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Abstract

In this paper, we present an automatic approach for on-line
discovery of visual-lingual semantic fragments from weakly
labeled Internet images. Instead of learning region-entity cor-
respondences from well-labeled image-sentence pairs, our
approach directly collects and enhances the weakly labeled
visual contents from the Web and constructs an adaptive vi-
sual representation which automatically links generic lingual
phrases to their related visual contents. To ensure reliable and
efficient semantic discovery, we adopt non-parametric den-
sity estimation to re-rank the related visual instances and pro-
posed a fast self-similarity-based quality assessment method
to identify the high-quality semantic fragments. The discov-
ered semantic fragments provide an adaptive joint represen-
tation for texts and images, based on which lingual-visual
similarity can be defined for further co-analysis of hetero-
geneous multimedia data. Experimental results on semantic
fragment quality assessment, sentence-based image retrieval,
automatic multimedia insertion and ordering demonstrated
the effectiveness of the proposed framework.The experiments
show that the proposed methods can make effective use of the
Web knowledge, and are able to generate competitive results
compared to state-of-the-art approaches in various tasks.

Introduction

Every day, trillions of multimedia contents including texts,
images and videos as well as the attached contextual data
are generated and shared on the Internet, recording almost
every aspect of human society, from the worldwide eco-
nomic events to a person’s personal feeling. For the last
few decades, researchers from both academia and industry
have developed a variety of information processing tech-
niques trying to make computers understand the semantics
in both texts and visual media. Despite the great progress
made by the community, the visual intelligence of our com-
puters is still at its early stage, which can only recognize
simple lingual-visual links, and speak about shallow facts
such as what and where. For example, image knowledge
bases such as ImageNet(Deng et al. 2009) enable the pos-
sibility for the visualization of semantic entities defined as
words or simple phrases. However, even as large as Ima-
geNet, the current knowledge bases are still unable to char-
acterize complex phrases like “the most dangerous dog in
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Figure 1: Concept Illustration. This work captures the mean-
ing of a sentence based on a group of visual-linguistic se-
mantic fragments. Unlike traditional methods that learn such
latent representation from human labeled data, our method
discovers such fragments directly from the Web which is
highly efficient and free of human interactions.

Asia”, not to mention longer sentences and paragraphs. The
huge gap between visual and lingual data still exists and be-
comes larger when the spatio-temporal scale goes up.
Recent research has pushed forward with a new chal-
lenge of bridging the semantic gap between textual and
visual media in a long-term sentential level. Some pio-
neering models have been proposed to generate textual
descriptions for images and videos (Farhadi et al. 2010;
Yao et al. 2010; Rohrbach et al. 2013; Kulkarni et al. 2013;
Socher et al. 2014; Donahue et al. 2015; Vinyals et al.
2015; Chen and Lawrence Zitnick 2015) or building image-
semantic correspondences (Lin et al. 2014; Kong et al. 2014;
Zhu et al. 2015; Karpathy and Fei-Fei 2015).These mod-



els can build discrete links between large textual fragments
and visual contents by learning from human labeled data,
which become the foundation for a variety of novel applica-
tions. However, the current models often brought in unnec-
essary restrictions on both the lingual complexity and the
application domain. Specifically, most models were trained
in a supervised manner based on human labeled sentence-
image pairs, which naturally results in an inevitable scala-
bility issue for real-world applications. Take Karpathy and
Li’s framework(Karpathy and Fei-Fei 2015) for instance,
new sentences can only be processed if it contains lingual
snippets pre-existed in the training set, which results in a
restricted application capacity depending on the number of
training samples and the scalability of the pre-trained model.
Furthermore, most methods take snippets as the minimum
computation unit, thus, cannot support fuzzy inputs which
are quite common in real-world applications.

In this paper, we exploit an automatic Web-based se-
mantic fragment discovery method to support on-line sim-
ilarity computation between long lingual description (sen-
tences) and visual contents (image or video). Inspired by
(Chen, Shrivastava, and Gupta 2013; Chen et al. 2014;
Singh et al. 2015), our key insight is to take Web image col-
lections as a universal knowledge database, from which we
extract and evaluate the links between the lingual fragments
and their related visual contents. We aim to collect such
high-quality links to form a reliable and dynamic joint rep-
resentation and to further support deep lingual-visual analy-
sis of multimedia contents. Unlike traditional methods that
learn such joint representation from human labeled data, our
method discovers the semantic fragments directly from the
Web in a fully automatic manner. We make code, datasets
and annotations publicly available on our project page. Our
contribution consists of three aspects:

e We proposed a novel on-line methodology for generic
lingual-visual joint analysis. Unlike traditional supervised
methods that learn visual knowledge or priors from hu-
man labeled data, we propose to discover such knowledge
directly from the Web without human interactions.

e We proposed an effective quality measure for the discov-
ery of semantic fragments from the Web and provided an
on-line similarity measure for long texts and visual con-
tents. Compared with the training-based visual-semantic
alignment methods, our approach has better scalability
and achieves state-of-art performance without additional
human interaction and domain restrictions.

e We created two new datasets for the research and evalu-
ation of Web-based semantic discovery, and also explore
potential applications such as automatic multimedia inter-
section and ordering enabled by the proposed method.

Related Work

Joint modeling of lingual and visual signals has been ex-
tensively investigated in computer vision community. The
research effort has been devoted mostly to the problem of
image captioning and text-image alignment, where explicit
and latent correspondences between visual segmentations
and text fragments are explored.
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Image and Video Captioning

Early works (Farhadi et al. 2010; Jia, Salzmann, and Dar-
rell 2011) learned fixed visual representations from a set of
labeled data and translate them into short lingual descrip-
tions. Later methods (Ordonez, Kulkarni, and Berg 2011;
Hodosh, Young, and Hockenmaier 2013; Socher et al. 2014)
followed a similar methodology which pose the caption-
ing task as a retrieval problem, where the most compat-
ible annotation in the training set is retrieved and trans-
ferred to the test image. Some other approaches generate
captions by filling in fixed templates according the the vi-
sual contents presented in the given image (Yao et al. 2010;
Gupta and Mannem 2012; Kulkarni et al. 2013). Recent
models adopt recurrent neural networks (RNN) to learn
joint image-text embedding for the generation of complex
captions for both images (Karpathy, Joulin, and Li 2014;
Kiros, Salakhutdinov, and Zemel 2014; Mao et al. 2014;
Karpathy and Fei-Fei 2015) and short video clips (Venu-
gopalan et al. 2014).

Text-Image Alignment

Compared to image captioning, our work is more related
to text-image alignment models (Lin et al. 2014; Kong et
al. 2014; Karpathy, Joulin, and Li 2014; Zhu et al. 2015;
Karpathy and Fei-Fei 2015), since the focus of our work is
on sentence understanding which is more like a reverse prob-
lem of image captioning. Our objective is different with tra-
ditional text-to-image alignment methods, which mainly fo-
cused on discovering the coherence between texts and visual
contents in specified domains, e.g retrieving driving videos
via complex textual queries(Lin et al. 2014), aligning books
and movies(Zhu et al. 2015), or parsing indoor scenes us-
ing lingual descriptions (Kong et al. 2014). Most related to
our work, (Karpathy and Fei-Fei 2015) proposed a visual-
semantic alignment model which learns the inner-modal cor-
respondences by combining convolutional neural networks
over image regions and bidirectional recurrent neural net-
works over sentences. All the above-mentioned approaches
are domain specific and training-based, which is the main
obstacle against large-scale applications and commercializa-
tion.

Web Knowledge Discovery

Web data has been widely used to discover both textual
and visual knowledge. (Berg, Berg, and Shih 2010) pro-
posed a framework to automatically mine attributes from
Internet images and their associated textual descriptions.
(Chen, Shrivastava, and Gupta 2013) use web data to ex-
ploit common sense relationships and thus generate weak
labels for images. Free from low-level features and pre-
specified attributes, (Habibian, Mensink, and Snoek 2014)
obtain textual descriptions of videos from the web and learn
a multimedia embedding for few-example event recognition.
(Singh et al. 2015) proposed an iterative framework based
on Google Image Search and action centric part of speech
model to discover descriptive concepts and predict complex
events. The success of these methods inspires us to explore
and utilize Web knowledge for lingual-visual joint analysis
of multimedia data.
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Figure 2: Overview of our approach. Given a sentence as input, we first parse the lexical patterns and achieve a set of linguistic
fragments in the form of noun and verb phrases. Then, we retrieve Web images using search engine for every phrase to construct
a raw fragment set. Based on the statistical analysis of the visual contents, we re-rank the images and filter out low quality
fragments. The discovered semantic fragments can be used in many applications that require lingual-visual joint analysis.

The Model
Problem Definition

Given a sentence L and an image F, our major objective is to
construct an on-line function S(L, F), which measures the
semantic similarity between the two heterogeneous item.

Framework Overview

An illustration of our method is presented in Figure 2. Given
a sentence waiting to be processed, our first step is to dis-
cover the potential visualizable semantic fragments from the
sentence. By parsing the lexical patterns of the sentence with
pre-defined structural constraints, we are able to achieve a
set of linguistic semantic fragments in the form of either
single words or long phrases. We then propose a data-driven
approach to examine the quality (visualizability) of every
semantic fragment based on the statistical analysis of on-
line-retrieved images from Google. We obtain visualizable
semantic fragments by thresholding the quality score. Fi-
nally, we use the discovered semantic fragments to define
fragment-based lingual-visual similarity.

Semantic Fragment Discovery

On-Line Semantic Fragment Parsing Following the
proposal of Lin et al.(Lin et al. 2014), we use a similar
graph representation to capture the semantic structure of a
sentence. As illustrated in Figure 2, we first adopt Stanford
Lexical Parser (Le 2013) to obtain the initial semantic graph
from the sentence, and then extract noun and verb-phrases
from the graph to further construct a candidate set of se-
mantic fragments. The fragment candidates are then utilized
as queries to retrieve related images from Google Image
Search. For noun phrases, we directly use the phrase as the
query. While for verb phrases, we search the semantic graph
to find its subject noun phrase, and then combine them to-
gether as the final query.
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Deep Visual Representation Our image representation is
based on the network architecture of VGG-16 (Simonyan
and Zisserman 2014). The VGG-16 network contains 16
weight layers, 13 of which are convolutional layers and the
rest 3 are fully connected layers. We follow the notions in
(Girshick et al. 2014; Simonyan and Zisserman 2014) to de-
fine different types of CNN features: fcg and fc; refer to the
activation of the first and the second fully-connected layers;
fcg_relu and fc;_relu denote the activations after Rectified
Linear Unites of fcg and fc; respectively. Practically, we
adopt MatConvNet Toolkit (Vedaldi and Lenc 2015) with
pre-trained model of VGG-16 (Simonyan and Zisserman
2014) for image feature extraction. The activations of fcg,
fcy, fcg_relu and fcy_relu are extracted and normalized us-
ing L2 norm. Despite the type of the activation, each image
is represented as a 4096-D normalized CNN vector in the
rest of our paper.

Discovering High Quality Semantic Fragments The se-
mantic fragments, represented as lingual phrases and their
corresponding ranked images, form a small customized im-
age knowledge base for the given textual inputs. Some se-
mantic fragments contain images with high semantical rele-
vance, while some others consist of images with inconsis-
tent or even irrelevant visual contents. This is reasonable
since the images only carry weak labels given by Google
and such label becomes even weaker when the query phrase
gets longer. Thus, we should filter out those low quality frag-
ments with labels that are not strong enough to reflect the vi-
sual semantics of the corresponding phrase. Our intuition for
the estimation of fragment quality is to compare the visual
appearance of images within each fragment candidate set.
Higher self-similarity means better within set consistency
and thus indicates better label accuracy.

Specifically, for a given fragment, we first extract visual
features from the top-N attached images and then compute
the self-similarity to measure the overall quality of the frag-
ment. Finally, we use a fixed threshold to filter out the low-



quality candidates and get the true visualizable semantic
fragment set. Given a fragment candidate g represented as
a group of CNN features F, = {f{, /5, ..., /% }, we mea-
sure the quality of g by the self-similarity of F:

1 N N
Qo) =5z 22 I,

i=1 j=1

ey

where the value of Q(.) is ranging from 0 to 1 (1 is the best).
We adopt a straight-forward thresholding approach to filter
out low quality fragment candidates.

Density-based Data Reranking. We can use the original
Google rank to organize the images of each semantic frag-
ment. However, since we are focusing on the visual seman-
tics, the ranking order can be further improved using un-
supervised Parzen density estimation (Mezuman and Weiss
2012) over the CNN feature space. To this end, a typical
Parzen density estimater can be formulized as:

ZKf ),

where {f/}Y, are image features of fragment g and

Ky(z) = e l=1°/20% is a Gaussian kernel. To boost the
speed, we construct a new discrete kernel /¢ based on Q(.)
to replace K:

(@)

pdf

1 ifz > Q(g)
0 else

Kolz) - { 3
Intuitively, we use the estimated probability density to re-
rank images and thus improve the visualization quality.

Lingual-Visual Similarity

Based on semantic fragment discovery, we can represent
a sentence by a group of visual semantic fragment L =
{91,92,...,9n}. As discussed in (Karpathy and Fei-Fei
2015), the visual semantics can appear at any location of
a related image, thus using global matching would not be
accurate enough to pull out fragment-level similarity. Con-
sequently, we follow the proposal of (Karpathy and Fei-Fei
2015), and parse the input images into semantic regions to
allow precise fragment-level similarly estimation. To avoid
unnecessary restriction, we utilize Objectness(Alexe, Dese-
laers, and Ferrari 2012) to get object proposals. Objectness
is designed for generic object detection which is based on
pure bottom-up cues (e.g. saliency) and thus has no domain
restrictions. Practically, we use the top 19 object proposals
in addition to the whole image to get a CNN feature set
F. = {f{, f%, ..., f,}, which forms a similar fragment rep-
resentation to the query sentence. The similarity between an
input image ¢ and the sentence L can then be formulized as:

Z max f]

7.1]’f

S(L,Fy) 7' fj € Frand f' € Fy,. (4)

Eqn. 4 uses max pooling over all image regions and all in-
stances within the fragment to compute the similarity. Here,
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Figure 3: Illustration of Sentence-Image similarity compu-
tation. We use max pooling over all object proposals and
all instances within the fragment to compute fragment-level
similarity. The final output is a straight summation of all
fragment similarity.

we introduce an alternative reformulation which achieved
better results while costing much less computations:

Z max ft
S

where fZ is the representative vector of g;. In the experi-

"(L,Fy) &)

ments, we compared three definitions of f7¢, including:
e T - Rank Top 1
9= + Zizl fg G - Geometric Center
+ Zﬁizl var (f3) - £ P - Probabilistic Center

(6)
An illustration of sentence-image similarity computation is
presented in Figure 3. It clearly shows how image and sen-
tence are connected via the discovered semantic fragments.

The Experiments

We first present the quality assessment results of our self-
similarity metric with different visual features on labeled
semantic fragment dataset. Then, we test our lingual-visual
similarity in sentence-based image retrieval task. We also
show qualitative results of some other applications, such as
automatic multimedia insertion and ordering.

Datasets

We release two new datasets as extensions of Flickr30K
(Young et al. 2014) to enable research and comparisons on
‘Web-based unsupervised sentence understanding tasks.

Flickr30K-Phrase This dataset consists of 3.2 million im-
ages with 32,486 weak phrase labels. More specifically, We
parsed 5K sentences from the Flickr30K test image set into
32,486 noun and verb phrases, each attached by 100 urls
retrieved from Google Image Search. The dataset is quite
challenging, it contains large amount of noises since no hu-
man interaction is involved. The dataset can be regarded as
a fragment-level Web reference set for Flick30K’s 5K test-
ing captions, based on which new Web-driven retrieval and
captioning methods can be developed and evaluated.



Flickr30K-Quality We sample 20K images with 1K
phrase labels from Flickr30K-Phrase, and ask in-house an-
notators to score the quality of each phrase. In each round of
annotation, one phrase are presented with all the related im-
ages, the score of the phrase are defined according to the
semantical correctness and visual appearance consistency
of its attached images, including 1(High), 0.5(Normal), and
0(Low) respectively. Each phrase are labeled at least by three
annotators and the final score is obtained by averaging all
annotated scores. The dataset can be used for the training
and evaluation of both semantic discovery and label quality
assessment methods.

Semantic Fragment Discovery Evaluation

We evaluate our semantic fragment discovery method by
taking it as a binary classier for the classification of high
quality and low quality phrase fragments. Specifically, We
compute the area under ROC curve to measure the overall
performance. Table 1 shows the results of our method on
Flickr30K-Quality dataset using GIST (Oliva and Torralba
2001) and 4 kinds of CNN features. The results demonstrate
the effectiveness of the self-similarity measure. Our method
with fc; features achieved an AUC score of 0.8537, which
means we are able to filter out most of the low quality frag-
ments by a simple thresholding operation.

GIST
0.7376

fcr_relu
0.8525

fC7
0.8537

fcg_relu
0.8512

fCa
0.8512

Feature
AUC

Table 1: Evaluation results of semantic fragment quality as-
sessment. We show AUC scores of the self-similarity metric
with GIST and 4 CNN features.

Sentence-based Image Retrieval Evaluation

We adopt the 1K test images in Flickr30K for quantitative
evaluation. We take the 5K sentence annotations as queries,
and use Eqn. 4 and Eqn. 5 as our similarity measure to sort
the test images. We set the size of each fragment N = 20,
and fix the self-similarity threshold to 0.2 in all the tests. Re-
call@K (Socher et al. 2014) is introduced as the main evalu-
ation metric, which measures the fraction of times a correct
item was found among the top K results.

We compared our method with several state-of-art ap-
proaches. Note that our method runs without training, while
others are pre-trained based on the Flickr30K training data.
As shown in Table 2, our full model achieved competitive
performance with DeFrag (Karpathy, Joulin, and Li 2014),
and it also succeeded in beating some of the supervised mod-
els like DeViSE (Frome et al. 2013) and SDT-RNN (Socher
et al. 2014). Note that, among all the tested methods, our ap-
proach is the only one that can run on-line. With such prop-
erty, the model is able to be deployed to real-world search
engines with no additional restrictions on either application
domain or human supervision.

We show the influences of parameters including the type
of features (Table 3) and the number of object proposals (Ta-
ble 4). The fcy_relu CNN layer leads to a relatively better
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Model [ R@1  R@5 R@I10
Supervised Model
DeViSE 6.7 21.9 32.7
SDT-RNN 8.9 29.8 41.1
DeFrag 10.2  30.8 44.2
Our Label-Free Model
Ours (T+ 1 OP) 7.3 19.1 26.7
Ours (P+ 1 OP) 103 2438 335
Ours (G+ 1 OP) 103 25.0 337
Ours (T + 20 OP) 7.4 19.8 28.3
Ours (P + 20 OP) 104 276 37.1
Ours (G + 20 OP) 105  27.8 37.4
Ours (Eqn. 4 +200P) | 10.7 274 37.7

Table 2: Flickr30K experiments. R@K is Recall@K (high
is good). T, G, P denote the option in Eqn. 5. OP means
object proposal. Compared to the state-of-art models, our
model can generate competitive results without pre-training
on human labels.

CNN layer fcg  fcgrelu  fcy;  fey_relu
Recall@1 7.8 9.2 9.2 10.5
Recall@5 | 20.7 24.5 25.4 27.8
Recall@10 | 28.4 33.6 33.9 374

Table 3: Influence of CNN features on Flickr30K. All fea-
tures are normalized by L2 norm.

result and the full model performance stops increasing when
Top-20 object proposal were used.

Figure 4 presents some typical retrieval results of our
model. We notice that our approach performs well on im-
ages with a relatively small number of salient, well-defined
objects. The performance of our method can be further im-
proved when 1) the media data on Web gets denser or 2) the
weak phrase labels get stronger. The first condition increases
the probability to retrieve high consistent data, while the sec-
ond improves the inferencing confidence.

Extensions and Limitations

Based on our on-line lingual-visual similarity, we can fulfill
joint analysis of weakly-correlated texts and visual contents.
Given a text document and a few weakly-correlated photos
(e.g. travel blog and the related photos), the goal of auto-
matic multimedia insertion is to insert the photos (videos)
into proper locations of the text document according to their
visual semantics. Figure 5 shows an example of automatic
multimedia insertion. Photos are inserted at the locations
where the visual-lingual similarity are maximized. We can
also use the same algorithm to recover the order of the pho-
tos based on the corresponding textual descriptions.

The proposed visual-lingual similarity can also be used
to transform textual descriptions into multimedia data flow
which contains not only texts but also images and videos.
Such kind of media flow can further be used to generate per-
sonal albums, video stories, or documentary videos.

Although our method generates promising results, the
proposed framework still suffers from serval limitations.
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Figure 4: Detailed retrieval results on Flickr30K dataset. In each case, we show the ground truth image (left) and the top 5
images (right) retrieved using our lingual-visual similarity. As shown from the results, our method is quite effective for accurate
descriptions but lack of robustness against unimportant/unrecognizable phrases. For example, in one of the failure case, the
query mentioned about horse but the ground truth actually doesn’ t contain any recognizable horse in the image.
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Figure 5: An example of automatic multimedia insertion and ordering. On the left is a travel blog without visual illustrations.
By using our on-line lingual-visual similarity, the travel photos on the right can be automatically inserted into proper locations
of the travel blog (indicated by red numbers). Similarly, the travel photos can also be ordered according the textual descriptions

of the blog, instead of using their original time stamp.

Box Number | Topl TopS5 Top10 Top 20
Recall@1 9.0 10.3 10.7 10.5
Recall@5 225 265 27.1 27.8
Recall@10 31.0 353 36.7 374

Table 4: Influence of the number of object proposals (bound-
ing boxes) on Flickr30K. We use fc;_relu as the feature. Ob-
ject bounding boxes are ranked according to their objectness
(Alexe, Deselaers, and Ferrari 2012).

First, the discovery module of our method is effective in
identifying most of the low quality phrases, yet it also
wrongly filtered out many high quality fragments because of
the gap between feature-based similarity and the true seman-
tic similarity. Second, the current method is not able to iden-
tify ambiguous phrases, which probably leads to poor re-
trieval performance and confused visualizations. Lastly, the
proposed method must be supported or implemented within
the architecture of a search engine to ensure acceptable pro-
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cessing speed for real-world on-line services.

Conclusions

We introduced a fully automatic framework for seman-
tic fragment discovery and on-line lingual-visual similarity
measurement without domain restrictions and pre-training
requirement. Experimental results demonstrate the promis-
ing potential of our method on Flick30K and our new
datasets. In our future work, object co-segmentation and
contextual constraints within texts will be introduced to
overcome the limitations on both fragment quality and am-
biguity. Although far from perfect, the proposed framework
shows good potential for real-world applications since its in-
telligence is originated from the Web, which is not restricted
by the scale limitations of the human labels.
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