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Abstract

Everything has its time, which is also true in the point-of-
interest (POI) recommendation task. A truly intelligent rec-
ommender system, even if you don’t visit any sites or remain
silent, should draw hints of your next destination from the
“silence”, and revise its recommendations as needed. In this
paper, we construct a well-timed POI recommender system
that updates its recommendations in accordance with the si-
lence, the temporal period in which no visits are made. To
achieve this, we propose a novel probabilistic model to pre-
dict the joint probabilities of the user visiting POIs and their
time-points, by using the admixture or mixed-membership
structure to extend marked point processes. With the admix-
ture structure, the proposed model obtains a low dimensional
representation for each user, leading to robust recommenda-
tion against sparse observations. We also develop an efficient
and easy-to-implement estimation algorithm for the proposed
model based on collapsed Gibbs and slice sampling. We ap-
ply the proposed model to synthetic and real-world check-in
data, and show that it performs well in the well-timed recom-
mendation task.

1 Introduction

Everything has its time, a verity that also applies to point-
of-interest (POI) recommendations. Places you want to visit
today are not necessarily where you are likely to go tomor-
row. Thus recommender systems should update recommen-
dations daily or even hourly, by monitoring your behavior.
Upon observing your visit to a site, a well-trained recom-
mender system will update candidates for the next destina-
tion based on your visit history. But for a system to be truly
intelligent, it should be able to draw hints of your next des-
tination even if you are “silence”, that is, don’t visit any site
or keep silent. We draw a parallel with your old friend who
can read between the lines of your behavior, and kindly give
well-timed suggestions despite your silence.

POI recommender systems usually predict the probabil-
ity of a user visiting each of the candidates, rank them in
the descending order, and recommend the higher ranked
ones as the next destination. Traditional approaches cal-
culate the ranking based on a user model, which essen-
tially counts the POIs visited in the past (Koren et al. 2009;
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Kurashima et al. 2010; Ye et al. 2011; Cheng et al. 2012),
and the temporal information of user behavior is entirely ig-
nored. As a result, they never revise their recommendations
until the user visits the next POI. To address this limitation,
some pioneering methods take the circadian periodicity of
user behavior or the time drift factor of user preferences into
account (Iwata et al. 2009; Koren 2010; Gao et al. 2013;
Yuan et al. 2013). Although these methods can change their
suggestions hourly in a day, they ignore the periods in which
the user doesn’t visit any place. In other words, these meth-
ods do not consider the user’s silent periods as being infor-
mative.

Recently in the field of e-commerce, some innovative rec-
ommendation approaches have been proposed that employ
point process techniques (Wang, Sarwar, and Sundaresan
2011; Zhao et al. 2012; Wang and Zhang 2013). Because
the point process provides the probability of each item be-
ing purchased at each point in time, item ranking for the user
can be updated depending on not only the items purchased
in the past, but also the temporal duration since the last (or
some trigger) purchase time-point, that is, “silence”. In these
approaches, however, to address the sparsity in transaction
data, all items are categorized into groups in advance, and a
set of covariates related to the user and items should be pre-
pared. Such requirements strongly limit their application to
check-in data.

In this paper, by extending marked point processes (Ja-
cobsen 2006) through the addition of the admixture or
mixed-membership structure (Airoldi et al. 2014), we pro-
pose a novel probabilistic model to predict the joint proba-
bilities of the user visiting POIs and their time-points. We
use the proposed model to construct a well-timed recom-
mender system that uses silent periods (no user visit activ-
ity) to update its recommendations. By virtue of its admix-
ture structure, the proposed model obtains a low dimensional
representation for each user, leading to robust recommen-
dations against sparse observations without any recourse to
category information or covariates. We call the proposed
model, the admixture Marked Point Process (adMPP).

The rest of the paper is organized as follows. In Section 2,
we outline related work. In Section 3, we propose the admix-
ture marked point process, and construct a well-timed rec-
ommendation system by using adMPP. Also, we develop an
efficient estimation algorithm based on collapsed Gibbs and
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slice samplings in Section 2. In Section 5, we apply adMPP
to synthetic and real-world check-in data, and show its ef-
fectiveness in producing well-timed POI recommendations.
Finally, Section 6 provides our conclusions.

2 Related Work

In the task of item recommendation (POIs, products, movies
and so on), a recommender system calculates for the user
a score for each item, ranks the items in the descending
order, and recommends those in the higher ranks to the
user. The simplest score is the frequency with which the
user selected each of the items in the past, but usually the
raw user-item score matrix has many missing values, re-
sulting in low recommendation performance. To address
the sparsity problem, matrix factorization methods (Koren
et al. 2009) and topic models (Blei, Ng, and Jordan 2003;
Griffiths and Steyvers 2004; Xu, Zhang, and Yi 2008),
known as collaborative filtering techniques, have been em-
ployed intensively. They assume that several latent factors
or states should be shared among all users, and recon-
struct the user-item score matrix in a collaborative way.
To further improve the recommendation accuracy, the uti-
lization of additional information such as social and geo-
graphical influences has also been proposed (Ye et al. 2011;
Cheng et al. 2012; Kurashima et al. 2010).

The above approaches focus on only what items the user
selected, not when she/he did it. Thus their recommen-
dations never change until the user selects the next item.
Toward the development of timely recommender systems,
some approaches have been proposed that take the effect
of time into consideration. (Iwata et al. 2009; Koren 2010)
modified conventional methods by modeling the factor of
time drift in user preferences. To explain the daily period-
icity of user’s behavior, (Gao et al. 2013; Yuan et al. 2013)
split a day into multiple equal time slots, and calculate a
user’s score for each item with respect to each time slot.

In contrast to these approaches, which focus on calen-
dar times, (Wang, Sarwar, and Sundaresan 2011; Wang and
Zhang 2013) recently proposed e-commerce recommender
systems that utilize purchasing time intervals. Their sys-
tems update each user’s recommendation score depending
on the temporal duration since her/his last (or some trigger-
ing) purchase. Due to its explicit dependence on the user’s
previous action times, their recommendations are expected
to be dynamically optimized in a more personalized man-
ner. In these approaches, however, to address the sparsity of
transaction data, the items must be categorized into some
relevant groups in advance, and a set of covariates, which
serves to explain the heterogeneity across users and item cat-
egories, should be prepared appropriately. Because check-in
data usually consist of just a set of sequences of visited POIs
and their time-points, applying these approaches to check-
in data is difficult. In this paper, we propose a theoretically
solid method that overcomes these limitations.

3 Model

We assume a set of U users, each of whom, u ∈ {1, . . . , U},
has a sequence of (Nu + 1) observed pairs of visited POI

Table 1: Notation
Symbol Definition
U,Q # of users, and # of POIs
u, q user and POI, u∈{1, . . . , U}, q∈{1, . . . , Q}
Nu # of logs for each user
(yun, t

u
n) user u’s n-th log of (visited POI, visit time)

T definition range of inter-event interval
K # of latent topics
k latent topic, k∈{1, . . . ,K}
zun latent topic assigned to u’s n-th log,
θuk weights of topic k on user u,

∑K
k=1 θ

u
k = 1

φk
q′q topic k’s transition probability from q′ to q,∑Q

q=1 φ
k
q′q = 1

fk
q′q(s) topic k’s inter-event interval distribution

of transition from q′ to q
Lk
q′q # of bins of fk

q′q(s)

ψk
q′q� �-th probability mass of fk

q′q ,
∑Lk

q′q
�=1 ψk

q′q�=1

and associated time-point, Du ≡ {(yun, tun)}N
u

n=0. Thus we
have a set of visit event logs, denoted by D ≡ {Du}Uu=1.
Letting the number of POIs be Q, we denote the q-th POI by
q ∈ {1, . . . , Q}. The notation is summarized in Table 1.

User Model by Marked Point Process

We first introduce a theoretically feasible method for mod-
eling visit events that occur in time. The theory of marked
point processes (Jacobsen 2006), which has been applied
in such diverse disciplines as seismology (Ogata 1988),
computer vision (Ge and Collins 2009), and financial mar-
kets (Prigent 2001; Björk, Kabanov, and Runggaldier 1997),
provides a powerful tool for modeling and analyzing the
stochastic structure of point events with marks occurring in
continuous time. Here, POIs can be treated as marks. In the
marked point process, the visit behavior of a user is defined
by the conditional intensity function (Jacobsen 2006), that
is, the instantaneous probability of a user visiting a specific
POI at each point in time. In this paper, we denote the con-
ditional intensity function by the visit rate.

When we assume that the transition from one POI to an-
other is Markovian, and the temporal interval between suc-
cessive visit time-points is conditioned by both the previ-
ous and the next visit events, user u’s visit rate, denoted by
λu(y, t), is given as follows,

λu(y, t) ≡ φyu
ny

λu(t− tun|yun, y),

λu(t− tun|yun, y) ≡ −∂t log
[
1−

∫ t−tun

0

fyu
ny
(s)ds

]
,

(1)

where t represents each point in time between the previous
(n-th) and the next ((n + 1)-th) visit time point, (tun < t <
tun+1), ∂t represents the derivative with respect to t, y rep-
resents the next POI to be visited, φq′q represents the tran-
sition probability from q′ to q, and fq′q(s) represents the
inter-event interval distribution conditioned by the previous
POI, q′, and the next one, q. The transition matrix φ satis-
fies a set of normalization conditions,

∑Q
q=1 φq′q = 1, for
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q′ = 1, 2, . . . , Q. The probability density of the observation
Du occurring is defined by using visit rate, λu(y, t), as fol-
lows,

P (Du|λu(y, t))=
∏Nu

n=1φyu
n−1y

u
n
λu(tun − tun−1|yu

n−1, y
u
n)

×∏Nu

n=1exp

[
−
∫ tun

tun−1

λu(t− tun−1|yu
n−1, y

u
n)dt

]

=
∏Nu

n=1φyu
n−1y

u
n
fyu

n−1y
u
n
(tun − tun−1), (2)

where the exponential on the second line of Eq. (2), called
the survivor function (Snyder 1975), represents the proba-
bility of no visit events occurring in interval (tun−1, t

u
n), for

n = 1, . . . , Nu.
In the following, based on the marked point process (1),

we derive the recommendation score that takes an observed
silent duration of no events into consideration. Given user u
and current time t, we can evaluate the probability that user
u will visit the next POI, y, at future time-point t∗ (t∗ > t)
for the first time since her/his last visit event, (y′, t′), as

φy′y λu(t∗−t′|y′, y) exp
[
−
∫ t∗

t′
λu(s−t′|y′, y)ds

]

= φy′y fy′y(t
∗ − t′). (3)

From Eq. (3), we can evaluate the probability that user u will
visit POI y within future interval [t, t+Δ), as

PΔ(y, ξ≡ t− t′|y′) =
∫ t+Δ

t

φy′y fy′y(t
∗ − t′)dt∗

= φy′y

∫ ξ+Δ

ξ

fy′y(s)ds, (4)

where ξ ≡ (t − t′) represents the silent duration of no visit
events. Finally, from Eq. (4), we obtain the a posteriori prob-
ability of the next POI, y, conditioned by the observation of
silent duration ξ, as

PΔ(y|ξ, y′) ∝ PΔ(y, ξ|y′) = φy′y

∫ ξ+Δ

ξ

fy′y(s)ds. (5)

We adopt Eq. (5) as the score for well-timed recommenda-
tions. Equation (5) shows that the score is updated depend-
ing on the silent duration ξ, as well as the most recent POI
y′. We generalize the score by developing the marked point
process that is discussed in the last part of this section.

Extension to Admixture Model

In the real world, the numbers of users and POIs are large,
but the number of observations for each user is relatively
small. In this situation, it is hard to estimate a user’s model
parameters, φ and {fq′q(s)}Qq′,q=1 in (1), from her/his own
data. To alleviate this sparsity problem, we propose a novel
extension of the marked point process (1) into the admix-
ture (or mixed-membership) model (Murphy 2012), where
the number of parameters is drastically reduced by shar-
ing parameters across different users, while the representa-
tive power of the model is maintained by assuming user-
dependent factors.

We assume that a set of K latent states is shared
among the users, where each latent state, denoted by k ∈
{1, . . . ,K}, is characterized by a set of transition matrices,
φk, and inter-event interval distributions, {fk

q′q(s)}Qq′,q=1.
We denote the latent state by topic, as with topic models
(Blei, Ng, and Jordan 2003). Given the weights of the K
topics for user u, θu ≡ (θu1 , · · · , θuK), topic z is generated
from θu, and the next POI, y, is generated from topic z’s
process characterized by φz and {fz

q′q(s)}Qq′,q=1, with re-
spect to each of Nu observations. The visit rate of each user
is described as follows,

λu(z, y, t) ≡ θuz φz
yu
ny

λz(t− tun|yun, y),

λz(t− tun|yun, y) ≡ −∂t log
[
1−

∫ t−tun

0

fz
yu
ny
(s)ds

]
,

(6)

where t represents each point in time (tun < t < tun+1), z
represents the topic from which the next ((n + 1)-th) POI,
y, is generated, and θu satisfies the normalization condition,∑K

k=1 θ
u
k = 1. Note that topic z can be regarded as a mark in

the marked point process (6), as well as POI y. By sharing
a small number of topics among all the users, the admixture
structure allows each user’s behavior to be estimated in a
collaborative way. We call the proposed model (6), the ad-
mixture Marked Point Process (adMPP).

Non-parametric Inter-event Interval Distribution

In adMPP (6), the inter-event interval distribution of each
topic and each pair of POIs, fk

q′q(s), needs to be parameter-
ized by an appropriate probability density function. The sim-
plest candidate, the Gaussian distribution, is apparently un-
suitable for inter-event intervals because the intervals should
not have any negative value. Although other exponential
families such as gamma and inverse Gaussian distributions
could be adopted, such simple density functions strongly
bias the forms of distribution considered, which would lead
to inaccurate model estimation.

In this study, we employ the piecewise-constant density
function, sometimes called histogram density estimator (Sil-
verman 1986; Hall and Hannan 1988), as the inter-event
interval distribution. The histogram density estimator is so
flexible that it can model various types of density function
characteristics like multi-modality and discontinuity. In the
histogram, each inter-event interval distribution, fk

q′q(s), is
represented by; (i) discretizing a half-open definition range
of inter-event interval, T = [T0, T1], into Lk

q′q contiguous
intervals (bins) of equal width, δ ≡ (T1 − T0)/Lk

q′q; and (ii)
assigning a uniform probability density, ψk

q′q� / δ, to each
bin region, [x�, x�+1], for � = 1, 2, . . . , Lk

q′q . Here the lower
boundary of a bin, x�, is given by, x� = T0 + (� − 1)δ,
and the probability mass, ψk

q′q ≡ (ψk
q′q1, . . . , ψ

k
q′qLk

q′q
), fol-

lows a normalization condition. Inter-event interval variable
s follows the following piecewise-constant distribution,

fk
q′q(s) = ψk

q′qw(s)L
k
q′q/(T1−T0),

∑Lk
q′q

�=1 ψk
q′q� = 1, (7)

where w(s) represents a discretization operator which trans-
forms continuous variable s into the corresponding bin in-
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dex, defined by

w(s) ≡ 1 + �Lk
q′q (s− T0)/(T1 − T0)�. (8)

Here �x� represents the floor function. As a generative
model, the histogram density estimator (7-8) can be repre-
sented by the following three processes: (i) Draw bin index
w from a multinomial distribution with parameter, ψk

q′q; (ii)
Draw auxiliary variable η from a uniform distribution de-
fined over a unit region, [0, 1); (iii) A sample of inter-event
interval is obtained as s ≡ T0 + (w + η − 1)δ.

Prior of Model Parameters

The set of model parameters to be estimated consists of
the topic weights θu, the transition matrix φk, the prob-
ability mass ψk

q′q , and the number of bins Lk
q′q , for u ∈

{1, . . . , U}, k ∈ {1, . . . ,K}, and q′, q ∈ {1, . . . , Q}.
For each of them, adMPP assumes the following conju-
gate or feasible prior: θu is generated from a symmetric
Dirichlet distribution, Dirichlet(α), for each user u; φk

q′:
is generated from Dirichlet(β) for each topic k and each
POI q′; ψk

q′q is generated from Dirichlet(γkLk
q′q) for each

POI pair (q′, q); and discrete Lk
q′q is generated from a uni-

form distribution defined over the range [1, Lmax], denoted
by Uniformdis(1, Lmax). Here α, β and γ ≡ {γk}Kk=1 are
Dirichlet parameters, and Lmax is the maximum number of
bins to be considered.

Admixture Marked Point Process

We summarize the generative process of adMPP for a set of
visit logs, D≡{{(yun, tun)}N

u

n=0}Uu=1, as follows:
1. For each topic k = 1, . . . ,K:

(a) For each POI q′ = 1, . . . , Q:
i. Draw transition matrix φk

q′: ∼ Dirichlet(β)
ii. For each POI q = 1, . . . , Q:

· Draw number of bins Lk
q′q ∼ Uniformdis(1, Lmax)

· Draw probability mass ψk
q′q ∼ Dirichlet(γkLk

q′q)

2. For each user u = 1, . . . , U :
(a) Draw topic weights θu ∼ Dirichlet(α)
(b) For each visit event n = 1, . . . , Nu:

i. Draw topic assignment zun ∼ Multi(θu)

ii. Draw POI yun ∼ Multi(φzu
n

yu
n−1:

)

iii. Draw bin index wu
n ∼ Multi(ψzu

n
yu
n−1y

u
n

)

iv. Draw auxiliary variable ηun ∼ Uniformcon(0, 1)
v. Give inter-event interval s ≡ (tun − tun−1) as

s = T0 + (wu
n + ηun − 1)(T1 − T0)/L

zu
n

yu
n−1y

u
n

where Uniformcon(x, y) is the continuous uniform distribu-
tion defined over a half-open interval [x, y), and Multi(x) is
the multinomial distribution with parameter x. Note that the
initial visit event of each user u, (yu0 , t

u
0 ), is assumed to be

known.
Because the multinomial parameters, θu, φk and ψk

q′q ,
are conjugate to Dirichlet priors, they can be marginalized
out of the generative process, leading to the joint distribution

of visit logs D, latent topics z ≡ {{zun}N
u

n=1}Uu=1, and set of
bin numbers L ≡ {{Lk

q′q}Qq′,q=1}Kk=1, as follows:

p(D, z,L|α, β,γ)

=
∏U

u=1

∏K
k=1 Γ(α+Nu

k )

Γ(Kα+Nu)

Γ(Kα)

Γ(α)K

×∏K
k=1

∏Q
q′=1

∏Q
q=1 Γ(β +Nkq′q)

Γ(Qβ +Nkq′)

Γ(Qβ)

Γ(β)Q

×∏K
k=1

∏Q
q′,q=1

∏Lk
q′q

�=1 Γ(γk/Lk
q′q +Nkq′q�)

Γ(γk +Nkq′q)

×∏K
k=1

∏Q
q′,q=1

Γ(γk)

Γ(γk/Lk
q′q)

Lk
q′q

( Lk
q′q

T1 − T0

)Nkq′q
, (9)

where Γ(x) is the gamma function, Nu
k is the number of visit

events assigned to topic k in the history of user u, Nkq′q is
the number of transition events from POI q′ to POI q as-
signed to topic k, Nkq′q� is the number of transition events
from POI q′ to POI q addressed to the �-th bin of topic k’s
histogram density estimator, and Nkq′ =

∑
q Nkq′q .

Well-timed Recommendations

Based on adMPP, we construct a recommender system that
can update its recommendations in response to the users’
silent periods. With the same procedure as in the pure
marked point process (5), we obtain user u’s score for each
POI, y, within future interval [t, t+Δ) as follows,

PΔ(y|ξ, y′) ∝
K∑

k=1

θuk φk
y′y

∫ ξ+Δ

ξ

fk
y′y(s)ds (10)

where ξ ≡ (t − t′) represents the silent duration since the
most recent visit event (y′, t′).

In practice, at current time t = τ , our recommender sys-
tem ranks the POIs according to the score (10), and recom-
mends those in the higher ranks during interval [τ, τ + Δ].
When t reaches (τ +Δ), the system re-calculates the scores
with ξ → ξ + Δ and [τ, τ + Δ] → [τ + Δ, τ + 2Δ], and
updates its recommendation; this operation is repeated until
the user visits the next POI. The updating window, Δ, can
have arbitrary positive values, but should be chosen appro-
priately: When Δ is small, the system updates its recom-
mendation frequently, and its recommended POIs are likely
to be what the user is about to visit. However, the risk that
she/he has little time to arrange or prepare for the next visit
would increase; When Δ is large, the user is more likely to
get useful information well in advance, but the recommen-
dation accuracy might not be good.

4 Estimation Procedure

By using the simple and easy-to-implement collapsed Gibbs
sampling (Griffiths and Steyvers 2004) and slice sampling
(Neal 2003), we obtain posterior samples of z and L follow-
ing p(z,L|D, α, β,γ), from which the topic weights θu, the
transition φk, and the probability mass ψk

q′q , as well as the
hyperparameter (α, β,γ), can be estimated efficiently.
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Collapsed Gibbs Sampling of Topic

Given a set of bin numbers L and the current state of all but
one latent variable zj , where j = (u, n), the assignment of a
latent topic to the n-th visit event of user u is sampled from
the following multinomial distribution:

p(zj = k|D, z\j ,L, α, β,γ)

∝(α+N
\j
ku)

β+N
\j
kyu

n−1y
u
n

Qβ+N
\j
kyu

n−1

γk/Lk
yu
n−1y

u
n
+N

\j
kyu

n−1y
u
nw

u
kn

γk+N
\j
kyu

n−1y
u
n

k = 1, . . . ,K, (11)

where N
\j
· represents the count that does not include the

current assignment of zj , and wu
kn represents the bin in-

dex of the histogram specified by latent topic, k, and pair of
POIs, (yun−1, y

u
n), within which (tun− tun−1) falls, calculated

as

wu
kn ≡ 1 + �Lk

yu
n−1y

u
n
(tun − tun−1 − T0)/(T1 − T0)�. (12)

Equation (11) and the next equation (13) are derived from
the joint distribution (9).

Slice Sampling of Bin Number

Given z, each of the bin numbers, {Lk
q′q}k,p′,p, is sampled

from the following discrete probability distribution:

p(Lk
q′q = V |D, z, α, β,γ)

∝
∏V

�=1 Γ(
γk

V +Nkq′q�)

Γ(γk +Nkq′q)

Γ(γk)

Γ(γ
k

V )V
V Nkq′q , V =1, .., Lmax.

(13)

Because a direct sampling from Eq. (13) is time-consuming,
we adopt the slice sampling with stepping-out procedure
(Neal 2003). If the right-hand side of Eq. (13) is denoted
by g(V ), the sampling procedure is represented as follows:

0. Let the current value of Lk
q′q be L, and initialize slice

[S0, S1] ← [L,L]. Set a width parameter dW .
1. Draw a ∼ Uniformcon(0, g(L))
2. Expand slice as [S0, S1]

← [max(1, S0 − dL),min(Lmax, S1 + dL)]
3. If g(Si) < a for i = 0 and 1, go to step 4, otherwise return

to step 2.
4. Draw candidate L∗ ∼ Uniformdis(S0, S1)
5. If g(L∗) > a, accept L∗ as the next sample of Lk

q′q . Oth-
erwise, update slice as [S0, S1]← [L∗, S1] when L∗ < L,
or [S0, S1]← [S0, L

∗] when L∗ > L, and return to step 4.
We set the width parameter, dL, at 100 in this study.

Large bin number Lk
q′q gives adMPP better fitting to train-

ing data, while too large Lk
q′q would deteriorate the pre-

dictive performance due to over-fitting. It should be noted
here that Eq. (13) finds an appropriate bin number, Lk

q′q , by
the technique of Bayesian model selection (Bishop 2006):
The posterior distribution of Lk

q′q (13) is obtained by the
marginalization over (Lk

q′q)-dimensional parameter ψk
q′q�, in

which excessive values of Lk
q′q are penalized.

Determination of Hyperparameter

Based on the empirical Bayes method, the set of hyper-
parameters, (α, β,γ), is determined by maximizing the
marginal likelihood,

α̂, β̂, γ̂ = arg max
α,β,γ

∑
z,L

[
p(D, z,L|α, β,γ)], (14)

which can be performed by the stochastic EM algorithm.
In each posterior sampling of z and L (11-13), the set of
hyperparameters, (α, β,γ), is updated by using the fixed-
point iteration method (Minka 2000) as follows:

α←α

∑
u

∑
k Ψ(α+Nu

k )− UKΨ(α)

K
∑

u Ψ(Kα+Nu)− UKΨ(Kα)
,

β←β

∑
k,q′,q Ψ(β +Nkq′q)−KQ2Ψ(β)

Q
∑

k,q′ Ψ(Qβ +Nkq′)−KQ2Ψ(Qβ)
,

γk←γk

∑
q′,q,� Ψ

(
γk

Lk
q′q

+Nkq′q�

)
−∑

q′q L
k
q′qΨ

(
γk

Lk
q′q

)
∑

q′q L
k
q′q

[
Ψ(γk +Nkq′q)−Ψ(γk)

] ,

(15)

where Ψ(x) is the digamma function defined by the deriva-
tive of log Γ(x).

Estimation of Model Parameters

By repeating (11-15) until convergence is achieved, we esti-
mate the set of bin numbers, L̂, and the set of hyperparam-
eters, (α̂, β̂, γ̂), as the last updated values. Next, we further
draw M samples of latent topics, [z(1), z(2), . . . , z(M)], ac-
cording to Eq. (11), and obtain the posterior mean estimate
of the other model parameters as follows:

θ̂uk 
 1

M

M∑
m=1

α̂+Nu
k
(m)

Kα̂+Nu
, (16)

φ̂k
q′q 
 1

M

M∑
m=1

β̂ +N
(m)
kq′q

Qβ̂ +N
(m)
kq′

, (17)

ψ̂k
q′q� 


1

M

M∑
m=1

γ̂k/L̂k
q′q +N

(m)
kq′q�

γ̂k +N
(m)
kq′q

, (18)

where Nu
k
(m), N

(m)
kq′q and N

(m)
kq′q� represent the sufficient

statistics in the m-th sample, z(m) ≡ {{zun(m)}Nu

n=1}Uu=1. In
the following experiment, M was set at 100. We can select
the number of topics, K, by maximizing the cross validated
likelihood.

adMPP has only two parameters to be set, the definition
range, T ≡ [T0, T1], and the maximum of bin number to be
considered, Lmax. Unless the observed intervals lie out of T ,
adMPP is expected to provide similar estimations regardless
of T , because the broad T ’s effect on estimation of interval
distribution can be offset by large bin number. In practice,
we set [T0, T1] = [zero, the maximum of observed intervals]
to ensure that observations lie inside T . Also, Lmax does not
affect the estimation of bin number unless it’s smaller than
the optimal bin number. Thus it should be set at a value large
enough (Lmax = 200 in this paper).
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Table 2: Data Statistics
Data set SYN10 SYN50 SF NY
# of users 1,000 1,000 557 624
# of POIs 4 4 984 975
# of logs 10,000 50,000 27,687 44,193
mean IEI 0.474 0.474 0.557 0.357

IEI: inter-event interval (week)

Scalability

The most demanding part of the estimation is the Gibbs sam-
pling (11) and the slice sampling (13). Gibbs sampling and
slice sampling have computational complexities of O(KN)
and O(KQ2RN), respectively, where N is the total number
of logs, and R ≤ L2

max. Thus adMPP is applicable to large-
scale (N � 1) data, while being somewhat time-consuming
when the number of POIs, Q, is extremely large.

5 Experiments

We examine the effectiveness of the adMPP-based recom-
mendation system by applying it to synthetic and real-world
check-in data.

About Data Used

Synthetic Data We make synthetic data for the scenario
that a user generates a sequence of visit logs from a mix-
ture of three marked point processes, each of which has a
set of distinct inter-event interval distributions {fk

q′q(s)}3k=1:
gamma distributions in the first (k = 1), beta distributions
in the second (k = 2), and two-component gamma mixtures
in the last (k = 3). The parameters of the inter-event inter-
val distributions, as well as the set of transition matrices
{φk}3k=1, are chosen randomly. Each user is characterized
by the mixing proportions, which are sampled from a flat
Dirichlet distribution. Assuming that the number of users,
U , is 1000 and each user has C visit logs, we make two
datasets of C = 10 and 50, denoted by SYN10 and SYN50,
respectively.

Check-in Data From the real-world check-in datasets col-
lected by Brightkite1 (Cho, Myers, and Leskovec 2011), we
make two subsets comprising the visit logs in San Francisco
(SF) and New York City (NY), denoted by SF and NY, re-
spectively. In each dataset, we rank the POIs according to
the number of unique users who visited them, and focus on
the top-1000 popular POIs in the experiment. Also, we omit
users who had less than 10 visit logs.

For all four datasets, the first 80% visit logs for each user,
denoted by Dfit, are used for model fitting, and the remain-
ing 20%, denoted by Dtest, for model evaluation. Note that
this represents per-user splitting. The data statistics are sum-
marized in Table 2.

Evaluation

Based on the above datasets, we compare adMPP’s recom-
mendation performance against the results achieved by the

1https://snap.stanford.edu/data/loc-brightkite.html
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Figure 1: (A) Predictive performance. (B) Cross validated
likelihood for adMPP.

following three baseline methods, denoted by Multi, Markov
and LDA: (i) Multi is a non-collaborative method based on
a multinomial distribution, in which user’s scores for POIs
are represented by the choice probabilities estimated from
the user’s visit logs; (ii) Markov is also a non-collaborative
method based on a Markov model, in which user’s scores are
calculated by a transition matrix estimated from the user’s
visit history; (iii) LDA is the latent Dirichlet allocation (Blei,
Ng, and Jordan 2003; Griffiths and Steyvers 2004), a widely
used collaborative method in a Bayesian framework, where
user’s scores are defined by a weighted sum of latent choice
probabilities. In Multi and LDA, once the model parame-
ters are estimated based on Dfit, the score doesn’t change in
Dtest. In contrast, Markov and adMPP update their scores in
Dtest according to the last POI that a user visited. adMPP
also updates the score depending on the duration since the
last visit, where the updating window, Δ, can be chosen ar-
bitrarily (see Section 3).

We evaluate the performance of each method based on
recall for the top-R recommendation task,

rec@R ≡ #hits / |Dtest|, (19)

where #hits represents the number of test data logs that
were listed in the top-R recommendation list, and |Dtest| rep-
resents the total number of logs in the test data. R is speci-
fied as one and two in the experiment. Figure 1(A) displays
the obtained performances with respect to updating window
Δ, where Δ is varied from 0.1 to 10 (unit is the mean inter-
event interval). The results show that adMPP performs better
than the other models for all data sets, which indicates that
the silent duration since the last visit is helpful in precisely
predicting users’ future destinations.

In adMPP and LDA, we select the number of topics, K,
by maximizing the two-fold cross validated likelihood. Fig-
ure 1(B) shows that the true value, K = 3, is obtained in
synthetic data SYN50 (we also obtained K = 3 in SYN10),
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Figure 2: Inter-event interval (IEI) distributions estimated in
SYN50. Only the transition from POI q = 1 is displayed. The
dashed and solid lines represent the true distribution and its
estimation by adMPP, respectively.

where the various kinds of distributions are estimated pre-
cisely in a non-parametric way (see Figure 2). Also, Fig-
ure 1(B) shows that the number of topics is selected as K
= 2 and K = 3 in real-world datasets SF and NY, respec-
tively. The latent transition probabilities, {φk}, and inter-
event interval distributions, {fk

q′q(s)}, estimated by adMPP
are partially displayed in Figure 3, which shows that each of
the latent topics represents a distinctive temporal pattern of
user’s visit behavior.

6 Conclusion

In this paper, we constructed a well-timed recommender sys-
tem that can update its recommendations in response to si-
lence, the temporal duration in which user does not visit
any place or select any item. To achieve this, we proposed
a novel marked point process with admixture structure, in
which a small number of latent marked point processes are
assumed to be shared by all users, leading to robust rec-
ommendation against sparse observations. We also derived
an efficient estimation algorithm based on collapsed Gibbs
and slice sampling. We confirmed experimentally that our
proposed model achieved high predictive performance when
challenged with synthetic and real-world data.

adMPP is not limited to visit event data, but is widely ap-
plicable to any sequences of event points. Thus our model
helps provide timely recommendations or navigations in
such diverse fields as e-commerce and information retrieval.
A possible extension of our model is to incorporate the self-
exciting property that events in the past induce events oc-
curring in the future, which was observed in purchasing
and querying behaviors (Kim, Takaya, and Sawada 2014;
Li et al. 2014). It’s a fact of great interest that “silence”
should be a negative signal of the next event in self-exciting
behaviors.
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Figure 3: (Upper figures) Heatmap visualization of transi-
tion matrix for each latent topic in SF and NY. The values
of probabilities are plotted on a log scale, where larger val-
ues are represented by darker squares. Only a subset of the
whole POIs are displayed. (Lower figures) Inter-event inter-
val (IEI) distribution of a transition specified by white aster-
isk in the corresponding upper figure.
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