution of
users’ check-ins among 764 Foursquare venue categories.
To overcome the data sparsity problem, we further reduced
the data dimensionality by extracting Top 86 principal com-
ponents (Jolliffe 2002), which preserve 85% of variance.
3) Mobility and Temporal Features: The following mobil-
ity features were extracted from Foursquare based on users’
areas of interest (AOIs) (Qu and Zhang 2013), which is, es-
sentially, the geographical regions of high user’s check-ins
density (regardless of check-in venue semantics): a) aver-
age number of posts during each of the 8 daytime dura-
tions, where each time duration is 3 hours long (i.e. 15−18);
b) number of areas of interest (AOI); c) median size of
AOIs; d) number of AOI outliers; and e) median distance
between AOIs.
4) Visual Features: Inspired by Farseev et al. (2015), we
computed distribution of user’s photos among the 1000 Ima-
geNet visual concepts (Deng et al. 2009) for each Instagram
user. Similar to venue semantics features, we extracted Top
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Figure 1: Endomondo user profile (a), Endomondo workout (b), and the repost of Endomondo workout in Twitter (c).

Figure 2: Distribution of users among different BMI cate-
gories and “BMI Trends” in NUS-SENSE dataset

150 principal components (preserves 85% of variance) from
image concept distribution.
5) Sensor Features: To represent sensor data consistently
with other data modalities, we incorporated the follow-
ing feature types: a) exercise statistics: we computed the
following averaged features using all sensor data samples
for each user: Distance (Ascend/Descend), Speed, Dura-
tion, Hydration; b) external sensors statistics: apart from
wearable sensor features, we leveraged data from exter-
nal weather sensors (where it is available) such as Wind
Speed and Weather Type; c) workout type distribution:
we also represented sensor data as a distribution of users’
workouts among the 96 Endomondo workout categories; d)
frequency domain features: we extracted frequency fea-
tures for each workout by applying Fast Fourier Trans-
form (Bracewell 1965) followed by low band-pass-filter (0 –
0.5 Hz) to construct the energy distribution among the 99
frequency bins for each of the five sensor signal types,
namely, Altitude, Cadence, Speed, Heart Rate (HR), and
Oxygen Consumption (Oxygen). We then merged these 5
vectors together to obtain a frequency domain feature vector
of size 495 for each user. Similar to venue semantics fea-
tures, we extracted Top 54 principal components that pre-
serves 85% of variance.

Individual Wellness Profiling

Problem Statement

In this work, we treat the problem of multi-source indi-
vidual wellness profiling as a multi-task learning (Caruana
1997) problem. One significant issue in multi-task learn-
ing is how to define and employ the commonality among
different tasks. Intuitively, different data source combina-

tions may share common knowledge for predicting well-
ness attributes. By following this philosophy, we define a
multi-task learning task as a unique combination of differ-
ent sources for a given category. For notational convenience,
in the following sections, we describe the case of single-
category multi-source multi-task learning. In the case of
multi-category inference (i.e. BMI category prediction), the
single-category models can be naturally combined in one-
vs-all manner (Rifkin and Klautau 2004).
Notation: In the rest of this paper, we use uppercase bold-
face letters (i.e. M) to denote matrices, lowercase boldface
letters (i.e. v) to denote vectors, lowercase letters (i.e. s) to
denote scalars, and uppercase letters (i.e. N ) to denote con-
stants. For matrix M = (mi

j), ‖M‖ is the �2 (Frobenius)
norm, while the ‖M‖2,1 =

∑n
i=1

∥∥mi
∥∥ is the �2,1 norm

(Liu, Ji, and Ye 2009) (mi is the ith row of the matrix M).

Modeling Multi-Source Fusion

First, we propose a sparse model that mitigates the problem
of joint learning from sensor and social media data aiming
to infer BMI category and “BMI Trend” attributes.

Figure 3: Incorporating block-wise incomplete data into
multi-task learning model.

Suppose that there is a set of N exclusively labeled data
samples and S ≥ 2 data sources. We divide the dataset into
T tasks, where each task t is represented by the unique com-
bination of available data sources (see Figure 3). The num-
ber of features of task t is denoted as Dt; the maximum pos-
sible number of features of a task (i.e. when all data sources
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are available) is denoted as Dmax; the number of data sam-
ples of task t is denoted as Nt, and the number of different
existing combinations of sources is denoted as T .

Figure 3 presents a toy example where four data sources
(Twitter, Instagram, Foursquare, Endomondo) and three
groups of social media users (X, Y, Z ) are involved in multi-
task learning process. The user group X consists of 3 users;
the user group Y includes 2 users; the user group Z includes
4 users. These three user groups form three distinct multi-
task learning task types, where the first task type (Task X)
represents Twitter + Instagram + Endomondo data source
combination; second task type (Task Y) represents Twit-
ter + Foursquare + Endomondo data source combination;
and third task type (Task Z) represents Twitter + Instagram
+ Foursquare + Endomondo (all data sources) data source
combination. The aim is to train a model, which can predict
the target category.

Formally, each of the T tasks can be defined as a set of
pairs (jth data sample xt

j and its corresponding label ytj):

t = {(xt
j , y

t
j) | j = 1...Nt, x

t
j ∈ RDt , ytj ∈ {−1; 1}}.

The prediction for jth data sample that corresponds to task
t is then given by:

ft(x
t
j ;w

t) = xtᵀ
j wt

where wt is the model parameter vector of task t. All model
parameters are denoted as the block matrix W:

W = (w1ᵀ,w2ᵀ, ...,wTᵀ) ∈ R
Dmax × T .

The optimal W can be found by solving:

Γ(W) = arg min
W

Ψ(X,W,Y) + λΥ(W), (1)

where Ψ(X,W,Y) is the loss function, Υ(W) is the spar-
sity regularizer that selects the discriminant features to pre-
vent high data dimensionality (Liu, Ji, and Ye 2009), and
λ ≥ 0 controls the group sparsity.

The loss function Ψ(X,W,Y) term can be replaced by
a convex smooth loss function. In this work, we adopt the
logistic loss:

Ψ(X,W,Y) =
1

T

T∑
t=1

1

Nt

Nt∑
i=1

log(1 + e−yt
ift(x

t
i;w

t)).

To incorporate feature selection into the objective (Liu, Ji,
and Ye 2009), we define Υ(W) as:

Υ(W) =

S∑
s=1

Fs∑
f=1

∥∥wρ(s,f)

∥∥ ,

where Fs is the feature vector dimension of the data source
s, and ρ(s, f) is the index function that denotes all the model
parameters of the fth feature from the data source s. The Υ
term is the �2,1 norm (Akbari et al. 2016), which leads to
a sparse solution (controlled by λ ≥ 0) via constraining all
tasks that involve source s to share a common set of features.

Optimization

The objective function in Eq. 1 is convex but not smooth,
since it consists of smooth (Ψ) and non-smooth (Υ) terms.
This means that the conventional optimization approaches,
such as Gradient Decent, are not directly applicable in our
case. Inspired by the fast convergence rate of the Nesterov’s
approach (Liu, Ji, and Ye 2009), we reformulate the non-
smooth problem from Equation (1) as:

f(W) = arg min
W∈Z

Ψ(X,W,Y)

s.t. Z =
{
W | ‖W‖2,1 ≤ z

}
,

where z ≥ 0 is the radius of the �2,1-ball, and there is a one-
to-one correspondence between λ and z (proof is given in
Liu et al. (2009)).

In Nesterov’s method, the solution on each step (Wi+1) is
computed as a “gradient” of a search point Si:

Wi+1 = arg min
W

Mγi,Si(W),

Mγi,Si
(W) = f(Si) + 〈∇f(Si),W − Si〉

+
γi
2
||W − Si||2,

where Si is computed from the past solutions:

Si = Wi − αi(Wi −Wi−1).

where αi is the combination coefficient, and γi is the ap-
propriate step size for Si (can be determined by line search
according to Armijo-Goldstein rule).

Evaluation

To answer our research questions, we compare the perfor-
mance of “TweetFit” (trained based on all data sources) with
“TweetFit” trained based on different data source combina-
tions and various state-of-the-art baselines. For evaluation
purposes, NUS-SENSE dataset was uniformly split into a
train (80% of users) and testing (20% of users) sets.

Evaluation Metrics

We explicitly evaluate the performance of our proposed
“TweetFit” framework (α = 0.1) by solving the problem
of individual wellness profiling. Specifically, we present the
inference results of two personal wellness attributes: BMI
category (eight attribute classes) and “BMI Trend” (binary
classification). To perform BMI category inference, we first
solved the problem in Equation 1 for each inference cate-
gory, and then combined the obtained results in one-vs-all
manner (Rifkin and Klautau 2004). To avoid the prevalence
of popular BMI categories in evaluation, we use “Macro-
Recall” (RM ), “Macro-Precision” (PM ), and “Macro-F1”
(F1,M ) metrics, which are the averaged “Precision”, “Re-
call”, and “F1” measures across all categories (Farseev et al.
2015). To tackle the data imbalance problem at the training
stage, we uniformly selected equal number of negative and
positive samples for each binary classification task.
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Evaluation Against Data Source Combinations

As mentioned above, in this work we utilized principal com-
ponent analysis (PCA) (Jolliffe 2002) dimensionality reduc-
tion technique. Due to this reason and the space limitation,
we do not compare the predictive performance of different
individual feature types. Instead, we study the correspond-
ing performance of individual data sources and its combina-
tions. To do so, we evaluated “TweetFit” trained on differ-
ent data source permutations. The Mobility and Venue Se-
mantics data representations were treated as one data source,
namely, “Venue Semantics & Mobility”, since both of them
were extracted from Foursquare check-ins data. We also did
not evaluate the “BMI Trend” prediction performance on in-
dependent sources since there are only a few users with all
data sources available in the “BMI Trend” test set.

Table 2: Evaluation of the “TweetFit” framework trained on
independent data sources and data source combinations.

Data Source Combination BMI category
RM/PM F1,M

Visual (V) 0.049/0.188 0.077
Ven. Sem. & Mob. (VSM) 0.194/0.107 0.137
Sensors (S) 0.153/0.158 0.155
Textual (T) 0.229/0.146 0.178

V + S 0.174/0.201 0.186
V + T 0.126/0.245 0.166
V + VSM 0.161/0.154 0.157
T + VSM 0.160/0.204 0.179
S + VSM 0.163/0.233 0.191

S + T 0.148/0.270 0.191

V + T + VSM 0.126/0.233 0.163
S + T + V 0.137/0.207 0.164
S + T + VSM 0.182/0.236 0.205
S + VSM + V 0.180/0.283 0.221

All Data Sources 0.214/0.292 0.246

First, we examine the contribution of different data
sources towards wellness profile learning and source inte-
gration ability. An interesting observation comes from the
data source combination results (see Table 2), where the
combinations of “Sensors + Text” and “Sensors + Venue Se-
mantics & Mobility” return the best performance and seem
to be the most influential among other bi-source combina-
tions. More impressive results can be gained from triplet
combinations, where the combination of “Visual + Sensors
+ Venue Semantics & Mobility” performs the best. Based
on these results, we can conclude that the Sensor data is
of crucial importance for individual wellness profile learn-
ing since it is the only data source included in all best-
performing data source combinations. This observation can
also be interpreted by the ability of sensor data to represent
users’ actual physical condition, which is directly related to
users’ BMI category and “BMI Trend”. Another explana-
tion is the richness of the sensor data since in addition to
exercise semantics it also carries the high-grained sequen-
tial data, which may not be available for other conventional

social media sources. Summarizing the above, we respond
to RQ2 by highlighting the vital role of sensor data for
the task of individual wellness profile learning and sug-
gesting its usage in further wellness-related research.

Let’s now describe the single-source evaluation results
(see Table 2). It is interesting to note that in the case of learn-
ing from independent data sources, our framework trained
on Text modality performs the best, while those trained on
Sensors and Venue Semantics & Mobility data ranks 2nd
and 3rd place, respectively. First, the superiority of Text
data over other modalities can be explained by its quanti-
tative dominance (see Table 1). At the same time, the Sensor
data holds the 2nd position, which again highlights its im-
portance. Finally, being trained on visual data, “TweetFit”
performs the worst among all other data sources. One possi-
ble explanation is the high level of noise in users’ Instagram
photos. Furthermore, the differences with the previous study
can be interpreted by the generality of ImageNet image con-
cepts (Deng et al. 2009) that could be useful for the general
task of demographic attribute inference (Farseev et al. 2015),
but less effective for the more narrow problem of individual
wellness profile learning. In conclusion, we would like to
highlight the Text and Sensor data sources as the strongest
contributors towards wellness profile learning.

Evaluation Against Baselines

To answer RQ1, we compare the following user profiling
approaches: 1)Random Forest — strong baseline for the
user profile learning (Farseev et al. 2015), where the number
of trees equals to 105 and 25 for the “BMI category” and
“BMI Trend” inference, respectively. 2)MTFL (Liu, Ji,
and Ye 2009) — the �2,1 norm regularized multi-task learn-
ing with α = 0.5. 3)iMSF (Yuan et al. 2012) — the sparse
�2,1 norm regularized multi-source multi-task learning, with
α = 0.4; 4)MSE — multi-source user profiling ensem-
ble, proposed by Farseev et al. (2015). 5)TweetFit — our
framework trained based on all data sources, with α = 0.1.

Table 3: Evaluation of the “TweetFit” framework against
user profiling baselines.

Method BMI category “BMI Trend”
RM/PM F1,M RM/PM F1,M

MSE 0.141/0.145 0.142 0.634/0.655 0.644
R.Forest 0.135/0.226 0.169 0.333/0.863 0.480
iMSF 0.171/0.174 0.172 0.649/0.649 0.649
MTFL 0.162/0.215 0.184 0.700/0.722 0.710
TweetFit 0.222/0.202 0.211 0.705/0.732 0.718

The evaluation results are presented in Table 3. The re-
sults show that “TweetFit” achieve the best performance
in both inference tasks as compared to all the baselines.
This points conclusively towards the positive answer to
RQ1. Specifically, we conclude that it is possible to im-
prove the individual wellness profiling performance by in-
tegrating data from multiple social media sources and sen-
sors. Moreover, “TweetFit” outperforms other state-of-the-
art approaches from the multi-task learning family as well
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as non-linear baselines. This shows the effectiveness of the
framework in integrating data from wearable sensors and so-
cial media for wellness profiling.

Although “TweetFit” outperforms the baselines, the
achieved BMI category prediction performance could not
yet be used in real-world applications. This highlights BMI
category inference as a challenging problem. An improve-
ment could possibly be achieved by introducing inter-source
correlation into the multi-source learning objective (Akbari
et al. 2016). In future works, we also plan to apply a dif-
ferent BMI categorization scheme or treat BMI inference
as a regression task, aiming to embed individual wellness
profiling into the bBridge4 social multimedia analytics plat-
form (Farseev, Samborskii, and Chua 2016);

Conclusions

In this work, we presented one of the first studies on in-
dividual wellness profiling from sensor and social media
data, which was handled by training the “TweetFit” frame-
work to infer BMI category and “BMI Trend” personal well-
ness attributes. To facilitate further research, we released
the multi-source multimodal dataset (Farseev 2017), which
can be used for research on: user profiling (Farseev et al.
2016); multi-view timeline analysis (Jain and Jalali 2014;
Akbari et al. 2016); and user identification across multiple
social networks.
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